★問題1:

A君が1〜100から任意の方法で整数xを選び、箱に入れて閉じた
B君は表と裏にそれぞれ2と100の数字が書かれたコインを投げる
このとき、A君が箱にしまった数xよりもB君の数字のほうが大きい確率を求めなさい


■とある高校生の答え

A君は数字xを選び終えている
よってxは固定された定数であり確率変数ではない
たとえxが100面サイコロで確率的に選ばれたものだとしても、
xという1つの事象が選ばれ、それを箱にしまったのだから、xは不変であり定数である
xが未知だからといって変数だと思ってはいけない
xは1〜100のいずれか1つであり、定数である

よって考えるべき試行はB君のコイントスだけである
別の言い方をすれば、標本は{2, 100}である。
xで場合分けすればよく、
(1) x=1のとき、2と100のどちらでもよいので確率1
(2) x=2〜99のとき、100のみなので確率1/2
(3) x=100のときは確率0

■スレ主の答え

数学科3,4年生なら知っている確率過程論によると、A君の目は確率変数である。
試行とは?
複数回の試行が、必ず必要ですか? 
回数に上限ありますか?
普通は何回の試行ですか?
「固定」という用語も不要ですね
通常の確率論のテキスト通りです。

で、通常の確率論のテキスト通りなら、それ確率変数ですよ

ちなみに自身で証明は書かないし読まない主義である
それが正しいというなら論文に投稿するなり教授に見てもらえ
ここには書くな!



★問題2:

A君は1〜100の数字が書かれた100面サイコロを振る
B君は表と裏にそれぞれ2と100の数字が書かれたコインを投げる
A君よりB君のほうが大きい目がでる確率を求めなさい


■とある高校生の答え

この場合、A君の数もB君の数も確率変数である
考えるべき試行は「A君はサイコロを振り、B君はコイントスをする」というもので、
標本空間は直積{1, 2,..., 100} x {2, 100}で表せる
前問の場合分けと独立性を利用して
1/100 x 1 + 98/100 x 1/2 + 1/100 x 0

■スレ主の答え

数学科3,4年生なら知っている確率過程論によると、(以下略