X



トップページ数学
1002コメント301KB
巨大数探索スレッド12 [無断転載禁止]©2ch.net
■ このスレッドは過去ログ倉庫に格納されています
0001132人目の素数さん
垢版 |
2017/01/20(金) 23:38:41.80ID:cKrQZH+b
大きな実数を探索するスレッドです。

前スレ
 http://rio2016.2ch.net/test/read.cgi/math/1448211924/
巨大数研究室
 http://www.geocities.co.jp/Technopolis/9946/
巨大数 (Wikipedia)
 http://ja.wikipedia.org/wiki/%E5%B7%A8%E5%A4%A7%E6%95%B0
ふぃっしゅっしゅ氏の巨大数論PDF
 http://gyafun.jp/ln/
たろう氏のまとめ
 http://gyafun.jp/ln/archive/7-571.txt
Dmytro Taranovsky の順序数表記
 http://web.mit.edu/dmytro/www/other/OrdinalNotation.htm
巨大数研究Wiki
 http://ja.googology.wikia.com/wiki/
0219132人目の素数さん
垢版 |
2017/03/18(土) 21:43:32.26ID:Qt6Bpisy
順序数の大きさで大きな関数が作れる方法があるから仕方がない
もっというと順序数のどういう部分が巨大数を生んでいるのかを考えると順序数以外に大きな関数が作れる方法がみつかるかも
0221132人目の素数さん
垢版 |
2017/03/18(土) 22:44:33.41ID:RdBNxYfe
なぜなら大きいということはどういうことかその本質を順序数が表しているから。
グラハム数みたいに何かの条件を満たす数が偶然大きくなるというこはあるかもしれないが。
0222132人目の素数さん
垢版 |
2017/03/19(日) 00:00:50.66ID:87bGU3uh
さすがに「大きいということはどういうことか」までは言ってなくて、
「かくかくしかじかの既存の演算の有限回の繰り返しで追いつけない最小の数という定義」
という「大きさを求めるための一手法」を使っているだけであって、
その隙間にこそ答えがあるんじゃないかと思う。
0223132人目の素数さん
垢版 |
2017/03/19(日) 00:10:32.76ID:87bGU3uh
関数同士の「支配する」という法則を使って後で引数に数を入れる手法の範囲で考えている限りは順序数と対応が付きそう
0224132人目の素数さん
垢版 |
2017/03/19(日) 02:52:01.39ID:gltLhuLF
>「かくかくしかじかの既存の演算の有限回の繰り返しで追いつけない最小の数という定義」
>という「大きさを求めるための一手法」を使っているだけであって、

再帰順序数はそういう解釈でいいけどただ単に可算順序数と言う場合は
大きさの本質を表しているという解釈でいいと思う。

「順序数の束縛からは逃れられない」で納得がいかないのであれば、逆に
「大きいということはどういうことか」を分かりやすく見えるように
して説明するものが順序数ということでいいかも。
0225132人目の素数さん
垢版 |
2017/03/19(日) 10:54:15.63ID:OMz3tA5q
有限約束ゲームとかレイバーのテーブルとかもサブキュービックグラフ数みたいに
関連する何かを順序数に対応させられるのだろうか。
0226132人目の素数さん
垢版 |
2017/03/19(日) 11:53:01.87ID:kgUb9uAv
f_コ1←←コ1(n)
0227132人目の素数さん
垢版 |
2017/03/19(日) 13:15:30.44ID:ymWmw8bt
順序数=自然数の超次元リスト説
0=(0)
1=(1)
ω=(0,1)
ω+1=(1,1)
ω^2=(0,0,1)
ω^ω=((0)1)
0228132人目の素数さん
垢版 |
2017/03/19(日) 15:57:12.68ID:87bGU3uh
結局ヒドラもベクレミシェフの虫もFGHもグッドスタイン数も、
・順序数と同じ木構造を作れること
・超限順序数の部分を引数 n に比例して展開することで
 「引数 n さえ増やせば自分より小さい順序数による関数を必ず超えられる」
 という性質を付加すること
という部分をいろんな実装を使って実現してるだけだね
0229132人目の素数さん
垢版 |
2017/03/19(日) 21:11:27.85ID:ymWmw8bt
再帰的到達不能順序数(可算)なんたらとか出てきてもうめちゃくちゃだよって感じだけど、
これはω_αをどうこうした奴のω_α^CK版なの?

