X



トップページ数学
1002コメント312KB
巨大数探索スレッド13
■ このスレッドは過去ログ倉庫に格納されています
0001132人目の素数さん
垢版 |
2017/12/08(金) 22:59:03.88ID:8DbvNjq1
大きな実数を探索するスレッドです。

前スレ
 http://rio2016.5ch.net/test/read.cgi/math/1484923121/
巨大数研究室
 http://www.geocities.co.jp/Technopolis/9946/
巨大数 (Wikipedia)
 http://ja.wikipedia.org/wiki/%E5%B7%A8%E5%A4%A7%E6%95%B0
ふぃっしゅっしゅ氏の巨大数論PDFと書籍
 http://gyafun.jp/ln/
たろう氏のまとめ
 http://gyafun.jp/ln/archive/7-571.txt
Dmytro Taranovsky の順序数表記
 http://web.mit.edu/dmytro/www/other/OrdinalNotation.htm
巨大数研究Wiki
 http://ja.googology.wikia.com/wiki/
0295132人目の素数さん
垢版 |
2018/01/13(土) 22:50:54.49ID:Z5QuF+UV
>>293
なんとなく出来そうな気がする。
とはいっても俺には具体的なアイディアはないけどね。
頭のいい人ならなんかひねり出してくれるんじゃないか。
0296132人目の素数さん
垢版 |
2018/01/13(土) 22:56:22.85ID:NKBohCFN
>>295
何も条件が無くて、ただ単に全単射を1個定義出来ただけじゃそのまま巨大数にはつながらない気がするよ
0297132人目の素数さん
垢版 |
2018/01/13(土) 22:59:45.86ID:NKBohCFN
>>287
もっと矛盾ぽいことは色々とあるよ
線で面を埋められたり
有限個に分割して組み立てるだけで体積が変わったり
0298132人目の素数さん
垢版 |
2018/01/13(土) 23:51:57.13ID:Z5QuF+UV
とにかく非可算なものを制御する方法が知りたい。
可算順序数と実数の全単射はその第一歩となる。

それがひいてはなにがしかの巨大数のブレークスルーにもつながると思う。
まあイメージだけでしゃべってるが。
0300132人目の素数さん
垢版 |
2018/01/14(日) 00:00:29.14ID:jZNqTC5m
>>294
対角線論法と連続体仮説を混同してると思う

「実数の濃度は可算順序数の濃度と同じ」や「実数から可算順序数への全単射写像が存在する」は、対角線論法で反証できる。

「実数の濃度より小さく可算順序数の濃度より大きな濃度を持つ集合が存在する」は、連続体仮説であって、ZFCから独立で、ZFCの下では証明も反証もできない

https://ja.wikipedia.org/wiki/%E3%82%AB%E3%83%B3%E3%83%88%E3%83%BC%E3%83%AB%E3%81%AE%E5%AF%BE%E8%A7%92%E7%B7%9A%E8%AB%96%E6%B3%95
0301132人目の素数さん
垢版 |
2018/01/14(日) 00:12:25.24ID:GlpnHNbW
実数の濃度より小さく可算順序数の濃度より大きな濃度を持つ集合が存在しない⇔実数の濃度=可算順序数の濃度
これが違うといってる?
0304132人目の素数さん
垢版 |
2018/01/14(日) 01:12:55.17ID:QZS2nyEG
>>303
連続体仮説が扱うのは連続体濃度と可算集合の濃度
可算集合の濃度と可算順序数全体の集合の濃度を混同していると思いますがどうでしょうか?
0305132人目の素数さん
垢版 |
2018/01/14(日) 01:42:46.89ID:zRu2kQVy
自然数全体の集合 ω は可算無限となる。
可算順序数全体の集合 ω_1 は非可算となる。
それぞれ、全体の集合を考えると濃度が上がるね。
0306132人目の素数さん
垢版 |
2018/01/14(日) 05:29:25.25ID:jZNqTC5m
>>305
濃度が上がるのは冪集合を取った時で
全体の集合を考えた時に上がるとは限らない
0310132人目の素数さん
垢版 |
2018/01/14(日) 13:47:31.00ID:QZS2nyEG
そろそろスレチガー君がお出ましの頃と思ったよw
まあ無限を扱うスレは他にもあるからそっちに移っても良いは良いんだが
0312132人目の素数さん
垢版 |
2018/01/14(日) 14:41:02.13ID:zRu2kQVy
>>306
濃度ξの順序数全体の集合は濃度ξ+1にならないか?
そうならないξの例はある?
0313132人目の素数さん
垢版 |
2018/01/14(日) 14:45:24.89ID:zRu2kQVy
濃度ω_ξの順序数全体の集合の濃度がω_{ξ+1}だった
0314132人目の素数さん
垢版 |
2018/01/14(日) 15:08:27.39ID:z7KOqged
全単射があったとしてもZFCの範囲外なんだよねぇ
非可算を制御なんて無理な気がして来た
0316132人目の素数さん
垢版 |
2018/01/14(日) 15:40:13.95ID:wJ2d9429
濃度と言うのはモデル相対的な面があり、モデルによってω_1^CKの濃度がωになったりω_1になったりする。
具体的にはモデルの関数部分が関係する
0317132人目の素数さん
垢版 |
2018/01/15(月) 22:47:06.53ID:2FCj5ese
>「実数の濃度は可算順序数の濃度と同じ」や「実数から可算順序数への全単射写像が存在する」は、対角線論法で反証できる。

詳しく
0319132人目の素数さん
垢版 |
2018/01/17(水) 18:33:36.27ID:7ianClRO
1対1に対応する写像が存在するかどうかで濃度が等しいかどうかが決まる。
計算可能な写像しか構成できない言語では、関数部分に計算可能な関数しか持たないモデルも考えられる。
そのようなモデルの中では自然数からω_1^CKへの写像が存在しない(計算不可能なため)
よってそのようなモデルの中ではω_1^CKがω_1のように見える。

という理屈だろうか
0320132人目の素数さん
垢版 |
2018/01/19(金) 19:39:46.85ID:5GfiHYrN
耳栓をしたら世界が変わってワロタ
0331132人目の素数さん
垢版 |
2018/01/22(月) 13:07:30.88ID:Df2n+TON
耳栓をしたら世界が変わってワロタ
0332132人目の素数さん
垢版 |
2018/01/23(火) 19:03:43.23ID:ITNodgCC
質問なんですが
巨大数研究wikiのBEAF入門(http://ja.googology.wikia.com/wiki/BEAF%E5%85%A5%E9%96%80)のページで

新しい2行配列への拡張を今まで(線形配列)のルール(おそらく破滅ルール)に適用させると
{b,p(1)1,1,2} = {b,b,b, ... (1)b,{b,p-1(1)1,1,2},2}
となり、一行目が無限要素となることを問題としています

しかし、線形配列のルールによれば

副操縦士 : パイロットの1つ前の引数
乗客 : 副操縦士より前のすべての引数
破滅ルール :
(1)副操縦士を元の配列のプライムを1減らしたものに置き換える
(2)パイロットの値を1減らす
(3)すべての乗客をプライムにする

とあり、乗客の数が増えそうな表現はどこにもありません

何か別のルールを使っているのでしょうか?
0333132人目の素数さん
垢版 |
2018/01/24(水) 16:16:45.83ID:Md9xJOxY
BEAFでは一行目の{b,p}は、無限の1が続く{b,p,1,...}が省略されているものとみなされるので、
「副操縦士よりも前のすべての引数を乗客」という定義だと、1行目のすべてが乗客になってしまう。
そこで、次に「プライムブロック」を「その行の中の最初の p 個の要素、つまりプライムの個数の要素」
と定義して、そこから飛行機、乗客と定義することで乗客をを1行目の中でp個に限定している。
BEAF入門には
「配列の最後が1だけであれば切り落とすことができます」
と書いてあり、切り落としたものが「無限の1がその後に続いているものが省略されている」という
見方が書かれていないので、その点はあまりクリアでないかもしれない。
0334132人目の素数さん
垢版 |
2018/01/24(水) 16:30:45.29ID:Md9xJOxY
と、思ったけど書いてあった。ここに

