公理 A に対して、※を満たすくらい十分に大きな定数 M を用意して、
A に可算無限個の式を加えた以下のような公理
A + (0 < BB(M)) + (1 < BB(M)) + (2 < BB(M)) + ...
を A* として、コンパクト性定理より A が無矛盾なら A* も無矛盾
A から ∃n (n = BB(M)) を証明可能とすると、 A のモデルはすべて
BB(M)に該当する数を含む。 一方で A* のモデルではBB(M)は必ず
超準数である。A* が A を含むから、A* のモデルは A のモデルでもあり、
したがって採用する A のモデルによってはBB(M)は超準数になる。
さらに A がω無矛盾であるとすると、 A のモデルには標準モデルもあるため、
採用する A のモデルによってはBB(M)は標準数∈{0,1,2,...}になる。
したがってBB(M)の値はモデルの選び方に依存して変わる。

f が自然数上の計算可能関数とすると、n∈{0,1,2,...}について
0 = f(n), 1 = f(n), 2 = f(n), ...のうちのいずれかは証明可能である。
証明可能な式はどんなモデルを採用しても真なので、標準数を入力したときの
計算可能関数の出力する値はモデルの選び方に依存しない。
当然、0 = BB(M), 1 = BB(M), 2 = BB(M), ...のうちのいずれも証明不能である。
これは、任意の n∈{0,1,2,...} について n < BB(M) としても無矛盾である
ことによる。(n < BB(M) ならば n ≠ BB(M)である)

さっきは暗黙的に標準モデルで考えたために(2)の具体例が(3)の具体例
よりも小さいって言ったけど、超準モデルの中にあるBB(M)だったら
(3)の具体例を超えることも十分に考えられるな。