X



トップページ数学
1002コメント966KB

現代数学の系譜 工学物理雑談 古典ガロア理論も読む62

■ このスレッドは過去ログ倉庫に格納されています
0001現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:02:17.29ID:c0bwFOdp
この伝統あるガロアすれは、皆さまのご尽力で、
過去、数学板での勢いランキングで、常に上位です。

このスレは、現代数学のもとになった物理・工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。
それで宜しければ、どうぞ。
後でも触れますが、基本は私スレ主のコピペ・・、まあ、言い換えれば、スクラップ帳ですな〜(^^
最近、AIと数学の関係が気になって、その関係の記事を集めています〜(^^
いま、大学数学科卒でコンピュータサイエンスもできる人が、求められていると思うんですよね。

スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。
話題は、散らしながらです。時枝記事は、気が向いたら、たまに触れますが、それは私スレ主の気ままです。

スレ46から始まった、病的関数のリプシッツ連続の話は、なかなか面白かったです。
興味のある方は、過去ログを(^^

なお、
小学レベルとバカプロ固定
サイコパスのピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」)
(参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
(なお、サイコの発言集「実際に人を真っ二つに斬れたら 爽快極まりないだろう」、「狂犬」、「イヌコロ」、「君子豹変」については後述(^^; )
High level people
低脳幼稚園児のAAお絵かき
上記は、お断り!
小学生がいますので、18金(禁)よろしくね!(^^

(旧スレが1000オーバー(又は間近)で、新スレを立てた)
0029132人目の素数さん
垢版 |
2019/03/07(木) 22:17:53.52ID:3Wft1E02
がロア理論も読めてない受験理系の化け学の皮を剥ぐ
ってスレタイに変えろよ馬鹿
0030現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:18:09.36ID:c0bwFOdp
>>28
つづき

http://wwwa.pikara.ne.jp/yoshifumi/
伊東 由文のホームページ
http://wwwa.pikara.ne.jp/yoshifumi/homepageindex(2)/THF-I.html
超函数の理論I 伊東由文 徳島大学名誉教授・理学博士
http://wwwa.pikara.ne.jp/yoshifumi/THF-I/THF-I-2.pdf
超函数の理論I 第2章 層 伊東由文
(抜粋)
P1
例2.1.1(2)
Oxをxのある近傍で正則な関数のにおける芽のつくる環とする。

各x∈ωに対し、γx(f)をxにおいてfによって定まる芽とする。

P6
この関係は同値関係になるから上の商空間が意味をもつ。Fxをxにお
ける茎といい、s∈F(U)のFxにおける像をsのxにおける芽といい、sxと表す.

P9
この例のように、関数の作る前層{F(U)}は局所化の原理を満た
していることが多い.しかしR^n上の2乗可積分関数のようなも
のは前層{L2(U)}をつくると, 条件(S1)を満たしているが条件
(S2)は満たさない. 前層{L2(U)}から誘導される層は, 局所2乗可
積分関数芽の層L2locになる. したがって, 一般に関数空間の族は
前層になるということによって特徴付けられる.そのうち特に良
い性質を持つ関数の空間のつくる前層は層になる. 本書で考察する
関数概念の一般化である超函数も局所化の原理を満たすようなもの
として特徴付けられる.
(引用終り)

つづく
0031現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:19:18.31ID:c0bwFOdp
>>30
つづき

< 時枝記事への敗北宣言か勝利宣言か? (1)(^^; >
スレ55 https://rio2016.5ch.net/test/read.cgi/math/1543319499/484
484 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2018/12/08(土) 22:50:48.10 ID:bIDCQoJi [42/43]
>>481
はいはい
>スレ主が以下のものを出すようになったら敗北宣言

じゃ、もっと敗北宣言を、させて下さい
1)全国の数学科生に告ぐ **)
  どうぞ、大学の数学科教員に頼んで
  ”数学セミナー 2015年11月号 箱入り無数目 時枝 正の記事は正しい”ということ
  及び、その理由を簡単に書いて(理由は、「正しいから正しい」でも可)
  その方のサイトに、その方の実名で、アップしてもらえませんか?
 (文案はどなたが書いても可です。その方が承認してアップするならね)
2)どうぞ、このスレ主に敗北宣言を出させて下さい
  私は、大学の数学科プロ教員には、とても敵いませんので、すぐ敗北宣言を出します
  赤っ恥で結構です。
  私は、このスレを閉じますよ。
 (まあ、彼らは、落ちこぼれのピエロとは実力が違いますからね。私の実力では抵抗は無駄でしょうね)
3)それが出るまでは、私の勝利*です( 注*:これ定義です(^^; )

注**):どうぞ、このスレを見たどなたでも、貴方が直接教員に頼んでも良いし、知り合いの学生を通じての依頼でも可です
上記1)について、よろしくお願いします。(^^;
(つまらん、低レベル(落ちこぼれレベル)の議論を、延々続けても仕方ないですからね)
それまでは、上記3)の定義の通り、私の勝ちです(^^
0032現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:20:10.56ID:c0bwFOdp
>>31
つづき

< 時枝記事への敗北宣言か勝利宣言か? (2)(^^; >
スレ55 https://rio2016.5ch.net/test/read.cgi/math/1543319499/571
571 返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2018/12/11(火) 11:18:02.05 ID:5Lj3GQW7 [2/8]
>>549
「大学の数学科教員に頼んで
”数学セミナー 2015年11月号 箱入り無数目 時枝 正の記事は誤り”
ということ及び、その理由を数学科の学生が検証できる程詳しく書いて
教員の実名で当人のサイトにアップしてもらいな」

はい
大学で数学を教えている恩師のところへ行ってきました
以下は、その概略です(^^

1.時枝記事の解法は成り立たない
2.それは、大学で数学を教える教員全員の常識だし
  不成立が理解できないのは、数学科生としては、落ちこぼれだね
3.だが、それを実名で公表することは、日本でははばかられる
  時枝先生に賛成して”よいしょ”するのは実名でも可だが
  反旗をひるがえして”反論”するのは、ははばかられるってこと
  みんな知っていることだし、いまさらだからね
4.そうか、ピエロというのがいるのか?
  そいつは、完全に数学科落ちこぼれだな
  彼は、選択公理を濫用している。選択公理で何でも簡単に証明できるなら、ツォルンの補題は不要だ
  彼は、サイコパスで、誇大妄想・自己肥大だね
  数学科出て不遇なのか。だが、性格が悪いし、能力が低いから、仕方ないね

ということでした
 私は、この面談の詳細な証明を持っているが、このスレの余白は狭すぎる。証明は思いつくであろう

 ということです。数学では、反例は一つで良い!
 どうぞ、皆さんの手で反例(>>31の)を出して下さい
 ピエロ、頑張れよ(^^
0033現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:21:01.88ID:c0bwFOdp
数学科出身者同士の見えない繋がりで、落ちこぼれを救うべく、「クソスレ閉めろ!」と言う人は
是非>>31 を実行願います

>数学科出身者同士にも見えない繋がりがあるんだよ
>敵は一人と思ってるスレ主には見えてないだけ。

はい、それ、是非実現願います(^^;
その見えない数学科出身者同士の繋がりってやつ、>>31 を即実現して、証明してください。簡単でしょ?
直ちに、この数学板への書き込みを止めますからw (^^
0034現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:23:37.53ID:c0bwFOdp
>>33
あと、確率変数について、過去スレより

(私スレ主)
過去スレ 57 https://rio2016.5ch.net/test/read.cgi/math/1546308968/720
720 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/01/12(土) 10:02:35.99 ID:bEkkM7c0 [6/26]
>>717 補足

(引用開始)
X=(X_1,X_2,…)をR値の独立な確率変数とする.
時枝さんのやっていることは
無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める.
無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める.
(引用終り)

普通に、
「X=(X_1,X_2,…)をR値の独立な確率変数とする」と述べている
これ、箱に順に、確率変数 X_1,X_2,… を入れるということを述べているんですよね?
確率変数は、箱に入れられない?
いや−、妄想でしょ?(^^

つーか、分ってるの?
「確率変数とはなにか」という初歩的なことが w(^^;

まあ、サイコバスだからな〜
なんでも、自分に有利な発言だと、食いつくみたいだね。真贋かまわず ガセとも知らず
(引用終り)

つづく
0035現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:24:25.32ID:c0bwFOdp
>>34
つづき

(ピエロ)
過去スレ 57 https://rio2016.5ch.net/test/read.cgi/math/1546308968/725
725 名前:132人目の素数さん[] 投稿日:2019/01/12(土) 10:12:52.57 ID:EgDrd5kK [6/24]
>>720
>X=(X_1,X_2,…)をR値の独立な確率変数とする.

それ、時枝氏の発言じゃないよ
ID:f9oaWn8Aの発言でしょ

要するにID:f9oaWn8Aが間違ってるってことです
時枝戦略の予測確率を計算するのに、
そんなものを確率変数とするのが間違い

間違った発言に固執し続けるとかほんろ、アタマ悪いね
(引用終り)

(私スレ主)
過去スレ 57 https://rio2016.5ch.net/test/read.cgi/math/1546308968/731
731 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/01/12(土) 10:31:21.03 ID:bEkkM7c0 [11/26]
人の記憶は、自分に都合の良いことだけを記憶するというが
サイコパスは、特に顕著だね〜(^^
時枝先生も、確率変数を箱に入れると書かれています(下記)
でもね、だれが書いたとか、言ったとか、そういう話しじゃ無い

根本的に、初歩の初歩「確率変数ってなに?」が分っていない
そういうことです
で、初歩の初歩「確率変数ってなに?」が分っていない人が、したり顔で時枝を語るの図
まさに、サイコパスそのものだね(^^;

(引用開始)
過去スレ35 http://rio2016.2ch.net/test/read.cgi/math/1497848835/15 時枝問題(数学セミナー201511月号の記事)
(抜粋)
独立な確率変数の無限族
X1,X2,X3,…

n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
(引用終り)

つづく
0037現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:25:02.72ID:c0bwFOdp
>>35
つづき

(ピエロ)
過去スレ 57 https://rio2016.5ch.net/test/read.cgi/math/1546308968/739
739 名前:132人目の素数さん[] 投稿日:2019/01/12(土) 11:10:17.03 ID:EgDrd5kK [16/24]
>>720
>「X=(X_1,X_2,…)をR値の独立な確率変数とする」と述べている
>これ、箱に順に、確率変数 X_1,X_2,… を入れるということを述べているんですよね?