これを1行で書く時には、{b,p (1) 1,1,2} と書きます。ここで、 (1) は行と行の間を示します。
ここでまた、各行は(可算)無限個の1で自動的に満たされるため、この配列は
{b,p,1 (1) 1,1,2} や {b,p,1,1,1 (1) 1,1,2,1,1} と同じことになります。

「各行は(可算)無限個の1で自動的に満たされる」と書いてある。
0335132人目の素数さん
垢版 |
2018/01/24(水) 17:02:40.83ID:BYFaJ3sD
あっ書いてありましたね
すると、{b,p(1)1,1,2}を破滅ルールで変形させるときは必ず{b,p,1,1, ... (1)1,1,2}としなくてはいけないんですね
0336132人目の素数さん
垢版 |
2018/01/24(水) 21:11:26.58ID:Md9xJOxY
「する」というよりは{b,p(1)1,1,2}と書いてあっても{b,p,1,1, ... (1)1,1,2}と同じだよ、というのがBEAFの考え方。
0337132人目の素数さん
垢版 |
2018/01/26(金) 11:35:42.69ID:FBJorFde
再度質問すみません
BEAF入門のページによると
これがb&1,2aの定義ですか?
0338132人目の素数さん
垢版 |
2018/01/26(金) 14:04:49.30ID:FBJorFde
あれ、計算してみたら違いました
2行配列の場合の変形ルールを用いた場合が、「rを配列の値にしてしまうのが一番効果的です」「いっそのこと、これをb回繰り返してしまいましょう」とかかれてある部分の式において誤魔化されてるんですね
混乱しちゃってました
0339132人目の素数さん
垢版 |
2018/01/26(金) 21:24:02.48ID:HTuzqqvL
一般的にレベル 1,n は、n > 1 の時にこのようになります。

のところに書かれている式がそんな感じなのでたぶんそれでいいけれど、
ここに書かれている式が文字が重なっていて読みにくくなっているのも、
わかりにくい原因かも。
0340132人目の素数さん
垢版 |
2018/01/28(日) 22:27:44.83ID:NP6DbHaN
Σ1/n^s=1/1^s+1/2^s+1/3^s+1/4^s+1/5^s+・・・
Σ1/n^s=(1+cos(y*log2)/√2+cos(y*log3)/√3+cos(y*log4)/√4+・・・)+i*(sin(y*log2)/√2+sin(y*log3)/√3+sin(y*log4)/√4+・・・)
X=(1+Σcos(y*logk)/√k) Y=(Σsin(y*logk)/√k)
(X-1/2)^2+Y^2=R^2
(Σcos(y*logk)/√k)+(Σcos(y*logk)/√k)^2+(Σsin(y*logk)/√k)^2=(R-1/2)*(R+1/2)
(Σ1/n)+(Σcos(y*logk)/√k)+(Σcos(y*logl/m)/√(lm))=(R-1/2)*(R+1/2)
0341132人目の素数さん
垢版 |
2018/01/30(火) 15:57:18.46ID:ZdAW/70D
テトレーション配列って
(X↑↑2m)&n と (X↑↑(2m+1))&n
で微妙に重ね方が違うんだね
なんか気に入らん
0343132人目の素数さん
垢版 |
2018/02/04(日) 02:39:53.78ID:W400W2BT
俺の資産100倍にならねーかなー
たった100倍でいいんだけどなー
グラハム数倍とはいわないからさ
0345132人目の素数さん
垢版 |
2018/02/05(月) 20:20:44.97ID:GXfQM7x8
年利20%を25年続ければ100倍行くしまんざら不可能ってわけでもない。
0351132人目の素数さん
垢版 |
2018/02/20(火) 02:10:27.19ID:FqQRQcJy
TFB は ψ_0(ε_{Ωω+1}) で、巨大数論 p.186 にあるように
ε_{Ω+1} の収束列が Ω, Ω^Ω, Ω^Ω^Ω, ... なのだから、
当然 ε_{Ωω+1} の収束列は Ωω, Ωω^Ωω, Ωω^Ωω^Ωω, ... で、
あとは、それにψ_0 をかぶせればいいだけ
0352132人目の素数さん
垢版 |
2018/02/20(火) 21:03:11.83ID:ogan+TRw
Y=(7*5*3*2)*((f(1)^2/2^2+f(2)^2/3^2+f(3)^2/5^2+f(4)^2/7^2+x^2)+2*(-x*(f(1)/2+f(2)/3+f(3)/5+f(4)/7)+f(1)/2*(f(2)/3+f(3)/5+f(4)/7)+f(2)/3*(f(3)/5+f(4)/7)+(f(3)/5)*(f(4)/7)))^(1/2)
xに2,3,5,7で構成された分数をいれるときYは整数になる
x=(f(1)/2+f(2)/3+f(3)/5+f(4)/7)のときY=0
f(1)からf(4)に整数をいれ原点からの位置を調整しxに分数を代入すると任意の小さな整数になる
0353132人目の素数さん
垢版 |
2018/02/22(木) 03:25:40.38ID:BFl11xHa
(11*7*5*3*2)*((1/(2*cos(x*log2))^2+1/(3*cos(x*log3))^2+1/(5*cos(x*log5))^2+1/(7*cos(x*log7))^2+1/(11*cos(x*log11))^2+y^2)+
2*(-y*(1/(2*cos(x*log2))+1/(3*cos(x*log3))+1/(5*cos(x*log5))+1/(7*cos(x*log7))+1/(11*cos(x*log11)))+
1/(2*cos(x*log2))*(1/(3*cos(x*log3))+1/(5*cos(x*log5))+1/(7*cos(x*log7))+1/(11*cos(x*log11)))+1/(3*cos(x*log3))*(1/(5*cos(x*log5))+
1/(7*cos(x*log7))+1/(11*cos(x*log11)))
+1/(5*cos(x*log5))*(1/(7*cos(x*log7))+1/(11*cos(x*log11)))+1/(7*cos(x*log7))*1/(11*cos(x*log11))))^(1/2)
0354132人目の素数さん
垢版 |
2018/02/22(木) 03:56:49.18ID:BFl11xHa
Y=(n*・・・*6*5*4*3*2)^(1/2)*
((1/(2^(1/2)/cos(x*log2))^2+1/(3^(1/2)/cos(x*log3))^2+1/(4^(1/2)/cos(x*log4))^2+1/(5^(1/2)/cos(x*log5))^2+1/(6^(1/2)/cos(x*log6))^2+・・・+1/(n^(1/2)/cos(x*logn))+y^2)+
2*(-y*(1/(2^(1/2)/cos(x*log2))+1/(3^(1/2)/cos(x*log3))+1/(4^(1/2)/cos(x*log4))+1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
+1/(2^(1/2)/cos(x*log2))*(1/(3^(1/2)/cos(x*log3))+1/(4^(1/2)/cos(x*log4))+1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
1/(3^(1/2)/cos(x*log3))*(1/(4^(1/2)/cos(x*log4))+1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
1/(4^(1/2)/cos(x*log4))*(1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
1/(5^(1/2)/cos(x*log5))*1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn))+・・・+
1/((n-1)^(1/2)/cos(x*logn-1))*1/(n^(1/2)/cos(x*logn))))^(1/2)



