>>95
どうせ、一晩待っても何にも書けないんだろうが
まあ、別のこと(イプシロンデルタじゃないこと)でも書くか(^^

>>63より引用)
定理1.7 (スレ26のNo.422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、
f はある開区間の上でリプシッツ連続である.
証明
このとき, 補題1.5 を満たすN,M >= 1 が存在するので, 明らかにx ∈ BN,M である.

系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.
証明
定理1.7 が使えて, f はある開区間(a, b) の上でリプシッツ連続である.
一方で, x ∈ Q とf の仮定により, f は点x で不連続である. これは矛盾. よって, 題意が成り立つ.
(引用終り)

ここで、
「有理数の点でリプシッツ不連続, 無理数の点でリプシッツ連続となるf : R → R 」
を考えると
系1.8 の証明中にあるように、
リプシッツ不連続な集合有理数Qは、”内点を持たない閉集合の高々可算和で被覆できる”から、
定理1.7より、”f はある開区間の上でリプシッツ連続である”となる

これは、有理数の点が、R中で稠密に反する
矛盾を生じたので、このような関数は存在しないと結論される
が、これは、ちょっと論証としておかしい

当然定理1.7は、
このような関数f「有理数の点でリプシッツ不連続, 無理数の点でリプシッツ連続となるf : R → R 」
は、扱えない(場合分けの説明を、>>64に書いた通りである)
(本当に、存在するか、不存在かを立証するには、別の考察が必要であると)

つまり、もともとの定理1.7の設定(結論と条件)が適切でないと思うし、それが こういうおかしな帰結の原因であると思う