数学科では到底許容されない、粗雑極まりない読解だな
やっぱ、工学馬鹿には数学科の数学は無理
(引用終り)

(私スレ主)
過去スレ 57 https://rio2016.5ch.net/test/read.cgi/math/1546308968/773
773 返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/01/12(土) 17:34:19.42 ID:bEkkM7c0 [19/26]
時枝記事より
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
「実数を入れる」と明記されてるんですけど?日本語読めませんか?
か(^^

いや、それをもって、
箱に確率変数を入れるという時枝記事の記述(下記)を否定すると読むのか?(^^

>>731 より時枝問題(数学セミナー201511月号の記事))
(抜粋)
「独立な確率変数の無限族
X1,X2,X3,…」

「n番目の箱にXnのランダムな値を入れ」
と明確に書かれているのに

こんな確率論ド素人を相手にしているのかね? おれって w(^^
まあ、数学科出ても、落ちこぼれって、この程度か (^^;
(引用終り)

つづく
0038現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:25:53.03ID:c0bwFOdp
>>37
つづき

(ピエロ)
過去スレ 57 https://rio2016.5ch.net/test/read.cgi/math/1546308968/779-780
779 名前:132人目の素数さん[] 投稿日:2019/01/12(土) 18:16:33.10 ID:EgDrd5kK [22/24]
>>773
>「n番目の箱に(確率変数)Xnのランダムな値を入れ」

これ、確率変数の正確な定義に照らせば、誤った文章だね
確率変数の定義
「確率変数 X:Ω→Eは、
 標本空間(起こりうることがらの集まり)Ω の元に
 数 E を対応させる可測関数である」
つまり定義も知らないド素人は、工学馬鹿の●違いピエロ、君だね

780 名前:132人目の素数さん[] 投稿日:2019/01/12(土) 18:28:25.19 ID:EgDrd5kK [23/24]
確率変数の実例
例えば、任意に抽出した人の身長を確率変数とする場合を考える。
数学的には、確率変数は 対象となる人→その身長 という関数を意味する。
時枝記事の場合、いろんなものが確率変数として考えられる
1)箱の全体をΩとし、中身の実数の全体をEとして Ω→Eを考えると確率変数
2)列の全体をΩとし、決定番号の全体をEとして、Ω→Eを考えると確率変数
3)列の附番{1,・・・,100}をΩとし、100列の決定番号のうち、自分以外の決定番号で
自分の列番以上のものの数をEとして、Ω→Eを考えると確率変数
(列の決定番号が単独最大値の場合、自分の列番以上の列の数は0になる)
時枝戦略での成功確率には3)を使う ただそれだけの話
(引用終り)

(私スレ主)
過去スレ 57 https://rio2016.5ch.net/test/read.cgi/math/1546308968/781
781 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/01/12(土) 18:44:16.63 ID:bEkkM7c0 [22/26]
恥の上塗りと気付かないバカ
(引用終り)

確率変数については、自得するまで基本的には、教えないことにします
おかしなカキコには、時々ツッコミます(^^

確率変数について以上です
0039現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:26:38.07ID:c0bwFOdp
(参考:>>1のサイコパスのピエロ発言例)
 特に「実際に人を真っ二つに斬れたら 爽快極まりないだろう」にご注目ください(^^;
過去スレ58 https://rio2016.5ch.net/test/read.cgi/math/1547388554/768
768 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/01/25(金) 06:35:26.99 ID:sw2GMLb3 [1/29]
それさ、時枝記事の話じゃなく
例えば下記の彼の発言引用みたいに

誰彼かまわず些末な揚げ足を取って
その実自分が間違えていて、

あるいは、理解不十分な難癖で
それが明らかになったら、

”君子豹変”で自己を正当化するが
その途中で相手に暴言を吐く

そういうサイコパス(=ピエロちゃん)を、たしなめている
そういうことだと思うよ

もっと言えば、それを繰返すなら、コテ付けろと
NGするからみたいな(^^

”実際に人を真っ二つに斬れたら
爽快極まりないだろう”

か、全くサイコパスだねー
この発言が通常人にどう受け止められるか、理解できないんだろうね、彼には

(引用開始)
(>>351より)
実際に人を真っ二つに斬れたら
爽快極まりないだろう
(>>352より)
なんだ、スレ主と同じ自己中か
焼かれて死ね
(>>612より)
勝手に吠えろ 狂犬
(>>616より)
狂犬がワンワン吠えたおかげで
「代表元も決定番号もプレイヤーが勝手に知ればいいので
 ディーラーがそんなこと分かったら逆におかしい」
ということが明らかになった
これこそ明確な態度の変更 君子豹変
ありがとよ 狂犬!!!
(>>617より)
必要ないことに
今更ながら気づいちゃったから
ということで君の三パターン、全然無駄だから
どうだ 狂犬 自分の発言で自爆した気分は?
(引用終り)

つづく
0040現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:27:20.35ID:c0bwFOdp
>>39
つづき

<サイコのバカ発言集追加>(^^
(サイコのバカ発言)
前スレ58 https://rio2016.5ch.net/test/read.cgi/math/1547388554/634
634 名前:132人目の素数さん[sage] 投稿日:2019/01/23(水) 17:03:41.92 ID:JF7m6dzy [46/62]
>>632
>むやみに振り上げてしまった拳

ああ、お前の>>539
勝手に降ろせよ だれも振り上げろなんて頼んでないし
だいたいディーラーを持ち出すことで何がどう面白いのか結局語れずじまい
「論理的に同じ」とかいう自明な話したいだけなら、最初から云うなよ
だれもそんなクソ話聞きたくねえよ!

(相手の発言)
前スレ58 https://rio2016.5ch.net/test/read.cgi/math/1547388554/637
637 名前:132人目の素数さん[sage] 投稿日:2019/01/23(水) 17:12:02.88 ID:69vKfGyL [44/50]
>>634
>「論理的に同じ」とかいう自明な話したいだけなら、最初から云うなよ
>だれもそんなクソ話聞きたくねえよ!

やっと認めましたね?
そうです。「論理的に同じ」とかいう自明な話なんです
「自明」とは「わざわざ書くまでもなく正しい」という意味であり、
つまりこちらの書き込みは正しい書き込みなんです
まあナンセンスな話だったかもしれないけど、でも正しい書き込みなんです
それにも関わらず、あなたは執拗に批判してきました
しかも、あなたは途中で「君子豹変」とか言って主張内容を変化させています
誰がどう見ても、あなたは無暗に振り上げてしまった拳をずっとおろせずに
「頭がオカシイ」としか言えなくなっています

つづく
0041現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:27:42.63ID:c0bwFOdp
>>40

つづき
(サイコのバカ発言)
前スレ58 https://rio2016.5ch.net/test/read.cgi/math/1547388554/639
639 名前:132人目の素数さん[sage] 投稿日:2019/01/23(水) 17:18:55.31 ID:JF7m6dzy [49/62]
>>637
>正しい書き込みなんです
>それにも関わらず、
>あなたは執拗に批判してきました

狂犬は「批判」といってるが全くの誤り
私は「ナンセンス」だといってるのである
「自明な正しさ」なんてまさに「ナンセンス」の極致
そんな話を長々と数学板でするんじゃねえ
というのはまさに当然のことw

>「君子豹変」

ええ、イヌにはできないことを人間様としてやって差し上げました
そもそもディーラーを持ち出すことに違和感があったのですが
それは「プレイヤーが勝手にやってることをディーラーが知る」
という点にあったと気づいたので、それを明確にしました
あなたは「全部の箱にπを入れる」ことにまだ固執してるようですが
それはあなたが「固定」の意味を誤解したままそれすら認めないから
でしょう あなたは君子ではない 人ですらない イヌコロですw

つづく
0042現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:28:17.97ID:c0bwFOdp
>>41

つづき

(相手の発言)
前スレ58 https://rio2016.5ch.net/test/read.cgi/math/1547388554/650
650 名前:132人目の素数さん[sage] 投稿日:2019/01/23(水) 17:52:40.04 ID:69vKfGyL [49/50]
>>648の続きになるが、そういえば君、最初からずっと
こちらの書き込みについて誤読がつづいてたね
途中で「君子豹変」とか言って主張を変えてみたりしながら。
君のクセは大体わかってきたよ
ロクに今までの流れを把握することもなく、その貧弱な読解力で
表面的に他人のレスを1回だけ読んでみて、それで発言の意図や
書き込みの意味が分からなかったら「こいつはバカだ」と言って
相手を批判するというわけだ。君の誤読の中でも最高にヤバイのは

>全ての箱に同じ数をいれるかどうかは固定とは無関係

これだね。バカじゃないのw 一体だれが
「ぜんぶ同じ実数でなければ固定ではない」
なんて言ったんだよw「箱の中で転がり続けるサイコロ」というバカな発想を
封印するための最も簡単な手段が「全部π」なのであって、そういう意図で
>>506が書かれていることは>>506周辺の流れを見れば一目瞭然だろうが。
「全部π」と「固定」を機械的に結び付けるからそういう誤読になるんだよ

(相手の発言)
前スレ58 https://rio2016.5ch.net/test/read.cgi/math/1547388554/653
653 名前:132人目の素数さん[sage] 投稿日:2019/01/23(水) 18:08:43.45 ID:69vKfGyL [50/50]
>>652
>おまえみたいな池沼に数学板は無理 もう書き込むな

いやあ、「君子豹変」とか言って途中で
主張を変えてしまうような池沼の発言は一味違うね
君のクセは大体分かってきたと既に書いた
まとめると、君はAI読みしかできず、相手の発言もその前後の文脈もまともに読まず、
それで発言の意図や書き込みの意味が分からなかったら「こいつはバカだ」と言って
相手を批判し、後になって気が変わると堂々と「君子豹変」とか言って
自分の主張を変えるクズだということ
こういう唯我独尊な感じ、アホ主の高圧的な態度にそっくりだね
さすがに君への興味は薄れたというか、「お里が知れた」ので、
もう君の相手は十分かな
(引用終り)

以上
0043現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 22:29:03.47ID:c0bwFOdp
>>42

(ご参考)
典型的サイコパスのウソつき反応
京大重川先生の確率論基礎 講義ノートが読めてないと“いじられる”
  ↓
「東京大学ですが何か?w」と脊髄反射でウソを吐く
要するに、京大より自分が上だと、とっさのウソを言ったわけだ
だが、だれがピエロが東大だと思うのかね? そのウソが通用すると思うところが怖いよね(^^

(参考引用)
スレ59 https://rio2016.5ch.net/test/read.cgi/math/1548454512/957-962
957 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/02/03(日) 21:22:10.44 ID:BnDtX2yP [46/79]

Wikipediaだけじゃ、だめですよ(どっかで聞いたセリフだな(^^; )
https://www.math.kyoto-u.ac.jp/~ichiro/index_j.html
重川一郎のホームページ 京都大学大学院理学研究科数学教室
https://www.math.kyoto-u.ac.jp/~ichiro/lectures/2013bpr.pdf
2013年度前期 確率論基礎 講義ノート

まあ、確率論基礎だからな
京大ではね
落ちこぼれの大学はどこだい?(^^

959 名前:132人目の素数さん[] 投稿日:2019/02/03(日) 21:23:44.99 ID:fS1IT7Pz [71/77]
>大学はどこだい?(^^

東京大学ですが何か?w

962 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/02/03(日) 21:29:01.38 ID:BnDtX2yP [48/79]
>>959
>>大学はどこだい?(^^
>東京大学ですが何か?w

わろた〜w(^^
今日一番の大笑いですww(^^


テンプレ、以上です。(^^
0045現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/07(木) 23:17:28.48ID:c0bwFOdp
前スレでZFCが話題になったので、ご参考

http://www.cs-study.com/koga/index.html
Welcome to AKI's HOME Page
http://www.cs-study.com/koga/set/setTheory.html
集合,位相,論理など
(抜粋)
・ZFC (Zermero-Fraenkel の公理系 + 選択公理 (Axiom of Choice))
一般的に公理的集合論と言えばこちらのこと,こちらはクラスは定義されていません. Godel-Bernays より表現力は弱いのですが,記述を集合に限ると同じ定理が導出できるそうです.
一応,ZFC の公理系を図の形に整理しておきます.

http://www.cs-study.com/koga/set/pictures/ZFC-Summary01.png
図のまとめ方は私が感じたまとめ方になっていますが,ZFC の公理系は5種類 の公理(群)からなっています.
まず,第1に,集合が等しいとはどういうことかを決める外延性公理,第2に特殊な形の集合の存在(つまり空集合と最低限1つの無限集合), 第3に既存の集合から新たに集合をつくる手段の提供(ペア,和集合,関数適用,べき集合), 第4に自分自身を含むような集合の排除(ラッセルのパラドックスなどの排除)のための 正則性公理,第5に選択公理です.