y=Σ1/k^(X+i*y)(X=1/2)の実部のみの合計値のときY=0
y=YとなるときXが1/2以外の値をとらないことを示す
y=Y=(n*・・・*6*5*4*3*2)^(1/2)*
((1/(2^(1/2)/cos(x*log2))^2+1/(3^(1/2)/cos(x*log3))^2+1/(4^(1/2)/cos(x*log4))^2+1/(5^(1/2)/cos(x*log5))^2+1/(6^(1/2)/cos(x*log6))^2+・・・+1/(n^(1/2)/cos(x*logn))+y^2)+
2*(-y*(1/(2^(1/2)/cos(x*log2))+1/(3^(1/2)/cos(x*log3))+1/(4^(1/2)/cos(x*log4))+1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
+1/(2^(1/2)/cos(x*log2))*(1/(3^(1/2)/cos(x*log3))+1/(4^(1/2)/cos(x*log4))+1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
1/(3^(1/2)/cos(x*log3))*(1/(4^(1/2)/cos(x*log4))+1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
1/(4^(1/2)/cos(x*log4))*(1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
1/(5^(1/2)/cos(x*log5))*1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn))+・・・+
1/((n-1)^(1/2)/cos(x*logn-1))*1/(n^(1/2)/cos(x*logn))))^(1/2) 👀
Rock54: Caution(BBR-MD5:0be15ced7fbdb9fdb4d0ce1929c1b82f)
0355132人目の素数さん
垢版 |
2018/02/22(木) 04:20:07.65ID:BFl11xHa
y'=Y=(n*・・・*6*5*4*3*2)^(x)*
((1/(2^(x)/cos(y*log2))^2+1/(3^(x)/cos(y*log3))^2+1/(4^(x)/cos(y*log4))^2+1/(5^(x)/cos(y*log5))^2+1/(6^(x)/cos(y*log6))^2+・・・+1/(n^(x)/cos(y*logn))^2+y'^2)+
2*(-y'*(1/(2^(x)/cos(y*log2))+1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
+1/(2^(x)/cos(y*log2))*(1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(3^(x)/cos(y*log3))*(1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(4^(x)/cos(y*log4))*(1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(5^(x)/cos(y*log5))*1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn))+・・・+
1/((n-1)^(x)/cos(y*logn-1))*1/(n^(x)/cos(y*logn))))^(1/2)

y'=Σcos(y*logk)/k^xのときY=0
0356132人目の素数さん
垢版 |
2018/02/22(木) 04:20:46.21ID:BFl11xHa
y'=Yのときy'=Y=0になる
y'^2*(1-1/(n*・・・*6*5*4*3*2)^(x))-y'*2*(1/(2^(x)/cos(y*log2))+1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))
+2*(1/(2^(x)/cos(y*log2))*(1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(3^(x)/cos(y*log3))*(1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(4^(x)/cos(y*log4))*(1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(5^(x)/cos(y*log5))*1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn))+・・・+
1/((n-1)^(x)/cos(y*logn-1))*1/(n^(x)/cos(y*logn)))+
((1/(2^(x)/cos(y*log2))^2+1/(3^(x)/cos(y*log3))^2+1/(4^(x)/cos(y*log4))^2+1/(5^(x)/cos(y*log5))^2+1/(6^(x)/cos(y*log6))^2+・・・+1/(n^(x)/cos(y*logn))^2)=0
y'=0となるとき
[2*(1/(2^(x)/cos(y*log2))+1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))]^2-
-4*[2*(1/(2^(x)/cos(y*log2))*(1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(3^(x)/cos(y*log3))*(1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(4^(x)/cos(y*log4))*(1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(5^(x)/cos(y*log5))*1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn))+・・・+
1/((n-1)^(x)/cos(y*logn-1))*1/(n^(x)/cos(y*logn)))+
((1/(2^(x)/cos(y*log2))^2+1/(3^(x)/cos(y*log3))^2+1/(4^(x)/cos(y*log4))^2+1/(5^(x)/cos(y*log5))^2+1/(6^(x)/cos(y*log6))^2+・・・+1/(n^(x)/cos(y*logn))^2)]
x≠1/2のときy'=0にならないためx=1/2になる
0357132人目の素数さん
垢版 |
2018/02/22(木) 04:30:50.26ID:BFl11xHa
y'=0となるとき
a*y'^2+b*y'+c=0
y'=-b±√(b^2-4ac)/(2a)

√(b^2-4ac)=[2*(1/(2^(x)/cos(y*log2))+1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))]^2-
-4*(1-1/(n*・・・*6*5*4*3*2)^(x))*[2*(1/(2^(x)/cos(y*log2))*(1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(3^(x)/cos(y*log3))*(1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(4^(x)/cos(y*log4))*(1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(5^(x)/cos(y*log5))*1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn))+・・・+
1/((n-1)^(x)/cos(y*logn-1))*1/(n^(x)/cos(y*logn)))+
((1/(2^(x)/cos(y*log2))^2+1/(3^(x)/cos(y*log3))^2+1/(4^(x)/cos(y*log4))^2+1/(5^(x)/cos(y*log5))^2+1/(6^(x)/cos(y*log6))^2+・・・+1/(n^(x)/cos(y*logn))^2)]
x≠1/2のとき分母の次数がずれるため√(b^2-4ac)=0とならないためy'が0にならない
0358132人目の素数さん
垢版 |
2018/02/23(金) 04:40:45.44ID:VxTXFxVp
√(b^2-4ac)=[2*(1/(2^(x)/cos(y*log2))+1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))]^2-
-4*(1-1/(n*・・・*6*5*4*3*2)^(2x))*[2*(1/(2^(x)/cos(y*log2))*(1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(3^(x)/cos(y*log3))*(1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(4^(x)/cos(y*log4))*(1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(5^(x)/cos(y*log5))*1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn))+・・・+
1/((n-1)^(x)/cos(y*logn-1))*1/(n^(x)/cos(y*logn)))+
((1/(2^(x)/cos(y*log2))^2+1/(3^(x)/cos(y*log3))^2+1/(4^(x)/cos(y*log4))^2+1/(5^(x)/cos(y*log5))^2+1/(6^(x)/cos(y*log6))^2+・・・+1/(n^(x)/cos(y*logn))^2)]

√(b^2-4ac)=(8/(n*・・・*6*5*4*3*2)^(2x))-4)*[1/(2^(2x)/cos(y*log2)^2)+1/(3^(2x)/cos(y*log3)^2)+1/(4^(2x)/cos(y*log4)^2)+1/(5^(2x)/cos(y*log5)^2)+1/(6^(2x)/cos(y*log6)^2)+・・・+1/(n^(2x)/cos(y*logn)^2)]
+8/(n*・・・*6*5*4*3*2)^(2x))*[(1/(2^(x)/cos(y*log2))*(1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(3^(x)/cos(y*log3))*(1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(4^(x)/cos(y*log4))*(1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(5^(x)/cos(y*log5))*1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn))+・・・+
1/((n-1)^(x)/cos(y*logn-1))*1/(n^(x)/cos(y*logn)))]

√(b^2-4ac)=(4/(n*・・・*6*5*4*3*2)^(2x))-4)*[1/(2^(2x)/cos(y*log2)^2)+1/(3^(2x)/cos(y*log3)^2)+1/(4^(2x)/cos(y*log4)^2)+1/(5^(2x)/cos(y*log5)^2)+1/(6^(2x)/cos(y*log6)^2)+・・・+1/(n^(2x)/cos(y*logn)^2)]
+4/(n*・・・*6*5*4*3*2)^(2x))*[(1/(2^(x)/cos(y*log2))+1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))]^2
0359132人目の素数さん
垢版 |
2018/02/23(金) 04:58:55.26ID:VxTXFxVp
[1/(2^(2x)/cos(y*log2)^2)+1/(3^(2x)/cos(y*log3)^2)+1/(4^(2x)/cos(y*log4)^2)+1/(5^(2x)/cos(y*log5)^2)+1/(6^(2x)/cos(y*log6)^2)+・・・+1/(n^(2x)/cos(y*logn)^2)]=0となるとき2x=1でなければならない
Σcos(y*logk)/k^x+i*Σsin(y*logk)/k^x=0となるとき
Σcos(y*logk)^2/k^2x+i*Σsin(y*logk)^2/k^2x=0
Σcos(y*logk)^n/k^nx+i*Σsin(y*logk)^n/k^nx=0となるときnx=1でなければならない



