X



トップページ数学
1002コメント355KB

不等式への招待 第8章 [無断転載禁止]©2ch.net

■ このスレッドは過去ログ倉庫に格納されています
0001不等式ヲタ ( ゚∀゚)
垢版 |
2017/06/25(日) 17:20:59.55ID:dLSgUfzK
ある人は蝶を集め、ある人は切手を収集し、ある人は不等式を集める…
          ___          ----- 参考文献 和書[3] P.65 -----
    |┃三 ./  ≧ \   
    |┃   |::::  \ ./ | 
    |┃ ≡|::::: (● (● |  不等式と聞ゐちゃぁ
____.|ミ\_ヽ::::... .ワ......ノ     黙っちゃゐられねゑ!
    |┃=__    \           ハァハァ…
    |┃ ≡ )  人 \ ガラッ

まとめWiki http://wiki.livedoor.jp/loveinequality/

過去スレ
・不等式スレッド (第1章)http://science3.2ch.net/test/read.cgi/math/1072510082/
・不等式への招待 第2章 http://science6.2ch.net/test/read.cgi/math/1105911616/
・不等式への招待 第3章 http://science6.2ch.net/test/read.cgi/math/1179000000/
・不等式への招待 第4章 http://science6.2ch.net/test/read.cgi/math/1245060000/
・不等式への招待 第5章 http://uni.2ch.net/test/read.cgi/math/1287932216/
・不等式への招待 第6章 http://uni.2ch.net/test/read.cgi/math/1332950303/
・不等式への招待 第7章 http://rio2016.2ch.net/test/read.cgi/math/1362834879/
・過去スレのミラー置き場 http://cid-d357afbb34f5b26f.skydrive.live.com/browse.aspx/.Public/

姉妹サイト(?)
キャスフィ 高校数学板 不等式スレ2
http://www.casphy.com/bbs/test/read.cgi/highmath/1359202700/l50
Yahoo! 掲示板 トップ > 科学 > 数学
http://messages.yahoo.co.jp/bbs?action=t&;board=1835554&sid=1835554&type=r&first=1
0716132人目の素数さん
垢版 |
2017/08/28(月) 06:52:45.91ID:Xt3/xWpv
>>715
ごめん。私の計算違いでした。

       ヘ))∧
      (゚ ∀゚ )
     ノ || y / ヽ 切腹しまつ
  ━(m二フ⊂[__ノ、
     (_(__ノ
0717132人目の素数さん
垢版 |
2017/08/28(月) 11:53:15.27ID:4VsD2YTN
>>712 の訂正
× (x-y-z)
○ (x+y+z)


>>713

[疑問1]
 (1)は >>679 (2)ですね。
 >>687 を参照。
 あえて難しい〔補題196〕を使う必要は無かったですね。

[疑問2]
 >>687 を参照。
 (2)と(ab+bc+ca)^2 ≧ 3abc(a+b+c) から(1)を出します。

>>714
 そうです。
0718132人目の素数さん
垢版 |
2017/08/28(月) 21:24:09.98ID:fpou6rxt
>>713
(1)
A >= 81B という不等式を示すのに A > 72B という不等式を示しても何も意味がない
より雑な不等式にしてるんだから等号が成立しなくなるのは必然

[疑問1]
A >=C, C >=B の両方の等号成立条件を合わせたものが A >= B の等号成立条件

(2)
因数分解が一番簡単

[疑問2]
uvw で右側の不等式は明らか
(おそらく AoPS での解き方はこれ)
0722132人目の素数さん
垢版 |
2017/08/29(火) 03:10:07.75ID:QmBHjFut
>>69 (1)、>>713 (1)
> a, b, c>0 に対して、(a+b+c)^5 ≧ 27(ab+bc+ca)(ab^2 + bc^2 + ca^2)
> a, b, c>0 に対して、(a+b+c)^5 ≧ 81abc(a^2 + b^2 + c^2)

改造手術の時間でござるよ。 右辺の大小は定まるのでせうか?

