>>552 補足

下記順序数”0, 1, 2, 3, ............, ω, S(ω)(=ω+1)”を数直線に埋め込んでみよう
数直線の区間[0,2]で
n→1-(1/(1+n))=n/(1+n)
と変換すると
0→1-1/1=0
1→1-1/2=1/2
2→1-1/3=2/3
3→1-1/4=3/4
 ・
 ・
ω→1-1/(1+ω)=1
となって、”0, 1, 2, 3, ............, ω”
は、区間[0,1]に埋め込める
そこから、 S(ω)(=ω+1)は
ω+1→1+1/2となって、区間[1,2]の中央の点に対応する
そして、上記が繰返される

>>552の)Zermeloの自然数構成では、可算多重シングルトン{・・・{}・・・}=ωであり
これは、区間[0,1]の点[1,1]に相当する
これで、可算多重シングルトン{・・・{}・・・}=ωのモデルが存在することが分かった
QED

https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0
順序数
(抜粋)
順序数の大小関係

順序数の並び方を次のように図示することができる:

0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), ..............................
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。
そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。
その後、それらの最小上界(後に ω + ω と呼ばれる)が並び、その後続者たちが無限に続く。だがそれで終わりではない。
無限に続いた後には、必ずそれまでに並んだすべての順序数たちの最小上界が存在し、その後続者、そのまた後続者、... のように順序数の列は"永遠に"続いていくのである。
(引用終り)
以上