2変数の陰関数の定理の証明について質問です。

--------------------------------------------------------------------------------------
fy(a, b) > 0 と仮定する。仮定により fy は連続であるから、適当に ρ > 0 をとれば、
|x - a| ≦ ρ をとれば、 |x - a| ≦ ρ, |y - b| ≦ ρ において fy(x, y) > 0
が成り立つ。

f(a, b) = 0 で、 f(a, y) は b - ρ ≦ y ≦ b + ρ において狭義単調増加であるから、

f(a, b - ρ) < 0, f(a, b + ρ) > 0

である。 f の連続性により、ここでさらに(必要があれば ρ をさらに小さい ρ で
おきかえることにより)、 I = (a - ρ, a + ρ) とおくとき、区間 I に属する任意の x に対して

f(x, b - ρ) < 0, f(x, b + ρ) > 0

が成り立つと仮定することができる。
--------------------------------------------------------------------------------------

「f の連続性により、ここでさらに(必要があれば ρ をさらに小さい ρ で
おきかえることにより)、 I = (a - ρ, a + ρ) とおくとき、区間 I に属する任意の x に対して

f(x, b - ρ) < 0, f(x, b + ρ) > 0

が成り立つと仮定することができる。」

と書いてありますが、これはなぜでしょうか?

ρ' を十分小さくとってやれば、 f の (a, b - ρ) での連続性により

I = (a - ρ', a + ρ') ∋ x に対して、

f(x, b - ρ) < 0

になるというのは分かります。

ですが、

ρ を十分小さくとってやれば、 f の連続性により

I = (a - ρ, a + ρ) ∋ x に対して、

f(x, b - ρ) < 0

になるというのが分かりません。

なぜでしょうか?