あと
到達不能→マーロ→弱コンパクトって行ってるけどこれらの関係って綺麗に決まってるの?
1→2→3みたいな感じで
0234132人目の素数さん
垢版 |
2017/03/21(火) 21:35:15.01ID:VlVtckLB
CoCの対角化でψ(ε_{M+1})
強配列表記はC(C(C(Ω_3+1,0),0),0)よりは弱い?
フリードマンのあれはCを超えてZFC+膨大基数くらいの強さ

バシクはすくなくともCを超えた強さ
loader.cは思ったより弱い?
0235132人目の素数さん
垢版 |
2017/03/21(火) 22:34:49.22ID:+q8tlP/x
しばらく前からバシク行列の解析結果が更新され続けてる。
古い結果よりだいぶ弱くなって見たことない順序数表記が出てきた。
今度はどこでCを超えるんだろう。
0236132人目の素数さん
垢版 |
2017/03/22(水) 05:21:37.98ID:6aMd+eeC
順序数版急増加関数的なやつは条件P_αを満たすβ番目の順序数みたいな感じで定義すればいいと思った
0239132人目の素数さん
垢版 |
2017/03/23(木) 13:22:00.86ID:wLAS/IV1
順序数崩壊関数版φ関数
多変数φ関数よりちょっと強い
Ωは0,Ω,+,φ関数の有限の組み合わせで表せない最初の順序数、ただしこの組み合わせの一番外側のφ関数の第二引数はΩより小さい
C_0(α,β)={0,β}
C_n+1(α,β)={γ+δ,φ(η,γ),φ(α,ξ) | γ,δ,ξ∈C_n(α,β); η∈α; ξ∈β}
φ(α,β)=∪[n<ω] C_n(α,β)

φ(0,0)=1
φ(0,1)=ω
φ(1,0)=ε_0
φ(0,ε_0)=ε_0*ω
φ(0,ε_0*ω)=ε_0^ω
φ(Ω,0)=Γ_0
φ(Ω^ω,0)=θ(Ω^ω)
φ(φ(1,Ω),0)=θ(ε_(Ω+1))
φ(0,Ω)=Ωω
φ(0,Ωω)=Ω^ω
0240132人目の素数さん
垢版 |
2017/03/23(木) 20:19:06.32ID:5LuIMtwB
wikiaの欲張りクリーク列
出典の定義を見るに「(y,2m)はGの辺ではない」という部分は(y,x[2m])の間違い
じゃなかろうか。

そうだとするとm=k+1のときにy=x[2]となり、(y,x[2m])がGの辺ではないことが
xがクリークであるという条件に反するため矛盾。よって以上の関数は2k+1に
しかならないということになってしまう・・・
0241132人目の素数さん
垢版 |
2017/03/25(土) 00:23:13.62ID:BscZ1NNf
アッカーマン関数が頭から離れられないから小さいかもしれないけどアッカーマンでやってみる
Xは0個以上の0以上の整数
Yは0個以上の0
a,b,c,dは0以上の整数
AA(a,b:X,c+1,0)=AA(a,b:X,c,1)
AA(a,b:X,c+1,d+1)=AA(a,b:X,c,(AA(a,b:X,c+1,d)))
AA(a,b:X,c+1,0,Y,d)=AA(a,b:X,c,d,Y,d)
AA(a+1,0:Y,b)=AA(a,1:Y,b)
AA(0,a+1:Y,b)=AA(0,a:b,b,b【b回】b,b)
AA(a+1,b+1:Y,c)=AA(a,(AA(a+1,b:c,c,c【c回】c,c)):Y,c)
AA(0,0:Y,a)=a+1
0242132人目の素数さん
垢版 |
2017/03/25(土) 00:56:08.12ID:AhWh8mZZ
バシクが使ってるψ関数ってどういう定義なの・・
ε_0がψ_0(0)じゃなくてψ_Ω(0)になってるけど
0244132人目の素数さん
垢版 |
2017/03/25(土) 13:57:30.89ID:BscZ1NNf
>>241 の計算例
AA(2,2:2,2)=AA(2,2:1,(AA(2,2:2,1)))=AA(2,2:1,(AA(2,2:1,(AA(2,2:2,0)))))=AA(2,2:1,(AA(2,2:1,(AA(2,2:1,1)))))
0246132人目の素数さん
垢版 |
2017/03/26(日) 21:52:43.83ID:OaablvOK
「計算不可能関数」と「いかなる計算可能関数よりも強い関数」を区別する呼び方はないのか
0247132人目の素数さん
垢版 |
2017/03/26(日) 22:28:07.78ID:ssFLNSem
>>241に触発されて

