>>181
>求める事後確率は、確率の平均の比と同値

そうだ。なるほど、
P(B開 | A当) = p = 0.5
P(A当 | B開) = p / (p+1) = 0.5/1.5 = 1/3 だ

But
>>175 のリクエストのより、
P(B開 | A当) は一様分布として解いたもの

なお平均とったつもりではなく、
各々が1/5の確率の条件付き確率の計算
もっとも、確率の平均との解釈もOK

では、詳細に解説

P(B開 | A当) = 1/2 → P(A当 | B開) = 1/3
では、
P(B開 | A当) が平均1/2の離散一様分布で、
P(A当 | B開) = 1/3となるか、吟味する

P(B開 | A当) は、以下よりxとして記載
  x = 0.1 となる事前確率 1/5
  x = 0.3 となる事前確率 1/5
  …
  x = 0.9 となる事前確率 1/5

さて、
P(A当 | B開) は、以下より pと記載する
  p = x / (x+1) であるから、

P(A当 | B開) の分布は、
  p = 0.1 / (0.1+1) = 1/11 となる確率 1/5
  p = 0.3 / (0.3+1) = 3/13 となる確率 1/5
  …
  p = 0.9 / (0.9+1) = 9/19 となる確率 1/5
  一様でない離散分布となる。

では、P(A当 | B開) 求めると、
条件付き確率の公式から、
P(A当 | B開) = (1/5)(1/11)+…+(1/5)(9/19)
つまり、
P(A当 | B開) = (1/5){(1/11)+…+(9/19)}
     ≒ 0.308 < 1/3

補足
 司会者が開けたドアがBなのかCなのか
 プレイヤーが判断できるのか微妙かも
 P(B開 | A当) = 1/2 → P(A当 | B開) = 1/3
 との説も捨てがたい。