>>512 補足

射影幾何というのがありまして(下記)
拡張実数というのは、
射影幾何の無限遠点に対応する

左右に伸びる直線で、右と左に無限遠点を加える
次ぎに、原点Oを定めて、数直線を構成する
そうすれば、右と左に無限遠点が、即ち拡張実数

まあ、そういう見方をすれば、
拡張実数もなんということもない単純な話

https://ja.wikipedia.org/wiki/%E5%B0%84%E5%BD%B1%E5%B9%BE%E4%BD%95%E5%AD%A6
射影幾何学
(抜粋)
初等的な直観としては、射影空間はそれと同じ次元のユークリッド空間と比べて「余分な」点(「無限遠点」と呼ばれる)を持ち、射影幾何学的な変換においてその余分な点と通常の点を行き来することが許されると考えることができる。

透視図法に関する理論が、事実射影幾何学の源流の一つともなっている。
初等的な幾何学とのもう一つの違いとして「平行線は無限遠点において交わる」と考えることが挙げられる。
これにより、初等幾何学の概念を射影幾何学へ持ち込むことができる。
これもやはり、透視図において鉄道の線路が地平線において交わるといったような直観を基礎に持つ概念である。

歴史
射影的な現象の幾何学的性質が初めて発見されるのは、3世紀ごろアレクサンドリアのパップスによる[3]。

ヨハネス・ケプラー (1571?1630) とジラール・デザルグ (1591?1661) はそれぞれ独立に、極めて重要な「無限遠点」の概念を作り上げた[11]。

これら19世紀の射影幾何学は、解析幾何学から代数幾何学への足掛かりであった。
実際、斉次座標系を用いた射影幾何学の扱いは、解析幾何学において幾何学的問題を代数へ還元する方法を拡張したものとみることができるし、このような拡張はいくつかの特別な場合に還元することができる。

幾何学におけるこのような状況が覆ることになるのは、クレブシュ、リーマン、マックス・ネーターらによる(既存の手法を拡充する)一般の代数曲線に関する研究、そして不変式論の登場による。世紀の終わりにかけて代数幾何学イタリア学派(エンリケ, セグレ, セヴェリ)はそれまでの古い射影幾何学的手法を打ち破り、より深い手法を要する主題へと昇華させた。

つづく