>>495
ピエロご苦労
正直、>>478

Ruler Function f_w(p/q) = 1/w(q) where p and q are relatively prime integers.(>>285より)
w(q) an increasing function that eventually majorizes every power function. (いかなるq^rよりも急増加関数)

は、おまえの新定理の反例になってないか?

1.(>>481 wikipediaより)「不連続点の全体は閉集合の可算個の合併(Fσ-集合)である」を認めるとする
2.”** f_w is differentiable on a set whose complement has Hausdorff dimension zero. Jurek [4] (pp. 24-25)”(>>285より)
  Hausdorff dimension zero → 個々の不連続点の閉集合は、R上長さを持たない、つまり、”内点を持たない”が言えると思う(未証明だが)
3.とすると、その定理の”R−B_f が高々可算無限個の疎な閉集合の和で被覆できる”が言えるだろ?
4.で、R−B_f は疎な閉集合の可算和だから、新定理が使えて、f はある開区間(a,b)の上でリプシッツ連続になる。
5.で、特に、(a,b)の上で連続になる。QはR上で稠密だから、x∈(a,b)∩Qが取れる。fは点xで不連続であるが、しかし(a,b)の上で連続に、矛盾する。

まあ、要するに、この”Ruler Function f_w(p/q) = 1/w(q) where p and q are relatively prime integers.”(>>285より)というのは
” be continuous and discontinuous on sets of points that are each dense in the reals.”(>>285より)が、実現された関数なわけだ

そんな関数に、「f はある開区間(a,b)の上でリプシッツ連続になる」という結論を導く新定理って、それなに様定理だねと(^^
キーは、”R−B_f が高々可算無限個の疎な閉集合の和で被覆できる”が言えるかどうかだな。

上記のRuler Function f_w(p/q) = 1/w(q) に対して
Hausdorff dimension zero → 個々の不連続点の閉集合は、R上長さを持たない、つまり、”内点を持たない”が言えれば、反例成立だと思うよ
(この証明はすぐに思いつかないが、だれか考えてみて(^^ )