AM(fx;0,m)=fm
AM(fx;n+1,0)=AM(gx;n,1)
AM(fx;n+1,m+1)=AM(gx;n,AM(gx;n+1,m)
ここでgx=AM(fx;n,x)
0248132人目の素数さん
垢版 |
2017/03/26(日) 23:42:55.63ID:RInzM6sk
「いかなる計算可能関数よりも強い関数」と「計算不可能関数」って同じやないの
0249132人目の素数さん
垢版 |
2017/03/27(月) 10:57:13.22ID:dUWPmGAZ
>>248
「空のテープから計算を始めて有限の時間で停止する2記号n状態チューリングマシンの個数」
をf(n)とする。
2記号n状態チューリングマシンの停止性問題は計算不可能なので
f(n)は「計算不可能関数」である。
しかし2記号n状態チューリングマシンは16^n個しかないため
f(n)<16^nが成り立ち、「いかなる計算可能関数よりも強い関数」ではない。
0250132人目の素数さん
垢版 |
2017/03/27(月) 16:26:48.18ID:fNMfL5IN
BB(n)が計算不可能で、いかなる計算可能よりも大きいから、BB(n)より強い物は計算可能よりも大きい
0252132人目の素数さん
垢版 |
2017/03/27(月) 21:15:45.65ID:ovnlUySj
大きさそのものは大したことないかもしれないが雑魚な計算不能関数はない。
なぜならその計算不能関数をオラクルにすれば計算可能関数より大きい関数が定義できる可能性が開けるから。

どのような計算不能関数をオラクルにしても必ずビジービーバー相当の関数が定義できるかどうかは知らない。
0254132人目の素数さん
垢版 |
2017/03/27(月) 22:16:31.37ID:fNMfL5IN
>>253
計算不可能ならもっと上もある。最つよは、「ふぃっしゅ関数バージョン7」だと思う
0257132人目の素数さん
垢版 |
2017/03/28(火) 00:46:37.54ID:kN25Vg5A
ぶっちゃけBBのデカさは想像がつかない。
もしかしたら人間にBBのデカさを想像することは原理的に不可能なのかもしれないw
0259132人目の素数さん
垢版 |
2017/03/28(火) 03:06:12.06ID:MlLTlWtn
いや 16^n - f(n) 個のチューリングマシンが残るまで走らせれば停止性問題が解けることになるから、
計算不可能か。
失礼。
0261132人目の素数さん
垢版 |
2017/03/28(火) 10:11:00.18ID:tiw+UjOB
ビジービーバー繋がりで一つ数を作ってみた。
「BB(x+1)-BB(x) が BB(x+2)-BB(x+1) よりも大きい」が成立するような、n番目のBB(x)を k(n) としたときの、 k^10(100)
ちなみに、k(1)は、BB(1)で、1になるけど、k(2)は、分からない
0263132人目の素数さん
垢版 |
2017/03/28(火) 23:33:56.76ID:RK1OP7fY
wikiaのレイバーのテーブルの記事がおかしい気がするが、あれはZFC+階層内階層基数
の強さで今のところ大きさが見積もられている巨大数の中で最強ということに
なるんだろうか
0265132人目の素数さん
垢版 |
2017/03/30(木) 09:45:06.20ID:TC/5bKaV
元々ビッグビッゲドンあってこそのリトルビッゲドンじゃなかったの、知らんけど