27(ab+bc+ca)(ab^2 + bc^2 +ca^2) = 27abc * (ab+bc+ca)(a/b + b/c + c/a)
         81abc(a^2+b^2+c^2) = 27abc * 3(a^2 + b^2 + c^2)

だから、(ab+bc+ca)(a/b + b/c + c/a) と 3(a^2 + b^2 + c^2) の大小が定まれば…。

(ab+bc+ca)(a/b + b/c + c/a) ≧ (a+b+c)^2 ≧ 3(ab+bc+ca) ≦ 3(a^2 + b^2 + c^2)

適当にやっても、うまく行かんでござる…

 ..::::::,、_,、::: ::::: ::: : 
  /ヨミ゙ヽ)-、. :: ::::
─(ノ─ヽ.ソ┴─
0723132人目の素数さん
垢版 |
2017/08/29(火) 03:22:58.97ID:QmBHjFut
a, b, c >0 の基本対称式 s, t, u で、曲者を縛るでござる。 (曲者 = a/b + b/c + c/a)

(ab+bc+ca)(a/b + b/c + c/a) ≧ (a+b+c)^2
a(a-b)^2 + b(b-c)^2 + c(c-a)^2 = s^3 - 2st - 3u(a/b + b/c + c/a) ≧ 0

∴ s(s^2-2t)/(3u) ≧ a/b + b/c + c/a ≧ s^2/t

これしか思いつきませぬ…。 他にないでござるかな?
0724132人目の素数さん
垢版 |
2017/08/29(火) 03:49:39.64ID:1JAWO9sa
>>721

A + 4H =(A/2) +(A/2)+ 4H
≧ 3(AAH)^(1/3)  (← AM-GM)
= 3{(s/3)(s/3)(3u/t)}^(1/3)
≧ 3u^(1/3)   (← ss≧3t)
= 3G      (← Sierpinski)
を使うのが簡単かと...

A + 3H > (2/3)(A+4H)≧ 2G >{5/16^(1/3)} G
0725132人目の素数さん
垢版 |
2017/08/29(火) 04:41:59.71ID:QmBHjFut
>>721>>724
出典を再発見。 (大量のブックマークの中から探すのに苦労したでござる)
https://math.stackexchange.com/questions/1806146/prove-fracxyz3-frac3-frac1x-frac1y-frac1z-geq5-sqrt3-fracxyz?noredirect=1&;lq=1

斜め読みしたけど、何をやってるのかサッパリでござる ('A`)


>>724
分かりやすい!
でも、この方法では等号がつかないですね。
0726132人目の素数さん
垢版 |
2017/08/29(火) 05:25:02.43ID:QmBHjFut
>>721>>724
ごめん、リンク先の問題をよく見たら、問題が間違っていました。

正しくは、 「a, b, c >0 に対して、AM + HM ≧ 5*GM/{16^(1/3)}」 でした。
0727132人目の素数さん
垢版 |
2017/08/29(火) 05:44:11.14ID:QmBHjFut
>>721 再掲
a, b, c >0 に対して、AM + HM ≧ 5*GM/{16^(1/3)}

>>724 の方法を真似てみたが、うまくいかなかった。

A + H
=(A/2) +(A/2)+ H
≧ 3(AAH/4)^(1/3)    …(1)
= 3{(ss/(3t))*(u/4)}^(1/3)
≧ 3{(u/4)}^(1/3)    …(2)
= 3G/{4^(1/3)}

(1)の等号は A=2H、(2)の等号は a=b=c で異なるから、
A+H > 3G/{4^(1/3)}

問題の右辺と較べたら、5/16^(1/3)} > 3/{4^(1/3)} でした。
0728132人目の素数さん
垢版 |
2017/08/29(火) 09:12:22.39ID:QmBHjFut
【問題】
xyz座標平面において、次の不等式で表される立体の体積を求めよ。
 |x+y+z| + |-x+y+z| + |x-y+z| + |x+y-z| ≦ 4

検索中に、どこかで見たことのある問題を見つけた。
しばらく検索したものの、出典は分からず…。
コレクションに入っているかと探したが、そこにもなかった。

これが、どんな立体図形になるのかも分かりませぬ ('A`)ヴォエァ!
0729132人目の素数さん
垢版 |
2017/08/29(火) 09:27:12.29ID:QmBHjFut
>>679 (1) について

問題再掲
a, b, c >0、abc=1 に対して、(a+b)(b+c)(c+a) + 7 ≧ 5(a+b+c).

