>>468
マクローリン展開で
 S[N] = (N/2)sin(2π/N) = π{1 -(1/3!)(2π/N)^2 +(1/5!)(2π/N)^4 -(1/7!)(2π/N)^6 + ・・・・ }
 T[N] = N tan(π/N) = π{1 +(1/3)(π/N)^2 +(2/15)(π/N)^4 +(17/315)(π/N)^6 + ・・・・ }

(1)
 S[M] - S[N] = -(2/3)π(1/MM -1/NN){1 -(1/5)ππ・(1/MM+1/NN) +(2/105)π^4・(1/M^4 +1/(MMNN) +1/N^4) - ・・・・ }
 T[M] - T[N] = (1/3)π(1/MM -1/NN){1 +(2/5)ππ・(1/MM+1/NN) +(17/105)π^4・(1/M^4 +1/(MMNN) +1/N^4) + ・・・・ }
辺々割ると
 (T[M]-T[N])/(S[M]-S[N]) = -(1/2){1 +(3/5)ππ(1/MM+1/NN) +(1/175)π^4(46/M^4 +67/(MMNN) +46/N^4) + ・・・ }
(M, N)→(∞, ∞) のとき -1/2 に収束。

(2)
 T[M] - S[N] = π{(ππ/3)(1/MM +2/NN) + (2/15)π^4・(1/M^4 -1/N^4) + ・・・・ }
 S[M] - T[N] = π{-(ππ/3)(2/MM +1/NN) + (2/15)π^4・(1/M^4 -1/N^4) + ・・・・ }
辺々割って
 (T[M]-S[N])/(S[M]-T[N]) → -(1/MM +2/NN)/(2/MM +1/NN) = g(M/N)
 -2 ≦ g ≦ -1/2,