計算不可能レベルでは存在を示すことはできても具体的にそれがどういう数かを知ることができない。
おそらく2階集合論を対角化して得られる関数や数にもなると、
存在はしてもその証明は不可能となってくる。
ビッゲドンやらは証明不可能レベルではない?
0267132人目の素数さん
垢版 |
2017/03/30(木) 12:55:04.90ID:TC/5bKaV
1階述語論理の性質から、1階の言語で記述されたそれぞれの数について存在するという証明
ができる無矛盾な体系が必ず存在する。もちろん数とされるもの自身が矛盾している場合は論外。
1階のシステムが強力であればあるほど証明が難しくなるが、それだけ巨大な数を生み出せるようになる。
これは計算可能レベルで計算が難しいほど巨大な数を生み出せることに対応する。
計算の難しさ自体を対角化することでビジービーバー関数が得られ、これはいかなる
計算可能関数より強力であり計算不可能である。
計算を証明に置き換えたものがラヨ関数となり、いかなる証明可能関数より強力であり、
ラヨ関数の全域性は1階では証明できない。

こんなところか
0271132人目の素数さん
垢版 |
2017/04/05(水) 11:22:12.43ID:CIOea8z7
>>269じゃないけど少し計算してみよう
A(3.3)=A(2.A(2.A(2.A(2.ω))))=A(2.A(2.A(2.A(1.(2.ω-1)))))
ω-1って何 ωは第ニの0として、A(b+1.aω)=A(b.(a+1)ω)としてみようかな
=A(2.A(2.A(2.A(0.3ω))))=13ω
無知だから間違ってると思う
0272132人目の素数さん
垢版 |
2017/04/05(水) 14:38:23.59ID:PgziSWMI
A(0,0)=ω
A(0,1)=ω+1
A(0,2)=ω+2
A(0,3)=ω+3
A(0,ω)=ω+ω=ω×2

A(1,0)=A(0,ω)=ω×2
A(1,1)=A(0,A(1,0))=A(0,ω×2)=ω+ω×2=ω×(2+1)
A(1,2)=A(0,A(1,1))=A(0,ω×3)=ω+ω×3=ω×(2+2)
A(1,3)=A(0,A(1,2))=A(0,ω×4)=ω+ω×4=ω×(2+3)
A(1,ω)=ω×(2+ω)=ω^2

A(2,0)=A(1,ω)=ω^2
A(2,1)=A(1,ω^2)=ω×ω^2=ω^(2+1)
A(2,2)=A(1,ω^3)=ω×ω^3=ω^(2+2)
A(2,3)=A(1,ω^4)=ω×ω^4=ω^(2+3)
A(2,ω)=ω^(2+ω)=ω^ω

A(3,0)=A(2,ω)=ω^ω
A(3,1)=A(2,A(3,0))=A(2,ω^ω)=ω^(2+ω^ω)=ω^ω^ω
A(3,2)=A(2,A(3,1))=A(2,ω^ω^ω)=ω^(2+ω^ω^ω)=ω^ω^ω^ω
A(3,3)=A(2,A(3,2))=A(2,ω^ω^ω)=ω^(2+ω^ω^ω^ω)=ω^ω^ω^ω^ω
A(3,ω)=ε_0
0273132人目の素数さん
垢版 |
2017/04/05(水) 17:12:23.76ID:CIOea8z7
>>272という事は
A(n,ω)=ω→ω→(n-1) という事になるのか。
A(n,n)=ω→(n+2)→(n-1) という事になりそう
0274132人目の素数さん
垢版 |
2017/04/05(水) 19:06:40.14ID:PgziSWMI
>>273
そうなりますね