解答
>>704>>706

うますぎて、思いつきませぬ。
以下のような泥臭い方法で考えていたんだけど、行き詰まったでござる。

左辺 - 右辺 の最小値を考える。
abc=1 があるので、実質2文字の関数で、一方を任意に固定して、一変数関数で考えて出せないかと。
0731132人目の素数さん
垢版 |
2017/08/29(火) 11:45:47.48ID:1JAWO9sa
>>728
|a+b|+|a-b|= 2 Max{|a|,|b|}を使うと、
(左辺)= Max{4|x|,4|y|,4|z|,2|x+y+z|,2|-x+y+z|,2|x-y+z|,2|x+y-z|}

|x|≦1
|y|≦1
|z|≦1
|x+y+z|≦2
|-x+y+z|≦2
|x-y+z|≦2
|x+y-z|≦2
の14面で囲まれた立方八面体でござる。


>>729
t^3 -4stu +9uu ≧ 0,  >>706
s = a+b+c ≦ (t^3 +9uu)/4tu
u = abc = 1
を使って sとu を消し、t=ab+bc+ca だけの関数で考えて出したのが >>704
0733132人目の素数さん
垢版 |
2017/08/29(火) 17:18:34.40ID:QmBHjFut
>>731
> t^3 -4stu +9uu ≧ 0,  >>706
> s = a+b+c ≦ (t^3 +9uu)/4tu
> u = abc = 1
> を使って sとu を消し、t=ab+bc+ca だけの関数で考えて出したのが >>704

なるほど。 u=1 だから、s か t のどちらかを消せばよいと。
そこで s を消すために、sを含む s, t, u の不等式の中から、s≦f(t) となりそうなものとして F_1 を選んだ訳でござるな。
考え方が分かってスッキリ!

するってぇと何かい? t^2 ≧ 3su を使ってもいいってことだね?

s ≦ (t^2)/(3u) = (t^2)/3 より、3≦t≦5 のとき、

(左辺)-(右辺)
= 6 - (5-t)s
≧ 6 - (5-t)*(t^2)/3
= (t-3)(t^2-2t-6)/3

-3 ≦ t^2-2t-6 ≦ 5 となって失敗したでござる。 F_1 じゃなきゃダメなのか…。
0735132人目の素数さん
垢版 |
2017/08/30(水) 01:43:40.46ID:BK+APDDw
>>733
F_1 じゃなきゃダメですね…。

マクラーレン・ホンダ:F_1ベルギーGPの決勝レポート(8/28)

マクラーレンはF_1ベルギーGP決勝で、S.バンドーンが14位、F.アロンソはリタイアだった。

両ドライバーは見事なスタートを切り、F.アロンソは1周目には10番手から7番手に浮上。

しかし、その後エンジンの不調が発生したためリタイアし、入賞を逃しますた。残念
0736132人目の素数さん
垢版 |
2017/08/30(水) 02:37:18.32ID:4Q4sm7+y
怒涛の abc=1 シリーズの際に書いたつもりが、書いてなかったようなので。

【問題】
a, b, c >0、abc=1 に対して、
1/(1+a)^3 + 1/(1+b)^3 + 1/(1+c)^3 + 5/{(1+a)(1+b)(1+c)} ≧ 1


 ∧_∧        積一定?
 ( ・ω・)=つ≡つ  ボコボコにしてやんよ!
 (っ ≡つ=つ
 /   ) ババババ
 ( / ̄∪
0739132人目の素数さん
垢版 |
2017/08/30(水) 08:34:33.56ID:4Q4sm7+y
>>732
AM-GM や Schur で証明できた場合は、等号成立条件が a=b=c になってしまうから、
証明の中で、それ以外の特殊な不等式が必要になるってことですかね?
0740132人目の素数さん
垢版 |
2017/08/30(水) 11:56:04.84ID:BK+APDDw
>>737

(a,b,c) →(1/a,1/b,1/c)としたでござるな。

a+b+c → (ab+bc+ca)/abc,
ab+bc+ca → (a+b+c)/abc,
abc → 1/abc,

>>703 の(s,t)を入れ換えて
 F_1(a,b,c)= s^3 -4st +9u ≧0,
 t ≦(s^3 +9u)/4s,
これを使えば おk >>707