[Σcos(y*logk)/k^x]^2+[Σsin(y*logk)/k^x]^2=0
(Σ(1/k^(2x))+2*(Σcos(y*log(l/m))/(lm)^x))=0
(Σcos(y*log(l/m))/(lm)^x)=-1/2*(Σ(1/k^(2x))
0360132人目の素数さん
垢版 |
2018/02/23(金) 05:08:36.63ID:VxTXFxVp
Σcos(y*logk)^n/k^nx+i*Σsin(y*logk)^n/k^nx=0となるときnx=1でなければならないとすると
n→∞
1^∞/1^(∞/2)+cos(y*log2)^∞/2^(∞/2)+cos(y*log3)^∞/3^(∞/2)+・・・
1^∞/1^(∞/2)+sin(y*log2)^∞/2^(∞/2)+sin(y*log3)^∞/3^(∞/2)+・・・
cos(y*logk)=1,sin(y*logk)=1いがいのとき∞乗されると0になるため
y*logkが2nπ,(2n+1/4)π,(2n+2/4)π,(2n+3/4)π,のいずれかになるkのみを全整数から抜き出す
k=e^((2n+(m/4))π/y)


lim(n→∞) Σ1/e^((2n)π/y)^(nx)+i*Σ1/e^((2n+1/2)π/y)^(nx)=0になるときx=1/2になることをしめす
0362132人目の素数さん
垢版 |
2018/02/25(日) 19:27:58.45ID:w6qiz8EJ
>>361
ζ(s)=1+1/2^s+1/3^s+1/4^s+1/5^s+・・・
s=x+i*y
ζ(s)=(1+cos(y*log2)/2^x+cos(y*log3)/3^x+・・・)+i*(sin(y*log2)/2^x+sin(y*log3)/3^x+・・・)
ζ(s)のすべての項を2πで割った際のあまりが小さくなった順に並べ替える
0 < (y*logk(1)) mod 2π < (y*logk(2)) mod 2π < (y*logk(3)) mod 2π < ・・・ < 2π

k(1)からk(n)までの成分を足したものは複素数平面状でx=1/2に中心をもつ円周上に並ぶ
X(n)=(1+cos(y*logk(1))/k(1)^x+cos(y*logk(2))/k(2)^x+・・・+cos(y*logk(n))/k(n)^x)
Y(n)=(sin(y*logk(1))/k(1)^x+sin(y*logk(2))/k(2)^x+・・・+sin(y*logk(n))/k(n)^x)
(X-1/2)^2+Y^2=R^2
k1からk(n+1)についても同様にx=1/2に中心をもつ円周上に並ぶとき
X(n+1)=(1+cos(y*logk(1))/k(1)^x+cos(y*logk(2))/k(2)^x+・・・+cos(y*logk(n))/k(n)^x+cos(y*logk(n+1))/k(n+1)^x)
Y(n+1)=(sin(y*logk(1))/k(1)^x+sin(y*logk(2))/k(2)^x+・・・+sin(y*logk(n))/k(n)^x+sin(y*logk(n+1))/k(n+1)^x)
((1+cos(y*logk(1))/k(1)^x+cos(y*logk(2))/k(2)^x+・・・+cos(y*logk(n))/k(n)^x)-1/2)^2+(sin(y*logk(1))/k(1)^x+sin(y*logk(2))/k(2)^x+・・・+sin(y*logk(n))/k(n)^x)^2=R^2
((1+cos(y*logk(1))/k(1)^x+cos(y*logk(2))/k(2)^x+・・・+cos(y*logk(n+1))/k(n+1)^x)-1/2)^2+(sin(y*logk(1))/k(1)^x+sin(y*logk(2))/k(2)^x+・・・+sin(y*logk(n+1))/k(n+1)^x)^2=R^2

cos(y*logk(n+1))^2/k(n+1)^2x+2*cos(y*logk(n+1))/k(n+1)^x*(1+cos(y*logk(1))/k(1)^x+cos(y*logk(2))/k(2)^x+・・・+cos(y*logk(n))/k(n)^x)
=sin(y*logk(n+1))^2/k(n+1)^2x+2*sin(y*logk(n+1))/k(n+1)^x*(sin(y*logk(1))/k(1)^x+sin(y*logk(2))/k(2)^x+・・・+sin(y*logk(n))/k(n)^x)

cos(y*logk(n+1))^2/k(n+1)^2x+2*cos(y*logk(n+1))/k(n+1)^x*X(n)=sin(y*logk(n+1))^2/k(n+1)^2x+2*sin(y*logk(n+1))/k(n+1)^x*Y(n)
cos(y*logk(n+1)^2)/k(n+1)^2x+2*(cos(y*logk(n+1))*X(n)-sin(y*logk(n+1))*Y(n))/k(n+1)^x=0
k(n+1)^x=cos(y*logk(n+1)^2)/2*(sin(y*logk(n+1))*X(n)-cos(y*logk(n+1))*Y(n))
x=log[cos(y*logk(n+1)^2)/2*(sin(y*logk(n+1))*X(n)-cos(y*logk(n+1))*Y(n))]/log[k(n+1)]
x=log[cos(y*logk(2)^2)/2*(sin(y*logk(2))*X(1)-cos(y*logk(2))*Y(1))]/log[k(2)]=1/2
0363132人目の素数さん
垢版 |
2018/02/26(月) 00:06:02.39ID:jH/tpWUa
(X-1/2)^2+(Y-R)^2=R^2+1/2^2

cos(y*logk(n+1))^2/k(n+1)^2x+2*cos(y*logk(n+1))/k(n+1)^x*(1+cos(y*logk(1))/k(1)^x+cos(y*logk(2))/k(2)^x+・・・+cos(y*logk(n))/k(n)^x-1/2)
=sin(y*logk(n+1))^2/k(n+1)^2x+2*sin(y*logk(n+1))/k(n+1)^x*(sin(y*logk(1))/k(1)^x+sin(y*logk(2))/k(2)^x+・・・+sin(y*logk(n))/k(n)^x-R)


cos(y*logk(n+1))^2/k(n+1)^2x+2*cos(y*logk(n+1))/k(n+1)^x*(X(n)-1/2)=sin(y*logk(n+1))^2/k(n+1)^2x+2*sin(y*logk(n+1))/k(n+1)^x*(Y(n)-R)
cos(y*logk(n+1)^2)/k(n+1)^2x+2*(cos(y*logk(n+1))*(X(n)-1/2)-sin(y*logk(n+1))*(Y(n)-R))/k(n+1)^x=0
k(n+1)^x=cos(y*logk(n+1)^2)/2*(sin(y*logk(n+1))*(Y(n)-R)-cos(y*logk(n+1))*(X(n)-1/2))
x=log[cos(y*logk(n+1)^2)/2*(sin(y*logk(n+1))*(Y(n)-R)-cos(y*logk(n+1))*(X(n)-1/2))]/log[k(n+1)]
x=log[cos(y*logk(1)^2)/2*(sin(y*logk(1))*(Y(0)-R)-cos(y*logk(1))*(X(0)-1/2))]/log[k(1)]
x=log[-cos(y*logk(1)^2)/(2*sin(y*logk(1))*R+cos(y*logk(1)))]/log[k(1)]
y*logk(1)→0 R→∞
x=log[-cos(y*logk(1)^2)/(2*sin(y*logk(1))*R+cos(y*logk(1)))]/log[k(1)]