多変数化
ω:最初の極限順序数
X:0個以上の(0以上の整数または順序数)
a,b,n:0以上の整数または順序数
x#y:y個のx

A(0#n,a)=ω+a
A(X,b+1,0#(n+1))=A(X,b,ω#(n+1))
A(X,b+1,0#n,a+1)=A(X,b,A(X,b+1,0#n,a)#(n+1))
0275132人目の素数さん
垢版 |
2017/04/05(水) 21:51:43.88ID:CIOea8z7
>>274
三行目がなんかわけわからんが計算してみる
A(1,1,1)=A(1,0,A(1,1,0))=A(1,0,A(1,0,ω))=A(1,0,A(0,A(1,0,(ω-1)))) あれ、また間違えたかな。無理に計算して
A(1,0,A(0,A(0,・・・・・・【ω回】・・・・・・0,A(1,0,0)=A(1,0,A(0,A(0,・・・・・・【ω回】・・・・・・0,A(0,ω,ω) うーん
0276132人目の素数さん
垢版 |
2017/04/06(木) 10:47:06.43ID:bFzZT6Ii
>>275
3行目の例
A(1,2,3,4)=A(1,2,3,0#0,4)=A(1,2,2,0#0,A(1,2,3,0#0,3)#1)=A(1,2,2,A(1,2,3,3))
A(1,2,0,4)=A(1,2,0#1,4)=A(1,1,A(1,2,0#1,3)#2)=A(1,1,A(1,2,0,3),A(1,2,0,3))
A(1,0,0,4)=A(1,0#2,4)=A(0,A(1,0#2,3)#3)=A(0,A(1,0,0,2),A(1,0,0,2),A(1,0,0,2))=A(A(1,0,0,2),A(1,0,0,2),A(1,0,0,2))



A(1,0,0)=A(0,ω,ω)=A(ω,ω)=ω→ω→ω=ω→(ω)→(ω)を0回再帰的に入れ子
A(1,0,1)=A(0,A(1,0,0),A(1,0,0))=A(A(1,0,0),A(1,0,0))=A(ω→ω→ω,ω→ω→ω)=ω→(ω→ω→ω)→(ω→ω→ω)=ω→(ω)→(ω)を1回再帰的に入れ子
A(1,0,2)=A(A(1,0,1),A(1,0,1))=ω→(ω→(ω→ω→ω)→(ω→ω→ω))→(ω→(ω→ω→ω)→(ω→ω→ω))=ω→(ω)→(ω)を2回再帰的に入れ子
A(1,0,3)=A(A(1,0,2),A(1,0,2))=ω→(ω)→(ω)を3回再帰的に入れ子
A(1,0,ω)=ω→(ω)→(ω)をω回再帰的に入れ子

A(1,1,0)=A(1,0,ω)=ω→(ω)→(ω)をω回再帰的に入れ子
A(1,1,1)=A(1,0,A(1,1,0))=A(1,0,A(1,0,ω))=(ω→(ω)→(ω)をω回再帰的に入れ子)を(ω→(ω)→(ω)をω回再帰的に入れ子)回再帰的に入れ子
0277132人目の素数さん
垢版 |
2017/04/06(木) 12:42:32.87ID:bFzZT6Ii
A(1,0,0)=ω→ω→ω
A(1,0,n+1)=ω→A(1,0,n)→A(1,0,n)
A(1,0,ω)=ω→A(1,0,ω)→A(1,0,ω) を満たす極限順序数をWとする

A(1,1,0)=A(1,0,ω)=W
A(1,1,1)=A(1,0,A(1,1,0))=A(1,0,A(1,0,ω))=A(1,0,W)=ω→W→W
0278132人目の素数さん
垢版 |
2017/04/06(木) 13:17:37.97ID:ZNmnN1vb
274を自分流に拡張
定義
ω:最初の極限順序数
X:0個以上の(0以上の整数または順序数)
a,b,n,m:0以上の整数または順序数
@:順序数
x#y:y個のx

