オイラーの定数は有理数であることを証明したおっちゃん

246 :132人目の素数さん:2019/02/08(金) 08:50:02.06 ID:XrEX/qI/.net[2/5]
>γが無理数であったとする。任意の有理数 1/p pは2以上の整数 に対して
>|γ−1/p|=| lim_{n→+∞}( 1+1/2+…+1/n−log(n) )−1/p |
>=lim_{n→+∞}( 1+1/2+…+1/n−log(n) )−1/p
>>( 1+1/2+…+1/p−log(p) )−1/p
>=1+1/2+…+1/(p−1)−log(p)
>>0、
>従って、或る2以上の正整数kが存在して、p≧k のとき |γ−1/p|>( 1+1/2+…+1/p−log(p) )−1/p>1/k≧1/p。
>故に、0<|γ−q/p|<1/p^2<|γ−1/p| を満たすような既約有理数 q/p p≧2 は無限個存在する。
>(…以下略…)
見直したり他の方向から考えてはみたが、この部分は γ=lim_{n→+∞}( 1+1/2+…+1/n−log(n) ) に特化していた。
ここに、γ_n=1+1/2+…+1/n−log(n) n≧2 は超越数で、n≧2 のとき {γ_n} は下に有界な単調減少列。
γが代数的無理数でないことまでは証明出来たが、ディオファンタス近似ではγの超越性まではいえない。
γの超越性をディオファンタス近似で証明しようとすると、ほぼ自動的にγが超越数であることがいえて一般的に成り立つような証明になる。
やはり、γは有理数だった。