>>211
> そんな曖昧な予想じゃ研究の足枷にしかならんと思う。

「独立かも」なんて予想こそが曖昧で研究に足枷になるネガティブな思考の最たるもの
これは数学基礎論の世界的権威であった竹内外史も「ある重要な数学の問題が集合論の公理系と独立だ、と考えるのは敗北主義だ」という趣旨のことをかつて述べている。

> 例えば選択公理を仮定するとパナッハ・タルスキーのパラドクスが起こる。
> 素数分布に決定不能性が出たって別段不思議じゃ無いw

選択公理から導かれるバナッハ・タルスキーの逆理は連続体なればこその奇妙な性質。
だから連続体濃度やそれ以上の濃度の集合の世界では人間の感覚を超える奇妙な性質が生じたり
集合論の特定の公理(例えば選択公理とか連続体仮説を公理として認めた場合とか)から奇妙な結論が導かれるのは不思議でも何でもない。

だが自然数という可算集合の部分集合で、しかもそれ自体が決定可能つまり再帰的な部分集合である素数の集合が
集合論の公理系からは導けないというのは実際問題としてほぼ有り得ない。

何故ならば、2階の述語論理による自然数の公理系は範疇的、つまりモデルは1つしか存在しないからだ。

もしも素数分布がZFCの公理系に独立であったならば、新しいある公理Xを選ぶと素数分布が成り立つが
その公理の否定¬Xを公理として選ぶと、自然数の世界はXを選んだ時と同じ姿に見える(同じモデルを持つ)のに
こちらの公理とは素数分布は矛盾するということになる。もちろんZFCと公理Xあるいは公理¬Xのいずれも無矛盾なのにだ。

繰り返すが、全ての素数の集まりは、自然数の集合の部分集合として決定可能なのだ。決定不能な部分集合ではない。
連続体濃度とは全く異なるのだ。

ついでに言っておくと、選択公理は任意の濃度の集合に対して選択関数の存在を主張しており、言い換えれば任意の濃度の集合が整列可能であることを主張している(のと同値だ)が、
選択公理の代わりに選択関数の存在あるいは整列可能性の主張を可算濃度の集合だけに限定した可算選択公理だと、バナッハ・タルスキーの逆理などの奇妙な帰結は起こらない

つまり可算濃度とそれよりも大きな濃度、例えば連続体濃度やそれ以上の濃度とでは、全く違った集合の世界になるんだよ。