A(n#A(n#A・・・・【Aがω個】・・・A(n#n))))・・・))=B(n)
B(0#(n+1),a)=B(a#(n+1))
B(X,b+1,0#(n+1))=B(X,b,ω#(n+1))
B(X,b+1,0#n,a+1)=B(X,b,B(X,b+1,0#n,a)#(n+1))
B(X,@#m)=B(X,(@→→m)
 計算例 ただしk=B(ω),J=B(1,ω#2)
B(1,ω#2)=B(1,(ω→ω→ω))=B(1,B(1,(ω→ω→ω-1)))=【「B(1,」がω→ω→ω回】k=、、、=J
0280132人目の素数さん
垢版 |
2017/04/07(金) 17:18:28.29ID:tsPsUzqI
テトレーション空間というのはある空間に配置された値によって任意の座標が定まる新たな空間を定義する、
という操作について閉じている空間

レギオン空間とはその空間とそこに配置された情報に定義されたもろもろの計算ルールで
新たな空間を定義する、という操作について閉じている空間。そう考えるとあんまり自明ではない。
0282132人目の素数さん
垢版 |
2017/04/07(金) 19:32:07.42ID:e4awsgJi
>>281
A(1#1)=A(1)=ω+1
A(2#2)=A(2,2)=ω^4
A(3#3)=A(3,3,3)=分からない(法則推理だとω↑↑↑9になったけどもっとでかそう)
A(ω#ω)= 法則推理だと ω→(ω^2)→(ω×2-1) だけどもっとでかそう
0283132人目の素数さん
垢版 |
2017/04/07(金) 23:26:26.79ID:e4awsgJi
>>278で思いついた
定義
ω:最初の極限順序数
X:0個以上の(0以上の整数または順序数)
a,b,n,m:0以上の整数または順序数
@:順序数
x#y:y個のx

A[m+1](n)=A[m](n#A(n#A・・・・【Aがω個】・・・A(n#n))))・・・))
A[0](n)=ω+n
A[m](0#(n+1),a)=[m](a#(n+1))
A[m](X,b+1,0#(n+1))=[m](X,b,ω#(n+1))
A[m](X,b+1,0#n,a+1)=A[m](X,b,A[m](X,b+1,0#n,a)#(n+1))
A[m](X,@#n)=A[m](X,(@→→n)
0284132人目の素数さん
垢版 |
2017/04/08(土) 14:26:12.37ID:4mNGVVYh
FGHで考えると
f[ω↑↑(ω+1)](x)=f[ω↑↑ω](x+1)

順序数部分の右辺をすべて展開しなければ左辺を展開できない。順序数部分を
すべて展開しなければxに関数を適用できない。
そういうわけで順序数のテトレーション以降の右結合って効率が悪い。
SGHではそこそこ効果が出る。
0286132人目の素数さん
垢版 |
2017/04/08(土) 15:53:57.11ID:G928D+4y
多重括弧がゲシュタルト崩壊してきたので演算子風に

ω(0)n = ω+1
ω(1)n = ω(0)…【n個のn】…(0)n = ω+n
ω(2)n = ω(1)…【n個のω】…(1)ω = ω*n

ω(1,0)n = ω(ω)…【n個のω】…(ω)ω
ω(1,1)n = ω(1,0)…【n個のω】…(1,0)ω
ω(2,0)n = ω(1,ω)n

ω(1,0,0)n = ω(ω,ω)…【n個のω】…(ω,ω)ω

ε_0ぽいものをつくって拡張

α_0 = ω(ω,…【ω個のω】…,ω)ω
α_0(0)n = ω(ω,…【ω(0)n個のω】…,ω)ω
α_0(X)Y = ω(ω,…【ω(X)Y個のω】…,ω)ω