上で書いた新たに集合を作る手段の関数適用のところは,
集合への関数適用の結果は集合になる
という公理ですが,もとはここには分出公理(集合の中からある性質を持つ要素だけを取り出したものは集合)があったが,1922年に Fraenkel によって上に書いた公理に置き換えられたとのことです.

しつこいかもしれませんが,さらに ZFC の公理系の全貌を簡単にまとめた図を描いておきます.
もう一枚の図で補足しておきます.ポイントは,
考察する世界(ユニバース=集合の集まり)を構成するのに,まず集合のタネとして 空集合と最低1つの無限集合を仮定すること
すでにある集合から新たに集合を作る手段として4つの方法を用意すること
こうしてできた集合の性質として,外延性,正則性,選択関数の存在を課すこと
です.

http://www.cs-study.com/koga/set/pictures/ZFC-Summary02.png
実は選択公理も集合を作るので,「集合の生成手段」に入れても良いかもしれません. ただ,「選択公理を仮定すれば...」というように,ほかのZF の公理系との結びつきは多少弱いように思うので,この図では別のところに書いています.
0046132人目の素数さん
垢版 |
2019/03/07(木) 23:17:59.51ID:8UJbn5Oi
スレ主だいぶ荒れてるなw
0049132人目の素数さん
垢版 |
2019/03/08(金) 06:22:43.73ID:ULwq4qbD
>>46
自分の馬鹿を棚に上げて逆ギレされてもいい迷惑 >●違いスレ主
0050現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/08(金) 07:30:02.70ID:lnTMRuDp
>>45

正則性公理(基礎の公理)は、下記のようにあとから追加された命題なので、オリジナルのZFでは、必ずしも必要とされていなかったようだね(^^
しかし、正則性公理があると、帰納法の議論が、簡単になるのも事実だなw

https://ja.wikipedia.org/wiki/%E5%85%AC%E7%90%86%E7%9A%84%E9%9B%86%E5%90%88%E8%AB%96
ZF 公理系
(抜粋)
・正則性公理(基礎の公理) 空でない集合は必ず自分自身と交わらない要素を持つ:
∀ A(A ≠ Φ → ∃ x ∈ A ∀ t ∈ A(t not∈ x)) 。
正則性公理はジョン・フォン・ノイマンによって導入された(1925年)。

https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86
正則性公理
(抜粋)
正則性の公理は必ずしもZF公理系を拡張するために必要なものではないが、ZF公理系と他のいくつかの命題が独立であることを証明する際にその効果を発揮する。

https://ja.wikipedia.org/wiki/%E6%95%B4%E7%A4%8E%E9%96%A2%E4%BF%82
整礎関係
(抜粋)
定義
ZF における公理のひとつである正則性の公理は、全ての集合が整礎であることを要請するものである。
帰納法と再帰
整礎関係が興味深い重要な理由は、それによって超限帰納法の一種が考えられることにある。すなわち (X, R) が整礎関係で P(x) が X の元に関する何らかの性質であるときに、 P(x) が X の「すべての」元に対して満たされることを示すには、以下を示せば十分である。

・集合を要素とする任意のクラスの集合要素関係 ∈ 。これは正則性公理そのものである。
0051132人目の素数さん
垢版 |
2019/03/08(金) 07:52:32.58ID:ULwq4qbD
>>50
>正則性公理があると、帰納法の議論が、簡単になる

一般の集合についての話ならともかく
自然数とか順序数とかなら
その構成の仕方から整礎であることは明白

わからん奴は即刻数学止めたほうがいい 意味ないから

スレ主は考えるための脳ミソないのか?
0052132人目の素数さん
垢版 |
2019/03/08(金) 08:17:04.32ID:Z10DG0gd
>テンプレ貼るのも疲れるんだ(^^

自己擁護のために1,2時間で50レスも消費すんなバカ
0053132人目の素数さん
垢版 |
2019/03/08(金) 08:24:32.11ID:wiE/rvIh
スレ主は時枝記事が分かってないことを誤魔化そうと集合論へ向かった。
が、集合論も全然わかってなかったw
ここまで何一つ分かってないって逆に凄いなw
0055132人目の素数さん
垢版 |
2019/03/08(金) 10:12:17.75ID:HVq5OYm0
>>50
>正則性公理があると、帰納法の議論が、簡単になるのも事実だなw

正則性公理:Given the other axioms of Zermelo?Fraenkel set theory, the axiom of regularity is equivalent to the axiom of induction.
つまりは、ZF上で、正則性公理と帰納法公理は、同値だと

https://en.wikipedia.org/wiki/Axiom_of_regularity
Axiom of regularity
(抜粋)
In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo?Fraenkel set theory that states that every non-empty set A contains an element that is disjoint from A.

The axiom of regularity was introduced by von Neumann (1925); it was adopted in a formulation closer to the one found in contemporary textbooks by Zermelo (1930). Virtually all results in the branches of mathematics based on set theory hold even in the absence of regularity; see chapter 3 of Kunen (1980).
However, regularity makes some properties of ordinals easier to prove; and it not only allows induction to be done on well-ordered sets but also on proper classes that are well-founded relational structures such as the lexicographical ordering on {(n,α ) | n ∈ ω ∧ α is an ordinal }.

Given the other axioms of Zermelo?Fraenkel set theory, the axiom of regularity is equivalent to the axiom of induction.
The axiom of induction tends to be used in place of the axiom of regularity in intuitionistic theories (ones that do not accept the law of the excluded middle), where the two axioms are not equivalent.

In addition to omitting the axiom of regularity, non-standard set theories have indeed postulated the existence of sets that are elements of themselves.

つづく
0056132人目の素数さん
垢版 |
2019/03/08(金) 10:16:27.24ID:HVq5OYm0
>>55

つづき
"This principle, sometimes called the axiom of induction (in set theory), is equivalent to the axiom of regularity given the other ZF axioms. "だと(^^
https://en.wikipedia.org/wiki/Epsilon-induction
Epsilon-induction
(抜粋)
In mathematics, ∈-induction (epsilon-induction) is a variant of transfinite induction that can be used in set theory to prove that all sets satisfy a given property P[x].
If the truth of the property for x follows from its truth for all elements of x, for every set x, then the property is true of all sets. In symbols:
∀ x (∀ y(y∈ x→ P[y])→ P[x] )}→ ∀ x P[x]
This principle, sometimes called the axiom of induction (in set theory), is equivalent to the axiom of regularity given the other ZF axioms.
∈-induction is a special case of well-founded induction.
The Axiom of Foundation (regularity) implies epsilon-induction.
The name is most often pronounced "epsilon-induction", because the set membership symbol ∈ historically developed from the Greek letter ε .

以上
0057132人目の素数さん
垢版 |
2019/03/08(金) 10:31:14.56ID:HVq5OYm0
>>55 補足

えーと、こうだったね、前スレより下記
”フォン・ノイマンの正則性公理と数学的帰納法および超限帰納法との関係 またなんかおかしなことをいいだした”
これ関係あったよねw(^^

”式を読まないから何も学べない”?  
「正則性公理:Given the other axioms of Zermelo-Fraenkel set theory, the axiom of regularity is equivalent to the axiom of induction.
つまりは、ZF上で、正則性公理と帰納法公理は、同値だと」分からなかったみたいだね

ピエロちゃんはw(^^
結局、式を読んでもバカはバカか

(引用開始)
スレ61 https://rio2016.5ch.net/test/read.cgi/math/1550409146/914
(抜粋)
914 名前:132人目の素数さん[sage] 投稿日:2019/03/06(水) 06:24:34.36 ID:pk0FhySK [1/2]
>>899
>フォン・ノイマンの正則性公理と数学的帰納法および超限帰納法との関係
またなんかおかしなことをいいだしたね 
文章が読めない文盲は困ったものだね
(引用終わり)

スレ61 https://rio2016.5ch.net/test/read.cgi/math/1550409146/919
919 名前:132人目の素数さん[] 投稿日:2019/03/06(水) 20:52:44.45 ID:pk0FhySK [2/2]
スレ主は話だけで肝心の選択公理の式を読まないから何も学べない
正則性公理についても同様 同じ間違いを二度繰り替えすとか貴様は白痴か?
(引用終わり)
0058132人目の素数さん
垢版 |
2019/03/08(金) 11:11:23.96ID:HVq5OYm0
>>55 補足
>Virtually all results in the branches of mathematics based on set theory hold even in the absence of regularity; see chapter 3 of Kunen (1980).
>However, regularity makes some properties of ordinals easier to prove; and it not only allows induction to be done on well-ordered sets
>Kunen, Kenneth (1980), Set Theory: An Introduction to Independence Proofs, Elsevier, ISBN 978-0-444-86839-8

検索すると、海賊版かもしらんが、下記PDFヒット
これ、しばしばお世話になっている藤田 博司先生の和訳があるかな?
http://blacaman.tripod.com/cursos/pdf/2012-2_0941.pdf
An Introduction to Independence Proofs K KUNEN 著 First edition: 1980 Seventh impression: 1999

https://www.amazon.co.jp/dp/4535783829/ref=pd_lpo_sbs_14_t_1?_encoding=UTF8&;psc=1&refRID=8NKTZE2Q63MR3BRQEWQX
集合論―独立性証明への案内 単行本 ? 2008/1/1
(抜粋)
ケネス キューネン (著), Kenneth Kunen (原著), 藤田 博司 (翻訳)
ナラバ博士
5つ星のうち5.0
第2章の章末問題はとくに面白い
2009年4月5日
形式: 単行本
集合論のうち,とくに20世紀第3四半期における強制法(フォーシング)の研究に焦点をあてた入門書である。
数学科(数理科学コース)の1・2年向けの集合論の授業では,数学全分野のための予備知識として19世紀後半の集合論を扱うのがふつうであろう。
本書が扱うのはより高度な話題である。原書は研究分野としての集合論への入門書として評価が高い。
評者は大学院修士課程1年生のときに原書を通読した。
強制法への伏線として第2章でマーティンの公理を扱っており,この章の章末問題には面白いものが多いと感じた。
時間をかけて翻訳した本書の訳は大変読みやすく,ところどころに親切な訳注が添えられている。
0059132人目の素数さん
垢版 |
2019/03/08(金) 11:29:25.48ID:HVq5OYm0
>>57 追加

(引用開始)
スレ61 https://rio2016.5ch.net/test/read.cgi/math/1550409146/920
(抜粋)
920 返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/03/06(水) 21:00:28.46 ID:NUjaXEYj [2/5]
>>914
別に難しいことは言っていない
話しは単純で
ペアノの公理で、自然数の集合で
>>866より)
自然数が整列集合=数学的帰納法成立 (公理として同値)
とすれば、
ZFから、”自然数が、整列集合 or 数学的帰納法成立”が導けなければいけない
ZFだけでね
普通の高校や大学の集合論では、「数学的帰納法は、当然です」と、まあ公理にするか、触れずにすますか(触れても触れなくても似たようなものでしょうが)
それはともかくとして、触れてもせいぜいペアノ公理くらいでお茶濁す
で、ZFで、「自然数が整列集合=数学的帰納法」 (公理として同値なので、どちらを導いても良いが)
に直結するZF中の公理が、フォン・ノイマンの正則性公理だよというだけのことです
(引用終わり)

で、「正則性公理:Given the other axioms of Zermelo-Fraenkel set theory, the axiom of regularity is equivalent to the axiom of induction.
つまりは、ZF上で、正則性公理と帰納法公理は、同値」だから、間違っていないし

但し、>>58 Virtually all results in the branches of mathematics based on set theory hold even in the absence of regularity; see chapter 3 of Kunen (1980).
だから、正則性公理なしでも、自然数が整列集合 or 数学的帰納法成立 (公理として同値) が導けるだろうね

ピエロちゃん、やれよ、その証明を、具体的にさ w(^^
前スレで豪語したでしょ? ホレホレ

そのために、Kunen (1980).のPDF見つけてやったよ(>>58
ホレホレ

まあ、読めないだろうね、あんたのレベルじゃねw(^^
0060132人目の素数さん
垢版 |
2019/03/08(金) 12:01:44.48ID:ULwq4qbD
>>55-56
スレ主は日本語が読めないくらいだから、英語は全然読めないんだな

>the axiom of regularity is equivalent to the axiom of induction.

the axiom of induction「帰納法の公理」とあるじゃん
これを帰納法全部と考えるのは英語が読めない白痴w

>In mathematics, ∈-induction (epsilon-induction) is a variant of transfinite induction that can be used in set theory to prove that all sets satisfy a given property P[x].