>>739
そうですね。
AM-GM や Schurは(1,4,4)で等しくないので使えません。
0741132人目の素数さん
垢版 |
2017/08/30(水) 17:00:49.35ID:4Q4sm7+y
>>736
難しいので、劣化改造してみた。こちらは力任せに証明できる。

a, b>0 かつ ab=1 のとき、1/(1+a)^2 + 1/(1+b)^2 + 2/{(1+a)(1+b)} ≧1.
0742132人目の素数さん
垢版 |
2017/08/30(水) 17:18:01.56ID:4Q4sm7+y
ところで、AM + GM に関する不等式って何かあったっけ? Jacobsthal は差だし、Sierpinskiは商か。
0744132人目の素数さん
垢版 |
2017/08/31(木) 00:00:50.60ID:iQe17wVf
>>679
(4)をプチ改造。Nesbittの間に割り込んだ形ですね。

a, b, c >0、abc=1 に対して、
a/(b+c) + b/(c+a) + c/(a+b) ≧ 1/(b+c) + 1/(c+a) + 1/(a+b) ≧ 3/2
0745132人目の素数さん
垢版 |
2017/08/31(木) 00:14:37.43ID:iQe17wVf
>>744
左は(4)を変形しただけ。

右は間違っているかもしれん。
Cauchyの後にAM-GMを使ったんだけど、AM-GMの不等号が逆で、証明になっていなかった。
0746132人目の素数さん
垢版 |
2017/08/31(木) 00:17:09.96ID:iQe17wVf
結局、こうですね。

a, b, c >0、abc=1 に対して、
a/(b+c) + b/(c+a) + c/(a+b) ≧ 1/(b+c) + 1/(c+a) + 1/(a+b) > 0
0747132人目の素数さん
垢版 |
2017/08/31(木) 02:42:09.91ID:iQe17wVf
これでOK?

λを正定数、a, b>0 かつ ab=1 のとき、
1 + λ/4 ≧ 1/(1+a)^2 + 1/(1+b)^2 + (2+λ)/{(1+a)(1+b)} ≧1.
0748132人目の素数さん
垢版 |
2017/08/31(木) 02:45:27.34ID:iQe17wVf
λを正定数、a, b>0 かつ ab=1 のとき、
1 + λ/4 ≧ 1/(1+a)^2 + 1/(1+b)^2 + (2+λ)/{(1+a)(1+b)} > 1.

こうですね。
0750132人目の素数さん
垢版 |
2017/08/31(木) 07:12:05.62ID:iQe17wVf
a, b, c ≧0 かつ a+b+c=1 のとき、a*(a+b)^2*(b+c)^3*(c+a)^4 の最大値を求めよ。
0751132人目の素数さん
垢版 |
2017/08/31(木) 10:46:05.27ID:DG2IOYgq
>>750
GM-AM で
(与式)= 16・a・(a+b)^2・(b+c)^3・{(c+a)/2}^4
 ≦ 16{[a + 2(a+b)+ 3(b+c)+ 4((c+a)/2)]/(1+2+3+4)}^10
 = 16{(a+b+c)/2}^10
 = 1/64.  (← a+b+c=1)
等号は(a,b,c)=(1/2,0,1/2)
0753132人目の素数さん
垢版 |
2017/08/31(木) 22:18:05.59ID:A7wnlx0o
>>752
間違えた
a, b, c >0, abc=1
a/(b+c) + b/(c+a) + c/(a+b) >= 1/(b+c) + 1/(c+a) + 1/(a+b) + (1/2 - 4/((a+b)(b+c)(c+a)))
0754132人目の素数さん
垢版 |
2017/09/01(金) 00:01:46.44ID:3P2EPmWz
【問題A】a, b, c >0 とする。

(1)
(ab+bc+ca)^3 ≧ (a^2 + 2b^2)(b^2 + 2c^2)(c^2 + 2a^2)

(2)
(a^2 + b^2 + c^2)^3 ≧ (a+b+c)(ab+bc+ca)(a^3 + b^3 + c^3)

(3)
(a^2 + bc)(b^2 + ca)(c^2 + ab) ≧ abc(a+b)(b+c)(c+a)

(4)
3*{(ab)^2 + (bc)^2 + (ca)^2} ≧ (ab+bc+ca)(a^2 + b^2 + c^2)

