自然数上の任意の計算不能関数f(x)について、健全性(soundness)と実効性(effectiveness)
をもつ論理体系のもとでは、f(n) = 0, f(n) = 1, f(n) = 2,...,f(n) = i,...のいずれも
証明不能となるような自然数nが少なくとも一つは存在する。(*)
(証明)健全性と実効性をもつ論理体系では、その中で証明可能な式全体の集合が帰納的可算集合
になるため、もし任意のnについてf(n) = 0, f(n) = 1,...のいずれかが証明可能な式なら、
あるアルゴリズムで任意のnについてf(n)が求まることになりfの計算不能性に矛盾。
したがってf(n) = 0, f(n) = 1,...のいずれも証明不能となるnが存在する。(終)

しかしこの結論はビジービーバー関数などの計算不能関数がwell definedであることと矛盾しない。
P(n, m) ⇔ mはn状態ビジービーバーゲームの優勝者が出力する1の個数 + 1
として、∀n∃mP(n, m) ∧ ∀n∀x∀y((P(n, x) ∧ P(n, y)) ⇒ x = y)が証明可能なため、
ビジービーバー関数はwell definedである。すなわち、公理のどのモデルでも任意のnについて、
モデルさえ決まれば、Σ(n)の値が一意に決まる。
(*)はf(n) = 0, f(n) = 1,...のうちどれが真か、またはどれも偽かが、同じ公理の上でも
モデル間では異なるかもしれない可能性を示しているだけである。
また、"少なくとも一つは"と書いている通り、Σ(4)までの値が計算できることと(*)も矛盾しない。
ゲーデルの完全性定理から、もし一階述語論理による公理のもとであれば、
Pが証明不能 => Pが恒真でない => Pを偽とするモデルが存在する
から、(*)よりf(n) = 0を偽とするモデル, f(n) = 1を偽とするモデル,...のいずれもありえる。