ε帰納法は、a variant of transfinite induction「超限帰納法の一種」とあるよな
ε帰納法は全ての集合が特性P[x]を満たすことを証明するのに用いるもの
正則性公理が成立しなければ、ε帰納法も成立しない
しかし、数学的帰納法や一般の超限帰納法が
その道連れになるわけではない

こんな簡単な英語も読めないくせに大卒とかウソつくなよ サイコパス
0061132人目の素数さん
垢版 |
2019/03/08(金) 12:06:44.08ID:HVq5OYm0
>>51
>>正則性公理があると、帰納法の議論が、簡単になる
>一般の集合についての話ならともかく
>自然数とか順序数とかなら
>その構成の仕方から整礎であることは明白
>わからん奴は即刻数学止めたほうがいい 意味ないから

はいは、証明よろしくね
”その構成の仕方から整礎であることは明白”だろうけど
数学では、証明を求められるよねw(^^

なお、ZFのどの公理を使ったかを明示してくださいね〜(^^
Kenneth Kunen 1980 のPDF(>>58)見て良いからね〜w(^^
0063132人目の素数さん
垢版 |
2019/03/08(金) 12:22:29.61ID:HVq5OYm0
>>53
>スレ主は時枝記事が分かってないことを誤魔化そうと集合論へ向かった。
>が、集合論も全然わかってなかったw

いやいや、サイコパスピエロとはいい勝負だし
”いじる”ネタになるし
基礎論結構好きなんだ(もちろん、専門に研究している人ほどレベルは高くないけどね(^^ )
0064132人目の素数さん
垢版 |
2019/03/08(金) 12:42:07.19ID:ULwq4qbD
>>55 >>57
>regularity makes some properties of ordinals easier to prove;
>and it not only allows induction to be done on well-ordered sets
>but also on proper classes that are well-founded relational structures
>such as the lexicographical ordering on {(n,α ) | n ∈ ω ∧ α is an ordinal }.

スレ主はマジで英語が読めない白痴

上記の文章では、逆にregularity「正則性」とあって、
Axiom of regularity「正則性の公理」となってないじゃん

集合Sが正則性を持てば、その正則性から導かれる帰納法を使える

しかし、正則性公理がないからといって、
いかなる集合にたいしても帰納法が導けない
ということにはならない
なぜなら、正則性公理の否定は
「全ての集合は正則性を持たない」ではなう
「正則性を有しない集合が存在する」だから

スレ主は述語論理の∀(すべて)と∃(ある)の区別もできないテイタラク
>>63の「基礎論結構好きなんだ」が聞いてあきれる
述語論理も分からない馬鹿に基礎論が理解できるわけないだろw
0065132人目の素数さん
垢版 |
2019/03/08(金) 12:48:55.82ID:ULwq4qbD
正則性の公理はε帰納法のような集合全体に適用される
”特殊な”帰納法と同値なのであって
数学的帰納法や一般の超限帰納法を導くものではない

数学的帰納法はNが正則であればよく
一般の超限帰納法は対応する順序数が正則であればいい
決して全ての集合が正則である必要はない

こんな根本的なことも理解できずに
「基礎論結構好きなんだ」とほざく
スレ主のなんと馬鹿なことか
(チコちゃんに叱られるの森田アナかw)

キョエちゃん「スレ主のバカー」
0066132人目の素数さん
垢版 |
2019/03/08(金) 12:56:00.88ID:ULwq4qbD
(蛇足)
>数学では、証明を求められるよね

簡単だから(Nが正則であることの証明問題は)スレ主にやるよw

基礎論好きなんだろ?

このくらいできないと基礎論なんてわからないぞwwwwwww
0067132人目の素数さん
垢版 |
2019/03/08(金) 13:57:53.65ID:HVq5OYm0
(>>59より)
正則性公理なしでも、自然数が整列集合 or 数学的帰納法成立 (公理として同値) が導けるだろうね
ピエロちゃん、やれよ、その証明を、具体的にさ w(^^

ところでさ、下記にご注目w(^^
”Axiom of infinity
that these members are all different, because if two elements are the same, the sequence will loop around in a finite cycle of sets. The axiom of regularity prevents this from happening.”
とあるので、
The axiom of regularityがないと、
できた無限集合が、どんな集合かわけわからんみたい

それで、自然数が出来たということを確認するのが、大変になりそうだよw(^^
(The minimal set X の確認)

おれ? おれは、そんな面倒なことはしないよ〜(^^
正則性公理採用派だからね

早く、正則性公理無しのZFから、自然数Nを構築してさ、整列集合 or 数学的帰納法成立 (公理として同値) の証明頼むよ〜w
みんな、やれるかどうか、あんたの能力を見極めようと、期待して待っているよ〜w(^^

どうせ、できないから、ぐだぐだ言い訳しているんだろうがね

https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
Zermelo?Fraenkel set theory
(抜粋)
7. Axiom of infinity
Let S(w) abbreviate w∪{w}, where w is some set.
(We can see that {w}is a valid set by applying the Axiom of Pairing with x=y=w so that the set z is {w}.
Then there exists a set X such that the empty set Φ is a member of X and, whenever a set y is a member of X, then S(y) is also a member of X.
∃ X [Φ ∈ X Λ ∀ y(y∈ X → S(y)∈ X)].
More colloquially, there exists a set X having infinitely many members.
(It must be established, however, that these members are all different, because if two elements are the same, the sequence will loop around in a finite cycle of sets.
The axiom of regularity prevents this from happening.)
The minimal set X satisfying the axiom of infinity is the von Neumann ordinal ω, which can also be thought of as the set of natural numbers N .
(引用終わり)
0068132人目の素数さん
垢版 |
2019/03/08(金) 14:42:06.81ID:HVq5OYm0
>>67 補足

(引用開始)
スレ61 https://rio2016.5ch.net/test/read.cgi/math/1550409146/870
(抜粋)
870 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/03/05(火) 11:51:49.63 ID:xYDWPnCx [6/15]
(参考)
https://togetter.com/li/949306
数学と公理的集合論ZFC togettet 2016年3月13日
「ZFCの中で普通の数学をどのように表現するか」
「数学は形式化されなければならないのか」
という感じの話です。
(抜粋)
発端
立命館大学大学院理工学研究科基礎理工学専攻数理科学コース新M2マン @Rits_math_M2
新歓でちょっとした数学の記事を書くんだけど、「数学がZFCから作られていることを実感してもらうためにZFからペアノの公理のモデルでも構成するか」とか思ってたの、難しすぎ感あるな。
2016-03-12 23:00:39
(引用終わり)

これ多分、立命の研究室に4年が来ての、新歓だと思うが
”ZFからペアノの公理のモデルでも構成するか”で
二つのコースがあって
1)一つは、前スレ61で下記に示すように、ZF中で正則性公理を使うコース
 スレ61 https://rio2016.5ch.net/test/read.cgi/math/1550409146/901-902
 スレ61 https://rio2016.5ch.net/test/read.cgi/math/1550409146/936
2)も一つは、ピエロちゃんの、ZF中で正則性公理を使わないコース

”両方できるぜ〜!”と、新歓で紹介すれば、恰好いいよね(^^
ピエロちゃん、”正則性公理を使わないコース”の証明がんばれぇ〜!(^^
0070132人目の素数さん
垢版 |
2019/03/08(金) 15:24:48.22ID:wiE/rvIh
>>68
>二つのコースがあって
つまり正則性公理は必要無いってことじゃんw 

>ピエロちゃん、”正則性公理を使わないコース”の証明がんばれぇ〜!(^^
だから言ってるだろ、そんなもんそこら中に転がってると
スレ主が証明を理解できてるかは怪しいがなw
0071132人目の素数さん
垢版 |
2019/03/08(金) 15:27:00.58ID:wiE/rvIh
スレ主はwikipediaとかの解説文ばっかり読んでるんじゃないか?
証明そのものを読めよw
お前の学力で理解できれば、だけどなw
0072132人目の素数さん
垢版 |
2019/03/08(金) 15:32:22.12ID:wiE/rvIh
おそらく学力不足で証明そのものは読めないんだろう。
それで解説文ばっかり読んでいる。
しかし解説文は解説文、いくら読んでも証明が理解できる訳ではない。
だからいつも間違ってばかりいる。

ま、こんなとこだろうw
0073132人目の素数さん
垢版 |
2019/03/08(金) 15:32:40.86ID:HVq5OYm0
>>70
>>二つのコースがあって
>つまり正則性公理は必要無いってことじゃんw 

正則性公理は、公理だから、
ZFCを前提として、それで証明が簡単にできるなら、知っておく方がいいだろう?(^^
というか、
一つは、正則性公理を前提としない複雑で長い証明と、
一つは、正則性公理を前提した簡明で短い証明が可能だと、

二つあるなら、両方知っておくべきだろうよ
特に、自然数の性質の基本に関する部分ならね

>スレ主が証明を理解できてるかは怪しいがなw

おれは、理解できないかもしれない
でも、それでいいじゃん
このスレを見ている人は、おれだけじゃないからね
0074132人目の素数さん
垢版 |
2019/03/08(金) 15:34:27.33ID:HVq5OYm0
これ、ちょっと面白かったから貼る
https://www.nikkei.com/article/DGXMZO42024040U9A300C1000000/
東洋一の大望遠鏡、京大が挑んだ「純国産」
科学記者の目 編集委員 小玉祥司
2019/3/8 6:30日本経済新聞 電子版
(抜粋)
京都大学などが建設を進めていた東アジア最大の光学望遠鏡「せいめい」が完成、2月20日に記念式典が開かれた。口径3.8メートルという大きさだけでなく、分割した鏡を組み合わせたり、鏡を支える骨組みを大幅に軽量化したりと、最新技術を自力で開発したのも特徴だ。「純国産」望遠鏡に取り組んだ研究者たちのチャレンジ精神や、挑戦を支えた民間のOBからの寄付が建設を実現した。

