[続き]

実際の証明法は、(a,b)⊂Bf なる開区間を取ったとき、B_f ⊂ ∪_{N,M≧1} B_{N,M} と合わせて

(a,b) ⊂ ∪_{N,M≧1} B_{N,M}

ということになるので、ベールのカテゴリ定理の開区間版を使うことにより、ある B_{N,M} は内点を持つことになる。
特に、(c,d)⊂B_{N,M} なる開区間 (c,d) が取れる。必要なら(c,d)内の更に小さな区間に差し替えることで、
d−c<1/M かつ(c,d)⊂B_{N,M} が成り立つとしてよい。このとき、f は (c,d) 上でリプシッツ連続になることが言える。

(a,b)⊂B_f のときと (c,d)⊂B_{N,M} とで何が違うのかというと、前者では x∈(a,b) ごとに Af(x) が
「有限値」であるに過ぎず、Af(x) が一様に有界かどうかが分からなかったのに対し、後者では
x∈(c,d) ごとに Af(x)≦N となっているので、Af(x) が一様に有界なのであり、それゆえに上手く行くのである。

このような事情をお前は全く理解しておらず、単に「 (a,b)⊂B_f 」とするだけで
リプシッツ連続の証明が終わると思い込んでいるバカがお前である。問題外。レベルが低すぎる。

ちなみに、上記の手法をより一般的な状況下で使ったのが定理1.7である。