(5)
(a^2 + ab + b^2)(b^2 + bc + c^2)(c^2 + ca + a^2) ≧ (ab+bc+ca)^3

(6)
(a^2 + b^2 + c^2)/(ab+bc+ca) + 8abc/(a+b)(b+c)(c+a) ≧ 2


【問題B】

(7)
a, b, c, d >0 に対して、(a+b+c-d)(b+c+d-a)(c+d+a-b)(d+a+b-c) ≦ (a+b)(b+c)(c+d)(d+a)

(8)
0 ≦ a, b, c ≦ 1 に対して、a^(bc) + b^(ca) + c^(ab) > 2


【参考】
(8)の類題 [第5章.698, 708]
a, b, c >0 に対して、a^(b+c) + b^(c+a) + c^(a+b) ≧ 1


     ___   ====
\  ./ ≧  \   ====
  \| \ ./  ::::| 
   | ●) ●) :::::|  そんな不等式で俺様がクマ――!!
   ヽ......ワ...:::::.ノ
     `つ   `つ      (´⌒(´
      ゝ_つ_`つ≡≡≡(´⌒;;;≡≡≡
               (´⌒(´⌒;;
      ズザザザ
0755132人目の素数さん
垢版 |
2017/09/01(金) 00:16:20.58ID:3P2EPmWz
【問題】
a, b, c >0 に対して、2*QM + 3*GM ≦ 5*AM。 ただし、QM = √{(a^2+b^2+c^2)/3}
0756132人目の素数さん
垢版 |
2017/09/01(金) 06:54:43.37ID:3P2EPmWz
>>388
条件 x>y が抜けとる。すみませぬ。

訂正
x>y>0 かつ (x^6)(y^2) - (x^5)(y^3) + (x^5)(y^5) - (x^4)(y^6) ≧ 4 のとき、x^3+y^2≧3.
0757132人目の素数さん
垢版 |
2017/09/01(金) 11:18:02.33ID:QpLZW4eS
>>754
(1)
aa=A,bb=B,cc=C とおいて考える。

(右辺)=(A+2B)(B+2C)(C+2A)
= 2(AAB+BBC+CCA)+ 4(ABB+BCC+CAA)+ 9ABC,

(左辺)=(ab+bc+ca)^3
= aabb(ab+3bc+3ca)+ bbcc(bc+3ca+3ab)+ ccaa(ca+3ab+3bc)+6(abc)^2
≦ AB(2A+2B+3C)+ BC(2B+2C+3A)+ CA(2C+2A+3B)+ 6ABC
= 2(AAB+BBC+CCA)+ 2(ABB+BCC+CAA)+15ABC,

(右辺)-(左辺)≧ 2(ABB+BCC+CAA-3ABC)≧ 0,  (← AM-GM)

(4) a>>b,c では不成立?

(5)コーシーで
(ab+bb+aa)(bb+bc+cc)(aa+cc+ca)≧(ab+bc+ca)^3

(6)
9(st-u) - 8st = 9(a+b)(b+c)(c+a)- 8(a+b+c)(ab+bc+ca)
= a(b-c)^2 + b(c-a)^2 + c(a-b)^2
≧0,
(左辺)-2 = (ss-4t)/t + 8u/(st-u)
≧ 8s(ss-4t)/{9(st-u)} + 8u/(st-u)
= 8(s^3 -4st+9u)/{9(st-u)}
= 8F_1(a,b,c)/{9(st-u)}
≧0,
0768132人目の素数さん
垢版 |
2017/09/01(金) 14:40:29.27ID:QpLZW4eS
>>754

(2)
(左辺)-(右辺)=(aa+bb+cc)^3 -(a+b+c)(ab+bc+ca)(a^3+b^3+c^3)
= p'(b-c)^2 + q'(c-a)^2 + r'(a-b)^2
≧ 0,
ここに
p ' ={4a^4+b^4+c^4 +(a^4+a^4+b^4+c^4-4aabc)}/4 ≧(4a^4+b^4+c^4)/4,
q ' ={a^4+4b^4+c^4 +(a^4+b^4+b^4+c^4-4abbc)}/4 ≧(a^4+4b^4+c^4)/4,
r ' ={a^4+b^4+4c^4 +(a^4+b^4+c^4+c^4-4abcc)}/4 ≧(a^4+b^4+4c^4)/4,