「最初は本当にできるのかな、と思った」。完成記念祝賀会であいさつした柴田一成・京大大学院理学研究科付属天文台長と観山正見・元国立天文台長は、期せずして同じ趣旨の感想を口にした。

せいめいの口径3.8メートルはすばるに比べると小さいが、主鏡を含めて望遠鏡全体を国内で製作したいわば「純国産」の大型望遠鏡だ。すばるの主鏡は米メーカーが製作し、ハワイに運ばれた。
また、すばるの主鏡は1枚の大きな鏡でできているが、せいめいの主鏡は18枚の鏡を組み合わせてできている。すばる以上の大型望遠鏡を建設するには1枚の鏡では難しく、今後はいくつもの鏡を組み合わせて大きな主鏡を作る望遠鏡が主流になる。そこに欠かせない技術を日本国内で確立する狙いがあった。

従来の同規模の望遠鏡に比べて4分の1の約20トンと大幅な軽量化も特徴だ。これには短時間に狙った天体に望遠鏡を向け、すぐに観測する狙いがある。最近の天体観測の重要なテーマの一つが超新星爆発やガンマ線バーストと呼ばれる現象だが、これらは突然発生して短時間にどんどん様子が変化する。一刻も早く望遠鏡を向けて観測を始めることが、大きな研究成果につながるのだ。

せいめい望遠鏡は軽量の架台と最新の鏡の制御技術をいかし、動かし始めてから1分以内に観測できるようになるという。観測する天体に向けたあと焦点を合わせるだけなら0.2〜0.3秒という速さだ。分割鏡を使った米国のケック望遠鏡は数秒から10秒近くかかる。

つづく
0075132人目の素数さん
垢版 |
2019/03/08(金) 15:35:11.50ID:HVq5OYm0
>>74

つづき

技術面だけでなく、資金面でも当初は苦労した。1999年に京大内にワーキンググループが発足したものの、すばるのように国立天文台が中心となって進めるプロジェクトではなく、京大の付属天文台という位置づけから予算確保が難しかった。プロジェクトが動き出せたのは、京大理学部で宇宙物理学を学んだOBでブロードバンドタワー会長兼社長の藤原洋氏の寄付があったからだ。

柴田台長が大学時代の同期生だった藤原氏を訪ねて相談したのが2005年1月。藤原氏は「日本や世界にない新技術を開発するのがおもしろい。成功したらその技術を基にして稼げる」と寄付を快諾する。寄付の総額は約6億円にもなった。

藤原氏の寄付を得て、主鏡を精密に削り出す装置の開発から始めた。鏡の研削に必要な精度は1メートルあたりわずか1マイクロ(マイクロは100万分の1)。既存の機械では10マイクロメートル程度の精度しかなく、工作機械メーカーのナガセインテグレックス(岐阜県関市)と協力して高精度の機械を開発した。研削するときに薄い鏡を支える支持台や、研削後に精密に鏡面を磨けているか確認する計測装置も作った。

こうした技術開発では名古屋大学の貢献も大きい。装置開発の中心となった長田哲也京大教授や栗田光樹夫同准教授は、名古屋大が南アフリカ天文台サザーランド観測所に建設したIRSF1.4メートル望遠鏡開発のメンバーだった。
この望遠鏡が00年に稼働した後の04年に長田教授が名古屋大から京大に着任。栗田准教授らも名古屋大時代からせいめいの開発に加わった。鏡面の制御システムを手掛ける木野勝助教も名古屋大出身だ。当時、名古屋大の赤外線天文学の研究室を主宰していた佐藤修二名誉教授以外の主要メンバーを総動員した格好だった。

鏡の研削装置から始まり、主鏡や架台、制御システムまでほとんどの部分は大学の研究者たちが開発。総事業費も通常の望遠鏡に比べて大幅に抑えられた。

京大や名古屋大を中心に研究者たちが新技術に挑戦し、技術開発を民間の寄付が支えたことで、東アジア最大のせいめい望遠鏡は完成した。超新星爆発やガンマ線バーストの観測だけでなく、太陽系外惑星の直接撮影などにも挑戦する。先端技術に挑んだ研究者や後援者の意気込みが、日本の科学界にあらたな可能性を切り開いたといえそうだ。
(引用終わり)
0076132人目の素数さん
垢版 |
2019/03/08(金) 15:37:06.94ID:ULwq4qbD
>>70-72
スレ主は
∃xP(x)「Pを満たすxが存在する」 を導くのに
∀xP(x)「全てのxはPを満たす」 を前提することしか
思いつかない正真正銘の馬鹿らしい

死んだほうがいいな こんな白痴
0077132人目の素数さん
垢版 |
2019/03/08(金) 15:37:20.46ID:HVq5OYm0
どうせ、証明できないから
ぐだぐだ書いているんだろうなw(^^
0078132人目の素数さん
垢版 |
2019/03/08(金) 15:39:37.93ID:ULwq4qbD
>>73
>おれは、理解できないかもしれない
>でも、それでいいじゃん

理解できない馬鹿の貴様が
数学板に書き込むんじゃねえ

この蛆虫が
0079132人目の素数さん
垢版 |
2019/03/08(金) 15:41:04.80ID:ULwq4qbD
>>77
{}は正則
Xが正則ならX∪{X}も正則

たったこれだけのことが分からん
スレ主は白痴か?
0080132人目の素数さん
垢版 |
2019/03/08(金) 15:41:40.53ID:HVq5OYm0
サイコパスは言い訳がうまいらしい(^^
http://news.livedoor.com/article/detail/14959354/
言い訳が上手い人には要注意?普段の言動で分かるサイコパスな人 Livedoor News 2018年7月4日 11時53分
(抜粋)
「実は〜だったの」と、言い訳が上手く後から条件を加えてくる
自分の行動に責任をとらず、ときには相手を加害者に仕立て上げる
(引用終わり)
0084132人目の素数さん
垢版 |
2019/03/08(金) 15:44:47.35ID:ULwq4qbD
{}は正則
Xが正則ならX∪{X}も正則
したがって、全ての自然数は正則

たったこれだけのことが分からん
スレ主は白痴か?
0086132人目の素数さん
垢版 |
2019/03/08(金) 15:46:32.93ID:ULwq4qbD
>>85
簡単な証明も思いつけず理解もできない白痴スレ主

生きる資格ないから首掻き切って死ねよ ゴキブリ
0087132人目の素数さん
垢版 |
2019/03/08(金) 15:47:06.75ID:ULwq4qbD
{}は正則
Xが正則ならX∪{X}も正則
したがって、全ての自然数は正則

たったこれだけのことが分からん
スレ主は白痴か?

ギャハハハハハハ!!!!!!!
0088現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/08(金) 15:51:28.27ID:HVq5OYm0
ZF公理系からペアノ公理を導けという試験問題があったとして
その解答案で
ZF公理系のどの命題と、どの命題を使って、
どういう定理なり補題を証明して
そして、最後に「ペアノ公理を導いた QED」と
それで、正則性公理を使っていませんということが明確になる

”ZF公理系のどの命題と、どの命題を使って”のところが記されていないと
題意はずしのあさって答案で
0点!(^^;
0089132人目の素数さん
垢版 |
2019/03/08(金) 15:54:17.62ID:ULwq4qbD
>{}は正則

{}は如何なる要素も持たない {}∈{}にはなりようがないwwwwwww

>Xが正則ならX∪{X}も正則

Y=X∪{X}として、Y∈Yとする

もしY=Xなら、X∈XだからXが正則だという仮定に反する
YがXと異なる要素だとしても、その場合Xの要素の一つであるから
Xが正則であるという仮定に反する

いずれにしてもXが正則ならX∪{X}も正則にならざるを得ない

R.I.P 安らかに眠れ クソスレ主w
0090132人目の素数さん
垢版 |
2019/03/08(金) 15:57:15.29ID:ULwq4qbD
>>88
>”ZF公理系のどの命題と、どの命題を使って”

なに甘ったれてんだこのバカ

おまえ
空集合の公理知らんのか?
和集合の公理知らんのか?

そんな基本的なことも知らんアホウが
「基礎論大好き」とかほざくんじゃねえw
百万年早ぇわ!wwwwwww
0093132人目の素数さん
垢版 |
2019/03/08(金) 19:18:37.02ID:wiE/rvIh
スレ主は日本語読めんの?
そんな証明はそこらに転がってると言ってるだろ。
よって出題自体が無意味。

問題はそこじゃない。スレ主がその証明を読めるかどうかだ。
バカのくせにマウント欲だけは人一倍強いだよなあ、やれやれ。
0095132人目の素数さん
垢版 |
2019/03/08(金) 20:00:04.35ID:wiE/rvIh
だからお前じゃないってw
お前自分が自演してるの白状してるのと同じことだぞそれw
0096現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/08(金) 22:06:50.10ID:lnTMRuDp
「壊れたレコードのように…」という言葉があったんだが(下記)
同じIDで、似たような言葉を繰返す二つのID

カンニングで、答案二つで、間違えているところが同じだと、疑われるよね
それに似ている。二つのIDで、似たような間違いを繰返す w(^^

https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q10189280825
ID非公開さん2018/4/2020:17:08
(抜粋)
「壊れたレコードのように…」という意味がわかりません。どう言うことの比喩ですか?

ベストアンサーに選ばれた回答
ble********さん 2018/4/2100:46:43
レコードって、髪の毛みたいな細い溝が刻まれてて、その溝を細い針が進んで音を再生するのです。
で、細い溝と細い針だから、ちょっとした傷で同じところを何度も再生してしまうことがあるのです。
この状態に見立てて、何度も同じことを言う人を例えて「壊れたレコードみたい」と言うのです。

例文

「お父さん、酔っ払うと、昔の話を何度も繰り返して」
母親
「壊れたレコードみたいね」

「俺はまだ酔ってましぇん!」

みたいな、ね。
(引用終り)
0097132人目の素数さん
垢版 |
2019/03/08(金) 22:09:30.84ID:wiE/rvIh
いや、間違えてんのお前だしw
0098現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 00:22:53.50ID:9Sqq12HI
証明はそこらに転がってると言いながら
何も出てこない!