-cos(y*logk(1)^2)/(2*sin(y*logk(1))*R+cos(y*logk(1)))=(k(1))^x
0=2R*sin(y*logk(1))/(k(1))^x+cos(y*logk(1))/(k(1))^x+cos(y*logk(1)^2)/(k(1))^2x

cos(y*logk(1))/(k(1))^x+cos(y*logk(1)^2)/(k(1))^2x→0
0364132人目の素数さん
垢版 |
2018/02/26(月) 01:38:57.43ID:jH/tpWUa
cos(y*logk(1))/(k(1))^x+cos(y*logk(1)^2)/(k(1))^2x→0
θ→0
y*logk(1)=2nπ+θ
cos(θ)/e^((2nπ+θ)*x/y)+cos(2θ)/e^((2nπ+θ)*2x/y)→0
x=y/(2nπ+θ)*log[-cos(2θ)/cos(θ)]
log[-cos(2θ)/cos(θ)]→i*(2m+1)π
x=y*i*(2m+1)/2n
cos(θ)/k(1)^x+cos(2θ)/k(1)^2x→0
log[cos(y*logk(n)^2)/(2*(sin(y*logk(n))*(Y(n-1)-R)-cos(y*logk(n))*(X(n-1)-1/2)))]/log[cos(y*logk(n+1)^2)/(2*(sin(y*logk(n+1))*(Y(n)-R)-cos(y*logk(n+1))*(X(n)-1/2)))]=log[k(n)]/log[k(n+1)]
{log[cos(y*logk(n)^2)]-log[2*(sin(y*logk(n))*(Y(n-1)-R)-cos(y*logk(n))*(X(n-1)-1/2))]}/{log[cos(y*logk(n+1)^2)]-log[2*(sin(y*logk(n+1))*(Y(n)-R)-cos(y*logk(n+1))*(X(n)-1/2))]}=log[k(n)]/log[k(n+1)]

k(n+1)*cos(y*logk(n)^2)=k(n)*cos(y*logk(n+1)^2)
0365132人目の素数さん
垢版 |
2018/02/26(月) 04:37:55.40ID:jH/tpWUa
x=log[cos(y*logk(1)^2)/2*(sin(y*logk(1))*(Y(0)-R)-cos(y*logk(1))*(X(0)-1/2))]/log[k(1)]
x=log[cos(y*log1^2)/2*(sin(y*log1)*(0-R)-cos(y*log1)*(0-1/2))]/log[1]=log[cos(y*log1^2)/cos(y*log1)]/0=1/2
log[cos(y*log1^2)/cos(y*log1)]=log[2cos(y*log1)-1/cos(y*log1)]=0/2
lim y*logk(1)→2nπ log[cos(y*logk(1)^2)/cos(y*logk(1))]/log[k(1)]  → 1/2
0366132人目の素数さん
垢版 |
2018/02/27(火) 00:51:21.37ID:0SJhKoA+
続けんのかい。
スレ違いじゃないの?
0367132人目の素数さん
垢版 |
2018/02/27(火) 01:01:25.69ID:LJffKOFh
だな
自分の力で何か見つけて興奮する気持ちは分からんでもないが
0368132人目の素数さん
垢版 |
2018/02/27(火) 03:26:51.38ID:g2jJh3ER
X=cos(y*log2)/2^x+cos(y*log3)/3^x+cos(y*log4)/4^x+cos(y*log5)/5^x+・・・
Y=sin(y*log2)/2^x+sin(y*log3)/3^x+sin(y*log4)/4^x+sin(y*log5)/5^x+・・・
xとyがゼロ点を通るときX=-1 Y=0
√(X^2+Y^2)=√((1/2^2x+1/3^2x+1/4^2x+1/5^2x+・・・)+2*(cos(y*log(3/2))/(2*3)^x+cos(y*log(4/2))/(2*4)^x+cos(y*log(5/2))/(2*5)^x+cos(y*log(6/2))/(2*6)^x+cos(y*log(7/2))/(2*7)^x+cos(y*log(8/2))/(2*8)^x+・・・))=1

cos(y*log(4/2))/(2*4)^x+cos(y*log(6/2))/(2*6)^x+cos(y*log(8/2))/(2*8)^x+cos(y*log(10/2))/(2*10)^x+・・・=1/2^2x*(cos(y*log(2))/(2)^x+cos(y*log(3))/(3)^x+cos(y*log(4))/(4)^x+cos(y*log(5))/(5)^x+・・・)
cos(y*log(6/3))/(3*6)^x+cos(y*log(9/3))/(3*9)^x+cos(y*log(12/3))/(12*3)^x+cos(y*log(15/3))/(3*15)^x+・・・=1/3^2x*(cos(y*log(2))/(2)^x+cos(y*log(3))/(3)^x+cos(y*log(4))/(4)^x+cos(y*log(5))/(5)^x+・・・)
cos(y*log(8/4))/(4*8)^x+cos(y*log(12/4))/(4*12)^x+cos(y*log(16/4))/(16*4)^x+cos(y*log(20/4))/(4*20)^x+・・・=1/4^2x*(cos(y*log(2))/(2)^x+cos(y*log(3))/(3)^x+cos(y*log(4))/(4)^x+cos(y*log(5))/(5)^x+・・・)

√(X^2+Y^2)=√((1/2^2x+1/3^2x+1/4^2x+1/5^2x+・・・)*(1+X)+2*(cos(y*log(3/2))/(2*3)^x+cos(y*log(5/2))/(2*5)^x+cos(y*log(7/2))/(2*7)^x+cos(y*log(9/2))/(2*9)^x+cos(y*log(11/2))/(2*11)^x+cos(y*log(13/2))/(2*13)^x+・・・))=1
(1+X)=0になるため
√(2*(cos(y*log(3/2))/(2*3)^x+cos(y*log(5/2))/(2*5)^x+cos(y*log(7/2))/(2*7)^x+cos(y*log(9/2))/(2*9)^x+cos(y*log(11/2))/(2*11)^x+cos(y*log(13/2))/(2*13)^x+・・・))=1
(Σcos(y*log(m/n))/(n*m)^x=1/2 (1<m<n) nはmを因数に持たない

√(X^2+Y^2)=√((1+1/2^2x+1/3^2x+1/4^2x+1/5^2x+・・・)*(1+X)-X)=1=√(1+X+X^2)
√(X^2+X)=0
Y^2=X+1
0369132人目の素数さん
垢版 |
2018/02/27(火) 03:52:56.46ID:g2jJh3ER
ζ(s)=1+1/2^s+1/3^s+1/4^s+1/5^s+1/6^s+・・・=1+cos(y*log2)/2^x+cos(y*log3)/3^x+・・・+i*(sin(y*log2)/2^x+sin(y*log3)/3^x+・・・)
Im(ζ(s))=Re(ζ(s))^(1/2)
ζ(s)=Re(ζ(s))+i*Re(ζ(s))^(1/2)=√(Re(ζ(s))^2+Re(ζ(s)))*e^(i*arctan[1/Re(ζ(s))^(1/2)])
Re(ζ(s))=0のとき
ζ(s)=Re(ζ(s))+i*Re(ζ(s))^(1/2)=0*e^(i*arctan[1/(0)^(1/2)])=0
0370132人目の素数さん
垢版 |
2018/03/01(木) 02:41:31.10ID:2slr/wrK
ζ(s)=√Re(ζ(s))*√(Re(ζ(s))+1)*e^(i*arctan[1/√(Re(ζ(s))])
√Re(ζ(s))=0
ζ(s)=√Re(ζ(s))*√(Re(ζ(s))+1)*e^(i*arctan[1/√(Re(ζ(s))])=0*e^(i*arctan[1/0])=0
√(Re(ζ(s))+1)=0
ζ(s)=√Re(ζ(s))*√(Re(ζ(s))+1)*e^(i*arctan[1/√(Re(ζ(s))])=0*e^(i*arctan[1/i])=0*∞≠0