(3)
(左辺)-(右辺)=(aa+bc)(bb+ca)(cc+ab)- abc(a+b)(b+c)(c+a)
= abc{a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)}+{(ab)^3 +(bc)^3 +(ca)^3 -3(abc)^2}
= u(s^3 -4st+9u)+ t(tt-3su)
= u・F_1(a,b,c)+ t・uF_{-1}(a,b,c)
≧ 0,
0769132人目の素数さん
垢版 |
2017/09/01(金) 15:02:15.49ID:QpLZW4eS
>>754
(7)
左辺の4つの因子のうち、負になれるのは高々1つだけ。
左辺が正のときは4つとも正。
GM-AMで
(a+b+c-d)(b+c+d-a)=(b+c)^2 -(a-d)^2 ≦(b+c)^2,
循環的に掛ける。
0782132人目の素数さん
垢版 |
2017/09/01(金) 22:46:45.99ID:QpLZW4eS
>>726 >>727
>>732 >>739
AM-GMやSchurは使えそうにないので...

a ≦ b,c とすると、G =(abc)^(1/3)≧ a,
m = √(bc)とおき、
(a,b,c)→(a,m,m)としたとき、Gは不変で、
A(a,b,c)- A(a,m,m)=(b+c-2m)/3,
H(a,b,c)- H(a,m,m)=(b+c-2m)/3{-H(a,b,c)H(a,m,m)/bc}
 ≧(b+c-2m)/3(-GG/bc)
 =(b+c-2m)/3(-a/G)
∴ A(a,b,c)+ H(a,b,c)≧ A(a,m,m)+ H(a,m,m)
等号成立は b=c のとき。 ……(1)
大きい方の2つが等しい場合を考えればよいので、
ほぼ1変数の問題に帰着する。
A(a,m,m)+ H(a,m,m)
= 2(aa+7am+mm)/{3(2a+m)}
={5/16^(1/3)}G + f(x)・mm/{24(2a+m)}
≧{5/16^(1/3)}G,
ここに、x =(4a/m)^(1/3)とおいた。
f(x)= x^6 - 15x^4 +28x^3 -30x +16
=(x-1)^2{(xx-4)^2 + 2x(x-1)^2},
等号成立は x=1,4a=m=√(bc)のとき。 ……(2)

(1)(2)より、(a,b,c)=λ(1,4,4)
0783132人目の素数さん
垢版 |
2017/09/01(金) 22:57:26.08ID:3P2EPmWz
>>757
昔のmemoの中に、>>754(5)を改造したものがあった。

a, b, c >0 に対して、
(a^2 + ab + b^2)(b^2 + bc + c^2)(c^2 + ca + a^2)
≧ (27/64)*[(a+b)(b+c)(c+a)]^2
≧ (1/3)*[(a+b+c)(ab+bc+ca)]^2
≧ (ab+bc+ca)^3.
0794132人目の素数さん
垢版 |
2017/09/01(金) 23:50:29.90ID:QpLZW4eS
>>726-727

〔類題〕
AM + 0.90096 HM ≧ 1.90096 GM

等号成立は(a,b,c)=λ( 0.3962570…,1,1)のとき

[第7章.897-903]
0795132人目の素数さん
垢版 |
2017/09/02(土) 01:00:08.66ID:Po7d73tU
>>388 (5) >>450 >>708

〔Hlawkaの不等式〕の拡張
m≧2 のとき、
(m-2)Σ[k=1,m]|x_k |^2 +|Σ[k=1,m] x_k |^2 = Σ[1≦i<j≦m]|x_i +x_j |^2.
(m-2)Σ[k=1,m]|x_k|+|Σ[k=1,m] x_k|≧ Σ[1≦i<j≦m]|x_i +x_j|.
(D.D.Adamovic)
[初代スレ.354-360,364]
文献[3] 大関、p.34
0808132人目の素数さん
垢版 |
2017/09/02(土) 02:38:52.19ID:Po7d73tU
>>755

QQ =(ss-2t)/3 ≦{ss - 2√(3su)}/3 = 3AA - 2G√(AG),

(5A-3G)^2 -(2Q)≧(5A-3G)^2 -12AA +8G√(AG)
= 13AA -30AG +8G√(AG) +9GG
=(√A -√G)^2{13A +26√(AG)+9G}
≧ 0,
∴ 5A-3G ≧ 2Q,
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況