これ、真っ赤なサイコのウソだよね
こんなやつら、相手にしても仕方ないよね(^^

http://news.livedoor.com/article/detail/12448381/
意外とアナタの身近にも…!? 「サイコパス」にありがちな特徴 Peachy 2016年12月21日
(抜粋)
■社会のルールに順応できない
■平気で悪質な嘘をつく
サイコパスは傍からみると、よくもそんな嘘をつけるなと感じるようなことを、平気で言ってしまいます。後先を考えずに目先の利益にとらわれてしまう。また、相手を操りたいという考えから、そのようなひどい嘘をつくのです。他愛心がなく利己的だからこその発言といえます。
■無責任で衝動的に行動を起こす
(引用終り)
0099現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 00:27:42.89ID:9Sqq12HI
>>98

サイコパスのウソ
何も出ないのは分ったよ
仕方ないから
下記、これ出すよw(^^;

スレ61 https://rio2016.5ch.net/test/read.cgi/math/1550409146/987
987 名前:132人目の素数さん[sage] 投稿日:2019/03/08(金) 14:34:23.63 ID:nHTjj5G+
Nのモデルを
…∈ 10 ∈9 ∈8 ∈7 ∈6 ∈5 ∈4 ∈3 ∈2 ∈1 ∈0
となるように作ろう!
(引用終り)

そう、だれか書いてくれたが、これだね
渕野昌先生が、同じことを書いている

順序の定義:順序数α,βに対し, α∈βをα<βと表わし, "α∈βまたはα=β”をα≦βと表わすことにする.
順序も定義せずに、”正則”と叫ぶバカがいる

公理系の議論をしているときに、定義もなしに議論するバカ

”∈”を使って、順序”<”を定義する
これ
フォン・ノイマンが案出した巧妙なトリックなのだ(^^
(下記二つのPDFご参照。まあ、凡人には無理かも)

http://fuchino.ddo.jp/misc/goedel-universe.pdf
渕野 昌,連続体仮説とゲーデルの集合論的宇宙(ユニヴァース), 現代思想,2007年2月臨時増刊号 (2007), 94-116
(抜粋)
P13
フォン・ノイマンがここで案出したもう一つの巧妙なトリックは、
このように帰納的に定義することと結果として同じになるような順序数の内的な定義を与えることであった。
具体的には、「要素が集合の帰属関係∈ で 整列されるような集合を順序数とする」
として順序数を定義する。
また2つの順序数α、β
に対し、順序関係α < β を、
α ∈ β となることで定義するのである。
この順序数の定義により、各々の順序数は、それより小さい順序数の全体となり、
それらは各順序型に関して一意に決まり、その大小関係にそって、
数学的帰納法の議論のできるようなものとなるのである。
(引用終り)

つづく
0100現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 00:28:54.67ID:9Sqq12HI
>>99

つづき

類似だが、追加しておく(^^
https://www.jstage.jst.go.jp/article/sugaku/65/4/65_0654411/_pdf/-char/ja
特別企画 ???これから学ぶ人のために??? 公理的集合論 渕 野 昌 - J-Stage 渕野昌 著 数学 ?2013
(抜粋)
P412
(2.5) αはEに関して推移的である.つまり,任意のβ,γに対し, γ∈αかつβ∈γなら, β∈αが常に成り立つ;
(2.6) ∈はα上の整列順序になっている.
上のような性質を持つαを順序数とよぶ.すべての順序数αは定義から∈に関して整列される.
このことを強調するために,
順序数α,βに対し,
α∈βをα<βと表わし,
"α∈βまたはα=β”をα≦βと表わす
ことにする.
自然数のときと同じように,
順序数αがこの順序に関してαより真に小さな順序数を集めたものになっていることも容易に示せる.
すべての自然数は順序数で, (∈に関して)すべての自然数より大きな最小の順序数(最小の無限順序数)がNになる.
ただし,Nを順序数と見るときには, これをωと表わすことが多い.
順序数には, 自然数がそうであるように,
α+1=α∪{α}という形をしていて, (∈による順序に関して)その直前の順序数(ここでのα)を持つ
ものがある
(引用終り)

以上
0101132人目の素数さん
垢版 |
2019/03/09(土) 06:48:28.69ID:0l/16VXN
>>99

>Nのモデルを
>…∈ 10 ∈9 ∈8 ∈7 ∈6 ∈5 ∈4 ∈3 ∈2 ∈1 ∈0
>となるように作ろう!

具体的にやってみせてくれw

ついでにいうと

>渕野昌先生が、同じことを書いている

はまったくの誤り 方向が逆だから

>順序数α,βに対し, α∈βをα<βと表わし,

とあるから、スレ主とは全く逆になる

0∈1∈2∈3∈4∈5∈6∈7∈8∈9∈10・・・

この場合、自然数はみな正則

上記を満たす集合の例
0={}
1={0}={{}}
2={0,1}={{},{{}}}
3={0,1,2}={{},{{}},{{},{{}}}}
・・・

上記を構成するのにs「正則性公理」は必要ない
正則な集合をつくるのに正則性公理が必要とほざく
スレ主は正真正銘の白痴である!
0102132人目の素数さん
垢版 |
2019/03/09(土) 07:56:24.49ID:MQtT0Y1H
ツイッターで#テクノロジー犯罪と検索して、まじでやばいことを四代目澄田会の幹部がやってる
被害者に対して暴力団以外にタゲそらしをしてるがやってるのは暴力団で普段外に出ることが少ないため遊びで公共の電波と同じような電波を使って殺人をしてる
統失はほとんどが作られた病気で実際は電波によって音声送信や思考盗聴ができることが最近明らかになりつつある
警察や病院では病気としてマニュアル化されてしまっているのが現状で被害者は泣き寝入りしてる
被害者がリアルタイムで多い現状を知って、被害者間でしか本当の事だと認知できていない
実際にできると思われていない事だから、ただの幻聴ではない実際に頭の中で会話ができる
できないことだと思われているからこそ真面目に被害を訴えてる
海外でも周知されつつあることを知ってほしい。
このままだとどんどん被害が広がる一方

#テクノロジー犯罪
#四代目澄田会
0103132人目の素数さん
垢版 |
2019/03/09(土) 08:40:50.29ID:RtAkoZaQ
>>98
>証明はそこらに転がってると言いながら
>何も出てこない!
転がってるから出さないんだよw 自分で探せw そこまで面倒見切れんw
0104132人目の素数さん
垢版 |
2019/03/09(土) 08:50:19.22ID:RtAkoZaQ
>>99
>順序も定義せずに、”正則”と叫ぶバカがいる
お前真性のバカだろ
>正則性公理(基礎の公理) 空でない集合は必ず自分自身と交わらない要素を持つ:
>∀A(A≠{}→∃x∈A∀t∈A(t∈/x))
どこに順序の定義が要るの?
0105132人目の素数さん
垢版 |
2019/03/09(土) 08:59:51.60ID:RtAkoZaQ
>>99
>Nのモデルを
>…∈ 10 ∈9 ∈8 ∈7 ∈6 ∈5 ∈4 ∈3 ∈2 ∈1 ∈0
>となるように作ろう!
スレ主は∈も分かってなかったのかw
こいつ絶対中学出てねーだろw
0106現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:25:47.62ID:9Sqq12HI
>>104
(引用開始)
>順序も定義せずに、”正則”と叫ぶバカがいる
お前真性のバカだろ
>正則性公理(基礎の公理) 空でない集合は必ず自分自身と交わらない要素を持つ:
>∀A(A≠{}→∃x∈A∀t∈A(t∈/x))
どこに順序の定義が要るの?
(引用終り)

ほんとサイコパスだね〜(^^
おまえ、「正則性公理使わない」(不要)とか叫んでいたろ?
(例えば>>101 から「上記を構成するのにs「正則性公理」は必要ない」とかさw(^^; )
しらーと、誤魔化すんだねw
0107現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:26:52.19ID:9Sqq12HI
>>99 補足
>”∈”を使って、順序”<”を定義する
>これ
>フォン・ノイマンが案出した巧妙なトリックなのだ(^^

この引用の前の記述が下記
http://fuchino.ddo.jp/misc/goedel-universe.pdf
渕野 昌,連続体仮説とゲーデルの集合論的宇宙(ユニヴァース), 現代思想,2007年2月臨時増刊号 (2007), 94-116
(抜粋)
P13
数の列の順序にそって帰納法の議論
が可能でなくてはならない。集合論の言葉で、帰納法の議論の可能性をどう表現できるかを考てみると、
「0, 1, 2, 3,. . . , ω, ω + 1, ω + 2,. . . のどの部分列も最小の要素を持つ」、
という性質としてあらわすのが、自然であることがわかる。
そこで、順序数を、「その数より小さい数の全体が、どの部分集合も最小の要素を持つようなもの」、
と規定することが考えられる。
ところが、こう言っただけでは、ひとつひとつの順序数は、対象としては一意に決まってくれない。
これに対するエレガントな解決法は、カントルの時代よりずいぶん後になってから、
フォン・ノイマン(John von Neumann, 1903{1957) によって発明されている。
それは、各々の順序数を、それより小さい順序数の全体と定義する、というものであった。
これにより、有限の順序数、つまり自然数が集合として確定する:
0はそれより小さい順序数を一つも持たないから、φとなり、
1は0のみをそれより小さい順序数として持つから、{φ} となり、・・・ 等々。
また、ω = {0, 1, 2, , , ,}, ω + 1 = f0, 1, 2, , , , , ω} 等々。
ところが、このように続けたときの一般論を展開するには、
数学的帰納法による議論が必要になってくるが、
まさにそのような無限版の数学的帰納法を乗せる媒体として
順序数をここで定義しようとしているのであるから、これでは循環論法に陥ってしまう。
フォン・ノイマンがここで案出したもう一つの巧妙なトリックは、
このように帰納的に定義することと結果として同じになるような順序数の内的な定義を与えることであった。
具体的には、「要素が集合の帰属関係∈ で整列されるような集合を順序数とする」
として順序数を定義する。
(引用終り)
0108現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:29:21.80ID:9Sqq12HI
>>101
>>…∈ 10 ∈9 ∈8 ∈7 ∈6 ∈5 ∈4 ∈3 ∈2 ∈1 ∈0
>0∈1∈2∈3∈4∈5∈6∈7∈8∈9∈10・・・

ご指摘の通りで
タイポがあるね。まあ、そのまま引用しただけだがね(^^

ピエロの書いた程度なら
下記「かがみのホームページ」にあるよ

かなり少ししっかり書いてあるぜ
膨大な記述でね。関係しそうなところを抜粋する。

なお、リンク先を直接読む方が良いだろう(但し、この引用コピペは、主にここでの検索の便宜のため)
さらに、文字化けと一部画像の部分があり、欠落部分あり。欠落部分などに、(略)と入れたが見落としている部分があればご容赦

繰返すが、リンク先を直接読む方が良いだろう

http://evariste.jp/kagami/index.html
かがみのホームページ プロフィール 学生時代の専攻は数学。今の趣味も数学。
http://evariste.jp/kagami/diary/0000/settheory.html
集合論雑記
[目次]
http://evariste.jp/kagami/diary/0000/200401.html#20040103-1
2004年1月3日 自然数の構成と ω

http://evariste.jp/kagami/diary/0000/200401.html#20040122-1
2004年1月22日 無限公理と自然数

つづく
0109現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:30:35.04ID:9Sqq12HI
>>108

つづき

http://evariste.jp/kagami/diary/0000/200402.html#20040201-2
2004年2月1日 自然数と数学的帰納法
(抜粋)
前回 自然数全体の集合 N を定義しましたが、非常に天下り的な定義であり、 我々の直感の「自然数」の集合論的な表現としてふさわしいかを検証する必要 があります。
もちろん「数学的」には定義した対象が直感に合っても合わなく ても、論理的な矛盾がなければ問題がないとも考えられますし、実際若いころ はそのように考えていたのですが、最近は数学的対象に関する洞察を深めるた めには、形式的な体系が直感的な裏付けをもつ、ということは非常に大切なこ とであると考えが変化したのであります(*)。

今までの議論から N は直感的に「自然数全体」を含んでいるこ とは納得できますが、問題は「余計なもの」を含んでいないかということです。 そのためには(現在は非公式な)次の事実が証明できれば十分だと思われますが、 順序の概念がないと不便で仕方がないので、次回は順序の定義と N 上 の順序について論じたいと思います。

n と n+1 の「間」の自然数は存在しない
n∈N で n≠0 のとき n=m+1 なる m∈N が存在する

(*) 若いころは論理だけですべてを理解できたという事情もあるのですが、 今考えると数学の論理的面を重視しすぎ、直感的な思考をおろそかにしたのが まずかった。

つづく
0110現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:32:00.82ID:9Sqq12HI
>>109

