>>675 補足
https://en.wikipedia.org/wiki/Axiom_of_choice
Axiom of choice


For finite sets
Clearly we can do this: We start at the first box, choose an item; go to the second box, choose an item; and so on. The number of boxes is finite, so eventually our choice procedure comes to an end.
(A formal proof for all finite sets would use the principle of mathematical induction to prove "for every natural number k, every family of k nonempty sets has a choice function.")

まあ、要するに、有限の場合は、”comes to an end”だと
”use the principle of mathematical induction to prove "for every natural number k, every family of k nonempty sets has a choice function."”
(数学的帰納法で証明できると)

This method cannot, however, be used to show that every countable family of nonempty sets has a choice function, as is asserted by the axiom of countable choice.

で、加算無限になると、”comes to an end”が達成できない
数学的帰納法でも証明できない
だから、”the axiom of countable choice”が要ると
つまり、有限から加算無限になったときに、既に、加算無限版の選択公理要だと

そして、同じことが、加算無限集合から非可算無限集合を扱う段階になるときに起きる
加算無限版の選択公理で、加算無限集合で、”comes to an end”が達成できる

しかし、非可算無限集合は、適用範囲外だと
が、フルバージョンの選択公理なら、非加算無限集合でも、当然”comes to an end”が達成できる

つづく