球の詰め込み問題やケプラー予想を少し書いてあり、内容の物珍しさから
ダイヤモンドはなぜ美しい?という本を読んでみることにした。
ネットワークのグラフは、空間Vの直積 V×V とその部分集合 E⊂V×V との
対 G=(V, E) で構成される。Vの元を頂点或いは点、Eの元を辺と呼ぶ。一般には
E≠Φ のとき、任意の e∈E に対して或る v_1, v_2 ∈V が存在して、e={v_1, v_2}。
通常、任意の e∈E に対して e={v_1, v_2} なる v_1, v_2 ∈V は一意に決まると仮定する。
e={v_1, v_2} のとき v_1 と v_2 は隣接するという。v_2 に対して
或る e'∈E と或る v_3∈V が存在して e'={v_2, v_3} となるとき、2辺 e, e' は隣接するという。
card(V)<ℵ_0 のときGを有限グラフ、card(V)=ℵ_0 のときGを無限グラフという。
細かいことを抜きにすると、大雑把には上のように定義される。
有限グラフは 〇−〇−〇 というように比較的容易に図示出来るが、無限グラフは一般には図示出来ない。
同書は何やらグラフ上での解析を目的としているようで、最終的には離散的な図形についての
何らかの極限を取ることで連続的な図形への移行をするという。ここで、有理直線Q上で
有理数の稠密性に着目して考えてみたが、card(Q)=ℵ_0 なので有理直線は無限グラフで図示出来ると思うが、
Qは図示出来ないんですわな。有理直線Qのような稠密な状態の図形は幾何的には離散的な図形とも連続的な図形とも受け取れるが、
上の無限グラフの定義ではQの図示は出来ないですわな。〇−〇−〇 ではなく、
任意の G=(V, E) の辺 e={v_1, v_2} v_1, v_2 ∈Vは隣接する頂点 を図示しようとするときに
v_1〇−〇v_2 ではなく v_1〇−………−〇v_2 のように図示されて2頂点 v_1 と v_2 は
隣接するとも隣接しないとも受け取れるグラフは何ていうんでしょうな。定義の際に隣接についての条件を定義から外すことは必要だわな。
このようなグラフが定義されれば、有理直線Qもネットワークのグラフで図示出来そうなんですわな。まあ、暇なとき考えて定義してみる。