つづき

http://evariste.jp/kagami/diary/0000/200402.html#20040207-2
2004年2月7日 順序

http://evariste.jp/kagami/diary/0000/200403.html#20040320-1
2004年3月20日 順序数の定義
(抜粋)
前回 まで自然数と自然数全体からなる集合を定義しました。ここで自然数に順序と 演算を定義して、それらの「常識的な」性質を証明する必要があるのですが、 あんまり面白くないのにあたりまえの結果しか出ないので、細かいことは省略 して順序の定義のみを行います。

a,b∈N に対して関係 a∈b は順序関係となる。 通常この関係を a<b と記述する。
もちろん a∈b が順序の公理を満たすことを証明する必要があるのですが、 ここでは省略です。また特に重要な点として、
N 上の順序関係 ∈ は整列順序である。
が成立します。これも証明が必要な事実ですがここでは省略します。さていよ いよ順序数の定義ですが、これは次のように行われます。
集合 X が順序数とは次の二つの性質を満たすこと。
(1) X は ∈ に関して整列順序集合
(2) a∈b∈X のとき a∈X(この性質をもつ X を推移的という)

(2) の条件は b∈X のとき b⊆X ということです。

つづく
0111現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:32:49.08ID:9Sqq12HI
>>110

つづき

[定理]

任意の n∈N は順序数である
N(即ち ω) は順序数である
証明は略しますが N 上で関係 ∈ が通常の自然数の順序を表現し ていることを考えれば直感的には明白な事実です。実際には今まで省略した証 明にはすべて数学的帰納法が使用されます。ここで一つも証明がないのもなん なので、ω+1(即ち ω∪{ω}) が順序数になることを証明 します。
まず ∈ に関する整列性ですが ω が整列集合で、ω は ω+1 の最大元なので成立するのは明らかです。推移性に関しても a∈b∈(ω+1)と仮定し b が自然数の場合は ω の推移性 から a∈ω が成立し、b=ω の場合 a∈ω は ω の定義によりこちらも明らかです。
[定義]

自然数 n に対して ω + n を次のように帰納的に定義する
ω + 0 = ω
ω + (n + 1) = (ω + n) + 1

最後の式の左辺の +1 は自然数の加算で、右辺の +1 は(ω + n)∪{ω + n} のことです。そうすると数学的帰納法により ω + n は順序数になることが容易に証明することが可能です。さて、ここまでで 次の順序数が構成されたわけです。
自然数
ω
ω + (n + 1) (n は自然数)

直感的に記述すると自然数 n は {0,1,2,...,n-1} のことであり、ω は {0,1,2,3,...}、 ω+(n+1) は {0,1,2,3,...,ω,ω+1,...,ω+n} という感じです。
最後の n の ω までの「極限」をとり ω+ω={0,1,2,3,...,ω,ω+1,...,ω+n,...} と拡 張したいのはもちろんで、そのようにどんどん大きな順序数を構成することが 集合論の基本理念なのですが、実を言いますと今までの公理では ω+ω でさえ構成することが出来ず、次回以降に導入する「置換公 理」なるものが必要となるのです。
次回は順序数を理解するとともに、集合論における最も重要な概念である「整 列順序」に関する基本的な性質を証明し、次次回以降にこの性質を利用して順 序数の基本性質を導きたいと考えております。

つづく
0112現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:33:37.28ID:9Sqq12HI
>>111

つづき

http://evariste.jp/kagami/diary/0000/200403.html#20040322-1
2004年3月22日(月) 整列順序

集合 X に順序関係 < が定義されていて、X の任意の部分集合が導入され た順序に関して最小元を持つとき X を整列順序集合と呼ぶのでありました。 次の条件を満たす 整列集合 X の真部分集合 Y を「始片(initial segment)」 と呼びます。

任意の a∈Y に対し x<a なる x∈X は Y に属する
始片は次の条件で特徴付けられます。
整列集合 X に対し Y⊂X が始片である必要十分条件は a∈X が存在し て Y={x∈X|x<a}
最初の条件から二番目の条件が成立するのは明らかです。また Y が最初の条 件を満たすとき X-Y の最小元を a とすると、二番目の条件を満たすことが容 易に証明出来ます。そこで次の記号を導入します。
整列集合 X の要素 a∈X に対し {x∈X|x<a} を X[a] と記述し、 X の a による始片と呼ぶ
X の要素と X の始片に一対一の対応があることは明白です。始片の概念を使 用すると、整列集合間の整列的な性質を記述することが可能です。
[補題]

f: X → X を整列順序集合 X から X への増加写像とするとき、任意の x∈X に対し x f(x)
x0 を f(x)<x を成立させる X の最小元とすると f の増加性 によりf(f(x0)) < f(x0) < x0 が成 立し矛盾。

つづく
0113現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:34:18.41ID:9Sqq12HI
>>112

つづき

[定理]

f: X → X を整列順序集合 X 上の順序同型写像とするとき、f は恒等写像
f の逆写像を f-1 とすると f-1 も順序同型。x を f(x)≠x を成立させる x∈X と仮定すると、前補題により x < f(x) が成立し、f-1 の増加性により f-1(x) < x とな り矛盾。
[定理]

X を整列順序集合とするとき X と X[a] は順序同型にならない
f: X → X[a] が順序同型と仮定すると、f(a)∈X[a] なので f(a) < a となり補題に矛盾する。
[定理]

X,Y を二つの整列集合とするとき、次のいずれかの条件が成立する。またどの 二つの条件も両立しない。さらに各々の写像はただ一つ定まる。
(1) X から Y の上への増加写像(順序同型写像)が存在する
(2) Y から X の始片の上への増加写像(順序同型写像)が存在する
(3) X から Y の始片の上への増加写像(順序同型写像)が存在する

X×Y の部分集合 F を F={(x,y)|X[x] から Y[y] への順序同型写像が存 在する} と定義しすると F は関数関係となります。この関数関係を写像と考 えたものを f: dom(F) → ran(F) とすると f は増加写像でさらに dom(f),ran(f) それぞれ X,Y の始片となり f は dom(f) から ran(f) への順 序同型であることは容易に分かります。
ここで dom(f)≠X かつ ran(f)≠Y を仮定すると dom(f)=X[a],ran(f)=Y[b] なる a∈X,b∈Y が存在しますが、f の定義から (a,b)∈F となり a∈dom(f) となり矛盾。一意性に関しては f,g が (1)(2)(3) 何れか一つ の条件を満たす写像とするとき g-1・f が恒等写像になることに 注意すれば証明完了。
というわけで次回は上記で証明した整列集合の性質を順序数に応用し、順序数 の基本性質を導きます。

つづく
0114現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:35:09.88ID:9Sqq12HI
つづき

http://evariste.jp/kagami/diary/0000/200403.html#20040327-1
2004年3月27日(土) 順序数間の順序
(抜粋)
順序数はその「内部」で ∈ に関する整列順序構造を持つわけですが、もっ とも著しい性質としては、その「外部」でも同様な整列順序構造を保つことで あり、これにより「順序数全体」という壮大なる階層構造(集合にはなりませんが)を構築することができるのです。
具体的に言うと α,β を順 序数とするとき α∈β という関係がやはり順序の公理と同等 な性質を満たすことが証明出来るのです。これを証明するためにまずいくつか の基本性質を証明します。

つづく
0115現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:36:05.77ID:9Sqq12HI
>>114

つづき

http://evariste.jp/kagami/diary/0000/200403.html#20040328-1
2004年3月28日(日) 超限帰納法・置換公理

[定理]

P(x) を論理式とします。 任意の順序数 α,β に対して α<β のとき P(α) が成立するとき P(β) が成立すると仮定します。このとき任 意の順序数 α に対して P(α)
言い換えると次の二つの命題は同値。

(1) (∀β)([(∀α)(α<β → P(α))] → P(β))
(2) (∀α)[P(α)]

ここで全称記号は順序数全体を動くとします。

証明自体は簡単で (1) をが成立して (2) が成立しないと仮定し NOT[P(α)] が成立する順序数 α を考えます。α は整列集 合なので γ∈α を P(γ) を成立させない最小元とする と γ の最小性により δ<γ に対して P(δ) が成 立し (1) の仮定により P(γ) が成立して矛盾。
実際には超限帰納法は次の定式化が多用されます。

(i) P(0) が成立
(ii) P(α) が成立するとき P(α+1) も成立する
(iii) α が 0 でない極限数で β<α に対して P(β) が成立するとき P(α) が成立する
このときすべての α に対して P(α) が成立する

残念ながらこの定理も今の段階では余り役に立ちません。つまり ここで述べたように 現在手持ちの順序数が非常に「少ない」からです。例えば ω + ω さえもまだ定義することができません。膨大な順序数を「構成」するには次に 述べる置換公理が必要なのです。

つづく
0116現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:36:37.48ID:9Sqq12HI
>>115

つづき

[公理 8. 置換公理]

P(x,y) を二項論理式として関数的な性質をもつとします。即ち、
P(x,y),P(x,y') が成立するとき常に y=y' が成立する。

この場合任意の集合 X に対して

ある x∈X が存在して P(x,y) が成立する y 全体を含む集合が存在する

言い換えると「関数的な論理式」の集合による「像(range)」全体を含 む集合が存在するという公理であり、この集合を Y とするとき f:X → Y は写像となります。ここで f は P(x,y) を X x Y の部分集合に外延化した写 像です。
ここで非公式ですが、例えば P(x,y) を

x∈ω のとき y は ω+x
x がその他の場合 φ
と定義し、置換公理により ω に対して存在が許される集合を Y とする と f:ω → Y は f(n)=ω+n なる写像となり ran(f) = f[ω] = {ω+n| n∈ω} も集合となることが分かります。 従って ω∪ran(f) = ω + ω を構成することが可能とな るのです。
次回以降は超限帰納法と置換公理を利用して「整列集合の順序数による表現」 「超限帰納法による関数関係の定義」「順序数の演算の定義」を行う予定です。

つづく
0117現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:37:24.31ID:9Sqq12HI
>>116

つづき

http://evariste.jp/kagami/diary/0000/200404.html#20040416-1
2004年4月16日(金) 順序数の基本演算

http://evariste.jp/kagami/diary/0000/200405.html#20040508-1
2004年5月8日(土) 選択公理と整列可能定理
(抜粋)
選択公理により例 えば次の数学の定理が証明出来ます。
任意の線型空間は基底を持つ
任意の可換環は極大イデアルを持つ
任意のフィルターに対してそれを含む超フィルターが存在する
コンパクト空間の直積はコンパクト
選択公理は具体的に対象を指定せずに存在を主張する公理であり、初期にはそ の妥当性に関して色々な議論があったのですが、数学における超越的な「存在 証明」に対する有効性により、現代数学のかなりの部分がこの公理に依存して います。
さらにゲーデルにより証明された選択公理の他の公理からの無矛盾性 により、少なくとも「矛盾」という観点からのこの公理に対する疑いは無くなっ たのです。選択公理により「任意の集合は整列可能」であることが証明出来ま す。
[定理]

任意の集合は整列可能である
X をが空の場合は自明なので、空でないと仮定し f を P(X) - {φ} の選択関数とします。NOT(a∈X) なる a を固定し、
g(x) = f(X - ran(x)) x が関数で X-ran(x) が空でない場合
g(x) = a その他の場合
と定義して g に対して「超限帰納法による関数の定義」を適用すると、
u(α) = g(u|α)
なるものが存在し、置換公理により g(θ)=a なる最小の順序数 θ をとると u|θ は θ から X への一対一上への関数とります。こ の結果により任意の集合はある Kα と基数が等し くなり、ここで正式に X の基数が外延として定義可能となります。