Y=(2*3)*√((x^2+1/2^(2)+1/3^(2))+2*(x/2+x/3+1/(2*3)))
x=0 Y=5
x=1 Y=11
x=2 Y=17
x=3 Y=23


Y=(2*3*5)*√((x^2+1/2^(2)+1/3^(2)+1/5^(2))+2*(x/2+x/3+x/5+1/(2*3)+1/(2*5)+1/(3*5)))
x=0 Y=31
x=1 Y=61

Y=(2*3*5*7)*√((x^2+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(x/2+x/3+x/5+x/7+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))
x=-1 Y=37
x=-2 Y=173

(2*3*5*7)*√((2^2+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(-2*(1/2+1/3+1/5+1/7)-1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=23

(2*3*5*7)*|(1/2^(i*y)+1/3^(i*y)+1/5^(i*y)+1/7^(i*y)+x^(n+i*y))|
Y=(2*3*5*7)*√((cos(y*log2))/2+cos(y*log3))/3+cos(y*log5))/5+cos(y*log7))/7+cos(y*logx))*x^n)^2+(sin(y*log2))/2+sin(y*log3))/3+sin(y*log5))/5+sin(y*log7))/7+sin(y*logx))*x^n)^2)
xとnが整数かつcos(y*logk)とsin(y*logk)がすべて1のときは必ず整数になる
7の次の素数の二乗より小さくなるようにnとxとyを調整し素数を作る 👀
Rock54: Caution(BBR-MD5:0be15ced7fbdb9fdb4d0ce1929c1b82f)
0371132人目の素数さん
垢版 |
2018/03/01(木) 05:07:58.33ID:2slr/wrK
(2*3*5*7)*√((i^(2)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(1)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=247+210i
(2*3*5*7)*√((i^(4)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(2)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=37
(2*3*5*7)*√((i^(6)+1/2^(2)+1/3^(3)+1/5^(2)+1/7^(2))+2*(i^(3)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=247-210i
(2*3*5*7)*√((i^(8)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(4)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=457
(2*3*5*7)*√((i^(10)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(5)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=247+210i
(2*3*5*7)*√((i^(12)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(6)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=37
(2*3*5*7)*√((i^(14)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(7)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=247-210i
(2*3*5*7)*√((i^(16)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(8)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=457


(2*3*5*7)*√((i^(2+8n)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(1+4n)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=247+210i
(2*3*5*7)*√((i^(4+8n)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(2+4n)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=37
(2*3*5*7)*√((i^(6+8n)+1/2^(2)+1/3^(3)+1/5^(2)+1/7^(2))+2*(i^(3+4n)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=247-210i
(2*3*5*7)*√((i^(8+8n)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(4+4n)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=457
0372132人目の素数さん
垢版 |
2018/03/01(木) 05:21:03.25ID:2slr/wrK
(2^(2^(n-1))*3*5*7)*√(((i)^(4)+1/(2i)^(2^n)+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2i)^(2^(n-1))+1/3+1/5+1/7)+1/(2i)^(2^(n-1))*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))
(2^2*3*5*7)*√(((i)^(4)+1/(2i)^(4)+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2i)^2+1/3+1/5+1/7)+1/(2i)^2*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=241
(2^4*3*5*7)*√(((i)^(4)+1/(2i)^(8)+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2i)^(2^(3-1))+1/3+1/5+1/7)+1/(2i)^(2^(3-1))*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=439
(2^8*3*5*7)*√(((i)^(4)+1/(2i)^(16)+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2i)^8+1/3+1/5+1/7)+1/(2i)^8*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=8599
nに数値を入れると必ず素数になる
0373132人目の素数さん
垢版 |
2018/03/01(木) 05:43:26.84ID:2slr/wrK
(2*3*5*7*・・・*S(n))*√((i^(2)+1/(2i)^(2x1+8y1)+1/3^(2x2+8y2)+1/5^(2x3+8y3)+1/7^(2x4+8y4)+・・・・S(n)^(2xn+8yn))+2*(i^(1)*(1/(2i)^(x1+4y1)+1/(3i)^(x2+4y2)+1/(5i)^(x3+4y3)+・・・+S(n)^(xn+4yn))+Σ1/(S(k)^(xk+4yk)S(l)^(xl+4yl))))

Y=ΠS(n)*√(i^(4x0+8y0)+Σ1/(S(k)*i)^(4xk+8yk)+2*(i^(2x0+4y0)*Σ1/(S(k)*i)^(2xk+y4)+Σ1/((S(k)*i)^(2xk+4yk)*(S(l)*i)^(2xl+4yl))))

ΠS(n)は1からn番目までの素数積
Σ1/(S(k)*i)^(4xk+8y4)は1からn番目の素数の(4xk+8y4)乗した逆数和
Σ1/((S(k)*i)^(2xk+4yk)*(S(l)*i)^(2xl+4yl))は互いに異なる素数の逆数和
xk,yk,xl,ylに整数を代入しえられる値がS(n+1)^2よりもちいさくなるとき必ず素数になる
0374132人目の素数さん
垢版 |
2018/03/02(金) 00:24:58.20ID:1PwnSkT4
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(2+8n))+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(1+4n))+1/3+1/5+1/7)+1/(2*i^(1+4n))*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=68+105i
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(4+8n))+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(2+4n))+1/3+1/5+1/7)+1/(2*i^(2+4n))*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=173
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(6+8n))+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(3+4n))+1/3+1/5+1/7)+1/(2*i^(3+4n))*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=68-105i
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8+8n))+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(4+4n))+1/3+1/5+1/7)+1/(2*i^(4+4n))*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=37

(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(2+8n))+1/(3*i^(2))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(1+4n))+1/(3*i^1)+1/5+1/7)+1/(2*i^(1+4n))*(1/(3*i^1)+1/(5)+1/(7))+1/(3*i^1)*(1/5+1/7)+1/(5*7)))
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(4+8n))+1/(3*i^(4))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(2+4n))+1/(3*i^2)+1/5+1/7)+1/(2*i^(2+4n))*(1/(3*i^2)+1/(5)+1/(7))+1/(3*i^2)*(1/5+1/7)+1/(5*7)))
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(6+8n))+1/(3*i^(6))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(3+4n))+1/(3*i^3)+1/5+1/7)+1/(2*i^(3+4n))*(1/(3*i^3)+1/(5)+1/(7))+1/(3*i^3)*(1/5+1/7)+1/(5*7)))
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8+8n))+1/(3*i^(8))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(4+4n))+1/(3*i^4)+1/5+1/7)+1/(2*i^(4+4n))*(1/(3*i^4)+1/(5)+1/(7))+1/(3*i^4)*(1/5+1/7)+1/(5*7)))