つづく
0118現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:38:04.74ID:9Sqq12HI
>>117

つづき

http://evariste.jp/kagami/diary/0000/200410.html#20041010-1
2004年10月10日(日) 正則の公理
(抜粋)
重様な概念である「整順(well founded)な関係」を定義します。
[整順な関係の定義]
集合 上の二項関係 R(x,y)が整順(well founded)であるとは次の条件を満たすことである。
(略)
言い替えるとXの空でない部分集合に対して R(x,y)のYに「極小元」が存在するという感じでして、
実際定義で現れる(略) に対するの極小元と呼ぶのです。
さてここで「正則の公理」を導入して、すべての集合がVの要素であることを証明する準備が出来ました。
[正則の公理(axiom of regualarity)]
(略)
[定理]
(略)
言い替えると
(略)
もっとはっきりと言い替えると
クラスVは集合全体のユニヴァースである!!
正則の公理を「基礎の公理(axiom of foundation)」と呼ぶこともあります。
正則の公理の導入により、集合全体がこのように「空集合から巾集合を順序数 にそって積み上げ、それを合併の公理により張り合わせる」という集合を拡張 する三つの大きな操作、
即ち「巾集合の公理」「合併の公理」「置換公理」に より美しい形で表現可能であることは驚きであるとともに、
現代の集合論の公 理の整合性を強く示唆するものであると思うのであります。
さて証明ですが、まず次の事実に注意します。
 正則の公理→任意の集合上で∈は整順な関係。
この事実は「正則の公理」が「任意の集合は∈に関する極小元を持つ」という事実を表現していることに注意すれば明らかです。
さらに次の事実に注意します。
xを推移的な集合とするとき x∈V
これを証明するためには x⊂Vであることを示せば十分です(x の各要素のrankを考える)。
実際そうでないとすると、(略)となるので(略)に関する極小元を(略)とすします。
するとzの極小性により(略) の推移性により (略) の定義に矛盾します。最後に次の事実
x∈V ←→ tc(x)∈V
を示せば定理の証明は完了ですが、これは推移的閉包の定義によりほとんど明 らかです。

つづく
0119現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:40:03.27ID:9Sqq12HI
つづき

http://evariste.jp/kagami/diary/0000/settheory.html
集合論雑記
[目次]
2004年1月2日 集合論シリーズ・順序数開始予定
2004年1月3日 自然数の構成と ω
2004年1月3日 集合雑記準備
2004年1月3日 空集合
2004年1月3日 内包と外延
2004年1月6日 対の公理・合併の公理
2004年1月12日 巾集合の公理
2004年1月17日 二項関係
2004年1月17日 関数関係と写像
2004年1月22日 無限公理と自然数
2004年2月1日 自然数と数学的帰納法
2004年2月7日 順序
2004年2月14日 帰納法による関数の定義
2004年3月20日 順序数の定義
2004年3月21日 整列順序
2004年3月27日 順序数間の順序
2004年3月28日 超限帰納法・置換公理
2004年4月11日 整列順序と順序数・超限帰納法による関数の定義
2004年4月16日 順序数の基本演算
2004年4月19日 基数の定義
2004年5月2日 ?(アレフ)の定義
2004年5月8日 選択公理と整列可能定理
2004年5月16日 ?α の基本演算
2004年5月29日 共終数(cofinal)と正則基数
2004年6月8日 簡単な基数計算
2004年7月3日 一階述語論理を含む言語
2004年7月4日 一階述語論理を含む言語?続き
2004年7月9日 構造とモデル?7月11日内容追加
2004年7月18日 半順序とフィルター
2004年7月19日 超フィルターと κ-完備フィルター
2004年7月24日 一休み・ブルバキの集合論
2004年7月29日 閉非有界集合(closed unbounded set)
2004年8月1日 定常集合(stationary set)
2004年8月4日 デルタレンマ
2004年8月12日 定常集合の分割
2004年8月19日 木(tree)に関する諸定義(8月31日若干内容追加)
2004年8月31日 Suslin 直線(Suslin line)
2004年9月1日 Martin の公理
2004年9月2日 Martin の公理の帰結(その1)
2004年9月11日 Martin の公理の帰結(その2)
2004年10月7日 クラスと V
2004年10月10日 正則の公理
2005年1月9日 測度と可測基数

つづく
0120現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:40:22.86ID:9Sqq12HI
つづき

2005年1月10日 番外編・Riemann Zeta 関数の謎
2005年1月23日 最小の可測基数
2005年2月20日 可測基数が到達不可能であること
2005年3月20日 Ulam の定理
2005年4月24日 Ulam の定理(続き)
2005年5月20日 番外編・連休中に勉強したこと---forcing
2005年6月1日 番外編・やっぱforcingではまる(2005年6月6日修正)
2005年6月12日 forcing について・Genericと名称(1回目)
2005年6月25日 forcing について・Genericと名称(2回目)
2005年6月26日 forcing について・Genericと名称(3回目) (2006年4月15日誤りを修正)
2005年7月3日 forcing について・Genericと名称(4回目) (2006年4月15日誤りを修正)
2005年7月16日 forcing における等号の基本性質
2005年8月5日 強制法(forcing)とZFC・一回目
2005年8月6日 強制法(forcing)とZFC・二回目(2006年4月15日一部改善)
2005年8月7日 強制法(forcing)とZFC・三回目
2005年8月13日 強制法(forcing)のご利益
2005年8月20日 Generic 拡大(Generic extension)・一回目
2005年8月21日 Generic 拡大(Generic extension)・二回目
2005年8月25日 連続体仮説の ZFC からの独立性・一回目
2005年8月26日 連続体仮説の ZFC からの独立性・二回目
2005年8月28日 ひとやすみ・これからの集合論雑記
2005年9月15日 もうひとやすみ・可算濃度の不思議
2006年4月1日 連続体の濃度・ゲーデル

つづく
0121現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:41:07.24ID:9Sqq12HI
>>120

つづき

2006年4月1日 続・集合論勉強再開
2006年5月3日 強制法入門PDFファイル
2006年5月14日 L と Diamond
2006年6月8日 強制法入門再アップ
2006年6月15日 LとGCHに関するひとりごと
2006年6月19日 「強制法入門」修正
2006年6月24日 推移的崩壊とAFA
2006年7月1日 超巾と正則性
2006年7月8日 Scottの定理・可測基数とL(2006年7月24日追記)
2006年7月9日 弱コンパクト基数がいっぱい
2006年7月19日 さらなる無限降下列(このねたはだめ)
2006年8月5日 今だ弱コンパクト基数おこもり中
2006年8月13日 分割の性質に関するメモ
2006年8月24日 可測基数と弱コンパクト基数(再挑戦)
2006年9月10日 超積、超べきとLo?の定理
2006年10月2日 弱コンパクト基数の基本性質(一回目)
2006年10月2日 ゲーデルの完全性定理
2006年10月14日 弱コンパクト基数(二回目)無限論理との関連
2006年10月27日 ゲーデルの完全性定理(続き)
2006年11月12日 正規フィルターとフォドァの補題
2006年11月14日 正規超フィルターと超べき
2006年11月17日 記述不可能性(一回目)
2006年11月18日 記述不可能性(二回目)
2006年11月22日 記述不可能性(三回目)

つづく
0122現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:42:05.38ID:9Sqq12HI
>>121

つづき

2006年12月11日 強制法入門ちょっと変更
2006年12月12日 コーヘンオリジナル強制法(一回目)
2006年12月13日 コーヘンオリジナル強制法(二回目)
2006年12月15日 Lとダイアモンド
2006年12月22日 Lαの絶対性
2007年1月20日 ダイアモンドを作る
2007年1月22日 強制でSuslin木を削除
2007年2月17日 充足可能性について考えたこと (間違い)
2007年4月14日 ゲーデルの L (一回目)
2007年5月3日 整列不可能な実数列
2007年5月3日 結局コーエン実数
2007年9月3日 0# (zero-sharp) 一回目
2007年9月17日 0# (zero-sharp) 二回目
2007年9月19日 0# (zero-sharp) 三回目
2007年9月23日 0# (zero-sharp) 四回目
2007年9月24日 0# (zero-sharp) 五回目
2007年10月8日 0# (zero-sharp) 六回目 Kunenの定理 (準備編)
2007年10月9日 0# (zero-sharp) 七回目 Kunenの定理 (証明編)
2008年4月13日 基数計算 (1回目 基本の基本の準備 (1))
2008年4月29日 基数計算 (2回目 基本の基本の準備 (2))
2008年5月18日 基数計算 (3回目) 特異基数仮説のお話
2008年8月11日 Δシステムレンマ自己流証明 (暫定版)
2008年12月14日 可測石 (番外編)
2008年12月31日 玄妙基数 (ineffable cardinal)
2009年3月15日 フォドアの補題の初等的部分構造を使った証明
2010年10月11日 エルデシュ=ラドーの定理

つづく
0123現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/03/09(土) 10:42:47.42ID:9Sqq12HI
>>122

つづき

[公理目次]
[公理 1. 空集合の存在公理]
[公理 2. 外延性の公理]
[公理 3. 内包の公理]
[公理 4. 対の公理]
[公理 5. 合併の公理]
[公理 6. 巾集合の公理]
[公理 7. 無限公理]
[公理 8. 置換公理]
[公理 9. 選択公理]
[公理 10. 正則の公理]
[参考文献]
Thomas J. Jech,Karel Hrbacek著 Introduction to Set Theory
Kenneth Kunen 著 Set Theory
Thomas J. Jech 著 Set Theory
前原昭二 著 数学基礎論入門
A.カナモリ著 渕野昌訳 巨大基数の集合論

(引用終り)
0125132人目の素数さん
垢版 |
2019/03/09(土) 10:56:40.26ID:0l/16VXN
>>108
>ご指摘の通りで タイポがあるね。
>まあ、そのまま引用しただけだがね(^^

ギャハハハハハハ!!!
スレ主 毎度恒例の
「中身を全く読みもせずコピペ」

貴様、言葉を理解できない白痴かよ
ギャハハハハハハ!!!
0126132人目の素数さん
垢版 |
2019/03/09(土) 11:09:11.44ID:0l/16VXN
>>109-116
おまえ、コピペした文章、一度でも読んでみた?
自然数の定義でも、順序数の定義でも、
正則性の公理なんて一度も使ってないだろ?
その証拠に正則性の公理が出てくるのは>>118じゃん
ようするにかがみんは貴様の主張が間違ってることを
露骨に示してるじゃんwwwwwww

自然数や順序数が整列順序を持つ、と主張するのに
正則性の公理なんか使う必要ないんだよ

おまえさ、自分で自分の主張の誤りを示す
絶好のテクスト貼って、壮大な自爆劇演じたいの?

白痴?なぁ、おまえ、白痴?
0127132人目の素数さん
垢版 |
2019/03/09(土) 11:12:23.02ID:0l/16VXN
>>118
>正則の公理→任意の集合上で∈は整順な関係。

帰納法を導くのに「任意の集合上で」∈は整順な関係である必要はない
あくまで自然数や順序数(これ全部、集合)で∈が整順な関係であればいい

そんなことも分からんのか?白痴
0128132人目の素数さん
垢版 |
2019/03/09(土) 11:15:55.52ID:0l/16VXN
結論:スレ主は中身を読まずにコピペするサル

荒らしは失せろ!
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況