(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(1))+1/(3*i^1)+1/5+1/7)+1/(2*i^(1))*(1/(3*i^1)+1/(5)+1/(7))+1/(3*i^1)*(1/5+1/7)+1/(5*7)))=138+175i
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8))+1/(3^2*i^(4))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(4))+1/(3*i^2)+1/5+1/7)+1/(2*i^(4))*(1/(3*i^2)+1/(5)+1/(7))+1/(3*i^2)*(1/5+1/7)+1/(5*7)))=103
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8))+1/(3^2*i^(8))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(4))+1/(3*i^4)+1/5+1/7)+1/(2*i^(4))*(1/(3*i^4)+1/(5)+1/(7))+1/(3*i^4)*(1/5+1/7)+1/(5*7)))=37
0375132人目の素数さん
垢版 |
2018/03/02(金) 00:47:34.09ID:1PwnSkT4
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8))+1/(3^2*i^(8))+1/(5^2*i^(4))+1/7^(2))+2*((i)^(2)*(1/(2*i^(4))+1/(3*i^4)+1/(5*i^(2))+1/7)+1/(2*i^(4))*(1/(3*i^4)+1/(5*i^(2))+1/(7))+1/(3*i^4)*(1/(5*i^(2))+1/7)+1/(5*i^(2)*7)))=47
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8))+1/(3^2*i^(8))+1/(5^2*i^(4))+1/(7^2*i^(4)))+2*((i)^(2)*(1/(2*i^(4))+1/(3*i^4)+1/(5*i^(2))+1/(7*i^(2)))+1/(2*i^(4))*(1/(3*i^4)+1/(5*i^(2))+1/(7*i^(2)))+1/(3*i^4)*(1/(5*i^(2))+1/(7*i^(2)))+1/(5*i^(2)*7*i^(2))))=107
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8))+1/(3^2*i^(8))+1/(5^2*i^(8))+1/(7^2*i^(8)))+2*((i)^(2)*(1/(2*i^(4))+1/(3*i^4)+1/(5*i^(4))+1/(7*i^(4)))+1/(2*i^(4))*(1/(3*i^4)+1/(5*i^(4))+1/(7*i^(4)))+1/(3*i^4)*(1/(5*i^(4))+1/(7*i^(4)))+1/(5*i^(4)*7*i^(4))))=37
虚数の乗数をいじり11^2より小さな整数になるとき必ず素数
0376132人目の素数さん
垢版 |
2018/03/02(金) 00:57:02.52ID:1PwnSkT4
(2*3*5*7)*√(((i)^(6)+1/(2^2*i^(10))+1/(3^2*i^(6))+1/(5^2*i^(6))+1/(7^2*i^(6)))+2*((i)^(3)*(1/(2*i^(5))+1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3)))+1/(2*i^(5))*(1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3)))+1/(3*i^3)*(1/(5*i^(3))+1/(7*i^(3)))+1/(5*i^(3)*7*i^(3))))=173i
(2*3*5*7)*√(((i)^(6)+1/(2^2*i^(10))+1/(3^2*i^(6))+1/(5^2*i^(6))+1/(7^2*i^(10)))+2*((i)^(3)*(1/(2*i^(5))+1/(3*i^3)+1/(5*i^(3))+1/(7*i^(5)))+1/(2*i^(5))*(1/(3*i^3)+1/(5*i^(3))+1/(7*i^(5)))+1/(3*i^3)*(1/(5*i^(3))+1/(7*i^(5)))+1/(5*i^(3)*7*i^(5))))=233i
(2*3*5*7)*√(((i)^(6)+1/(2^2*i^(10))+1/(3^2*i^(10))+1/(5^2*i^(6))+1/(7^2*i^(10)))+2*((i)^(3)*(1/(2*i^(5))+1/(3*i^5)+1/(5*i^(3))+1/(7*i^(5)))+1/(2*i^(5))*(1/(3*i^5)+1/(5*i^(3))+1/(7*i^(5)))+1/(3*i^5)*(1/(5*i^(3))+1/(7*i^(5)))+1/(5*i^(3)*7*i^(5))))=373i
0377132人目の素数さん
垢版 |
2018/03/03(土) 00:37:42.23ID:voEvlhiZ
(2*3*5*7*11)*√(((i)^(6)+1/(2^2*i^(6))+1/(3^2*i^(6))+1/(5^2*i^(6))+1/(7^2*i^(6))+1/(11^2*i^(6)))+2*((i)^(3)*(1/(2*i^(3))+1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3))+1/(11*i^(3)))+1/(2*i^(3))*(1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3))+
1/(11*i^(3)))+1/(3*i^3)*(1/(5*i^(3))+1/(7*i^(3))+1/(11*i^(3)))+1/(5*i^(3))*(1/(7*i^(3))+1/(11*i^(3)))+1/(7*i^(3))*(1/(11*i^(3))))))=617i
(2*3*5*7*11)*√(((i)^(10)+1/(2^2*i^(6))+1/(3^2*i^(6))+1/(5^2*i^(6))+1/(7^2*i^(6))+1/(11^2*i^(6)))+2*((i)^(5)*(1/(2*i^(3))+1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3))+1/(11*i^(3)))+1/(2*i^(3))*(1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3))+
1/(11*i^(3)))+1/(3*i^3)*(1/(5*i^(3))+1/(7*i^(3))+1/(11*i^(3)))+1/(5*i^(3))*(1/(7*i^(3))+1/(11*i^(3)))+1/(7*i^(3))*(1/(11*i^(3))))))=5237i

(2*3*5*7*11)*√((2^16*(i)^(6)+1/(2^2*i^(6))+1/(3^2*i^(10))+1/(5^2*i^(6))+1/(7^2*i^(10))+1/(11^2*i^(10)))+2*(2^8*(i)^(3)*(1/(2*i^(3))+1/(3*i^5)+1/(5*i^(3))+1/(7*i^(5))+1/(11*i^(5)))+1/(2*i^(3))*(1/(3*i^5)+1/(5*i^(3))+
1/(7*i^(5))+1/(11*i^(5)))+1/(3*i^5)*(1/(5*i^(3))+1/(7*i^(5))+1/(11*i^(5)))+1/(5*i^(3))*(1/(7*i^(5))+1/(11*i^(5)))+1/(7*i^(5))*(1/(11*i^(5))))))=591053i


(2*3*5*7*11)*√((2^(4n)*(i)^(6)+1/(2^2*i^(6))+1/(3^2*i^(10))+1/(5^2*i^(6))+1/(7^2*i^(10))+1/(11^2*i^(10)))+2*(2^(2n)*(i)^(3)*(1/(2*i^(3))+1/(3*i^5)+1/(5*i^(3))+1/(7*i^(5))+1/(11*i^(5)))+1/(2*i^(3))*(1/(3*i^5)+1/(5*i^(3))+
1/(7*i^(5))+1/(11*i^(5)))+1/(3*i^5)*(1/(5*i^(3))+1/(7*i^(5))+1/(11*i^(5)))+1/(5*i^(3))*(1/(7*i^(5))+1/(11*i^(5)))+1/(7*i^(5))*(1/(11*i^(5))))))
nに整数をいれると素数になる
0378132人目の素数さん
垢版 |
2018/03/03(土) 00:55:17.90ID:voEvlhiZ
(2*3*5*7*11)*√(((i)^(2)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/(5^2*i^(2))+1/(7^2*i^(2))+1/(11^2*i^(2)))+2*((i)^(1)*(1/(2*i^(1))+1/(3*i^1)+1/(5*i^(1))+1/(7*i^(1))+1/(11*i^(1)))+1/(2*i^(1))*(1/(3*i^1)+1/(5*i^(1))+1/(7*i^(1))+
1/(11*i^(1)))+1/(3*i^1)*(1/(5*i^(1))+1/(7*i^(1))+1/(11*i^(1)))+1/(5*i^(1))*(1/(7*i^(1))+1/(11*i^(1)))+1/(7*i^(1))*(1/(11*i^(1))))))=617i


(2*3*5*7*11)*√(((i)^(2)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/(5^2*i^(2))+1/(7^2*i^(2))+1/(11^2*i^(6)))+2*((i)^(1)*(1/(2*i^(1))+1/(3*i^1)+1/(5*i^(1))+1/(7*i^(1))+1/(11*i^(3)))+1/(2*i^(1))*(1/(3*i^1)+1/(5*i^(1))+1/(7*i^(1))+
1/(11*i^(3)))+1/(3*i^1)*(1/(5*i^(1))+1/(7*i^(1))+1/(11*i^(3)))+1/(5*i^(1))*(1/(7*i^(1))+1/(11*i^(3)))+1/(7*i^(1))*(1/(11*i^(3))))))=197i


(2*3*5*7*11)*√(((i)^(2)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/(5^2*i^(2))+1/(7^2*i^(6))+1/(11^2*i^(2)))+2*((i)^(1)*(1/(2*i^(1))+1/(3*i^1)+1/(5*i^(1))+1/(7*i^(3))+1/(11*i^(1)))+1/(2*i^(1))*(1/(3*i^1)+1/(5*i^(1))+1/(7*i^(3))+
1/(11*i^(1)))+1/(3*i^1)*(1/(5*i^(1))+1/(7*i^(3))+1/(11*i^(1)))+1/(5*i^(1))*(1/(7*i^(3))+1/(11*i^(1)))+1/(7*i^(3))*(1/(11*i^(1))))))=43i


(2*3*5*7*11)*√(((i)^(2)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/(5^2*i^(6))+1/(7^2*i^(2))+1/(11^2*i^(2)))+2*((i)^(1)*(1/(2*i^(1))+1/(3*i^1)+1/(5*i^(3))+1/(7*i^(1))+1/(11*i^(1)))+1/(2*i^(1))*(1/(3*i^1)+1/(5*i^(3))+1/(7*i^(1))+
1/(11*i^(1)))+1/(3*i^1)*(1/(5*i^(3))+1/(7*i^(1))+1/(11*i^(1)))+1/(5*i^(3))*(1/(7*i^(1))+1/(11*i^(1)))+1/(7*i^(1))*(1/(11*i^(1))))))=307i


(2*3*5*7*11)*√(((i)^(2)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/(5^2*i^(2))+1/(7^2*i^(6))+1/(11^2*i^(6)))+2*((i)^(1)*(1/(2*i^(1))+1/(3*i^1)+1/(5*i^(1))+1/(7*i^(3))+1/(11*i^(3)))+1/(2*i^(1))*(1/(3*i^1)+1/(5*i^(1))+1/(7*i^(3))+
1/(11*i^(3)))+1/(3*i^1)*(1/(5*i^(1))+1/(7*i^(3))+1/(11*i^(3)))+1/(5*i^(1))*(1/(7*i^(3))+1/(11*i^(3)))+1/(7*i^(3))*(1/(11*i^(3))))))=463i
0379132人目の素数さん
垢版 |
2018/03/03(土) 15:47:13.65ID:voEvlhiZ
(2*3*5*7*11*13)*√(((i)^(2)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/(5^2*i^(2))+1/(7^2*i^(2))+1/(11^2*i^(6))+1/(13^2*i^(2)))+2*((i)^(1)*(1/(2*i^(1))+1/(3*i^1)+1/(5*i^(1))+1/(7*i^(1))+1/(11*i^(3))+1/(13*i))+1/(2*i^(1))*(1/(3*i^1)+1/(5*i^(1))+1/(7*i^(1))+
1/(11*i^(3))+1/(13*i))+1/(3*i^1)*(1/(5*i^(1))+1/(7*i^(1))+1/(11*i^(3))+1/(13*i))+1/(5*i^(1))*(1/(7*i^(1))+1/(11*i^(3))+1/(13*i))+1/(7*i^(1))*(1/(11*i^(3))+1/(13*i))+1/(11*i^(3))*(1/(13*i))))=4871i
(2*3*5*7*11*13)*√(((2i)^(6)+1/(2^2*i^(6))+1/(3^2*i^(6))+1/(5^2*i^(6))+1/(7^2*i^(6))+1/(11^2*i^(6))+1/(13^2*i^(6)))+2*((i)^(3)*(1/(2*i^(3))+1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3))+1/(11*i^(3))+1/(13*i^(3)))+1/(2*i^(3))*(1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3))+
1/(11*i^(3))+1/(13*i^(3)))+1/(3*i^3)*(1/(5*i^(3))+1/(7*i^(3))+1/(11*i^(3))+1/(13*i^(3)))+1/(5*i^(3))*(1/(7*i^(3))+1/(11*i^(3))+1/(13*i^(3)))+1/(7*i^(3))*(1/(11*i^(3))+1/(13*i^(3)))+1/(11*i^(3))*(1/(13*i^(3))))=10331i
0380132人目の素数さん
垢版 |
2018/03/05(月) 01:09:12.96ID:Y6NrPjUM
ブーフホルツのヒドラのωはトリオ数列の(0,0,0)(1,1,1)くらい?
0381132人目の素数さん
垢版 |
2018/03/05(月) 01:22:08.46ID:pFxeRBah
+, 0, ω が ψ_0(Ω_ω) つまり (0,0,0)(1,1,1) と同じ
0382132人目の素数さん
垢版 |
2018/03/05(月) 21:18:39.57ID:YYUj4K2s
BM2非標準形で意図したように機能せず弱体化してたからBM2.1が作られたというだけで、
BM2が破綻していたという話ではないのでは
0383132人目の素数さん
垢版 |
2018/03/05(月) 21:41:04.41ID:YYUj4K2s
標準形ではΔの足し方が変わるものの、全体の強さに影響はないような
0384132人目の素数さん
垢版 |
2018/03/06(火) 03:02:40.43ID:gG1tzZlj
うん
0385132人目の素数さん
垢版 |
2018/03/07(水) 00:36:31.97ID:6Ur9pomD
BM2は難解なので2.1で同じ強さならそっちの方がいい
0386132人目の素数さん
垢版 |
2018/03/08(木) 23:42:41.08ID:48wNFlQI
BM2.1はBM1のペア数列のバグが直っただけ。
トリオからはまた同じバグが起こる。
BM2.1はどちらかというとBM1.1くらい。
BM2がやっぱり完全。
0387132人目の素数さん
垢版 |
2018/03/09(金) 19:13:36.30ID:itbuTyBS
(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)+1/(5-2)+1/(3-2))*1/4=167
(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(-1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)+1/(5-2)+1/(3-2))*1/4=107
(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)+1/(5-2)+1/(3-2))*1/4=47
(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)-1/(5-2)+1/(3-2))*1/4=127
(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(7-5)-1/(7-3)-1/(7-2)+1/(5-3)+1/(5-2)+1/(3-2))*1/4=113
0388132人目の素数さん
垢版 |
2018/03/10(土) 00:31:00.58ID:LsHrYkQg
(11-7)*(11-5)*(11-3)*(11-2)*(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(11-7)+1/(11-5)+1/(11-3)+1/(11-2)+1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)+1/(5-2)+1/(3-2))*1/128*1/9=1237
(11-7)*(11-5)*(11-3)*(11-2)*(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(11-7)+1/(11-5)+1/(11-3)+1/(11-2)+1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)-1/(5-2)+1/(3-2))*1/128*1/9=997
(11-7)*(11-5)*(11-3)*(11-2)*(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(11-7)+1/(11-5)+1/(11-3)+1/(11-2)-1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)+1/(5-2)+1/(3-2))*1/128*1/9=877
0389132人目の素数さん
垢版 |
2018/03/10(土) 01:18:44.99ID:fxPOdUgu
勘弁してくれ
0390132人目の素数さん
垢版 |
2018/03/13(火) 06:26:32.01ID:t9Hso2e0
■表記
x#
意味: xを使って関数x#を作る
関数適用は左結合 (w#x#y = (w#x)#y)、#も左結合 (x## = (x#)#)

定義
z = x#y
y : Tと置く
x : Ord (順序数)ならz : T (つまりx# : T -> T)
x : Ord -> Ord (順序数から順序数への関数)ならz : T -> T
x : (Ord -> Ord) -> Ord -> Ordならz : (T -> T) -> T -> T

0#y < 0#(0#y) < (0#0#)y < (0#(0#0#))y < ((0#0#)0#)y < 1#y < ω#y < (0##0)y
となるように適当な順序数を割り当てる

0#0 = 1
0#1 = 2
0#0#0 = ω

C表記と同じ強さになれたらいいな・・・
0393132人目の素数さん
垢版 |
2018/03/20(火) 04:26:25.65ID:1RCoMHwH
ビジービーバーの定義域も値域も自然数だ、という当然の主張に対して、
そうではないという謎の書き込みで終わってるね。値域の意味が曖昧なので、
codomain は自然数だけど image は自然数の部分集合である、で終わりでは。
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況