α_1 = ω(ω,…【α_0個のω】…,ω)ω
0288132人目の素数さん
垢版 |
2017/04/08(土) 16:46:00.25ID:/CLjIP34
つまりそれって
ω(a+1)n=ω(a)n(a)n(a)・・・
ってことだと思うけど、それってどういう定義なんですか?
0289132人目の素数さん
垢版 |
2017/04/08(土) 16:49:41.60ID:/CLjIP34
あ、修正
ω(1)n=ω(0)n(0)n(0)・・・
ってことだと思うけど、それってどういう定義なんですか?
0290132人目の素数さん
垢版 |
2017/04/08(土) 17:23:05.19ID:G928D+4y
ハイパー演算子の拡張として定義したから
a(0)nはhyper(a,0,n)つまりsuc(a)

ω(1)5
= ω(0)5(0)5(0)5(0)5(0)5
= ω+1(0)5(0)5(0)5(0)5
= ω+2(0)5(0)5(0)5
= ω+3(0)5(0)5
= ω+4(0)5
= ω+5
0291132人目の素数さん
垢版 |
2017/04/08(土) 23:33:44.97ID:/CLjIP34
  こんなのとか
X:0個以上の、0以上の整数または順序数
a,b,c,d:0以上の整数または順序数
a#b:b個のa
BM(a,0,X)=ωa
BM(a,b,0#c)=ωa→→ωb
BM(a,b+1,0#c,d+1,X)=BM(a#(c+1),BM(a,b,0#c,d,X),d,X)

BM(3,3,3)=BM(3,BM(3,2,2),2)=BM(3,BM(3,BM(3,1,1),1))=BM(3,BM(3,(3ω→→3ω^2))
0292132人目の素数さん
垢版 |
2017/04/09(日) 18:26:35.52ID:qS3yHR8t
>>291って
BM(a,b+1,0#c,d+1,X)=BM(a#(c+1),BM(a,b,0#c,d,X),d,X) じゃなくて
BM(a,b+1,0#c,d+1,X)=BM(a#(c+1),BM(a,b,0#c,d+1,X),d,X) だとオモう
0293132人目の素数さん
垢版 |
2017/04/10(月) 17:12:17.07ID:N9IzlZp9
自分も参加してみる

→:コンウェイのチェーン表記
ω:最初の極限順序数
X:0個以上の、0以上の整数または順序数
a,b:0以上の整数または順序数
a#b:b個のa

C(0#n,0)=ω
C(0#n,a+1)=C(a)→C(a)→...C(a)回繰り返し...→C(a)→C(a)
C(X,b+1,0#[n+1])=C(X,b,C(ω)#[n+1])
C(X,b+1,0#n,a+1)=C(X,b,C(X,b+1,0#n,a)#[n+1])
0297132人目の素数さん
垢版 |
2017/04/11(火) 13:18:38.85ID:hR+Pks/5
バシク氏のψ関数はバシク行列を応用して強化されてるんだろうが、
バシク行列を使ってバシク行列を評価するという事態に陥ってるんじゃなかろうか
0298132人目の素数さん
垢版 |
2017/04/11(火) 19:12:59.60ID:HFGj+b9p
 自分で作ってみた
X : 0個以上の0以上の整数
Y : 0個以上の0
a,b,n,m : 0以上の整数
a#b=b個のa
ゑn〔〕=ゑn〔0〕
ゑn〔X,a+1,0=〕ゑn〔X,a#2〕
ゑn〔X,a+1,b+1〕=ゑn〔X,a,ゑn〔X,a+1,b〕〕
ゑn〔X,a+1,0,Y,b〕=ゑn〔X,a,b,Y,b〕
ゑn+1〔Y,a〕=ゑn〔a#a〕
ゑ0〔Y,a〕=2*a
ゑY:n〔X〕=ゑn〔n#(X)〕
ゑX:n+1:0〔X〕=ゑX:n:n
0299298
垢版 |
2017/04/11(火) 19:50:25.78ID:HFGj+b9p
 ここからXの代わりにZも使う
ゑZ:n+1:0〔X〕=ゑZ:n:n〔X〕
ゑZ:n+1:m+1〔X〕=ゑZ:n:(ゑZ:n+1:m〔X〕)〔X〕
ゑZ:n+1:0:Y:m〔X〕=ゑZ:n:m:Y:m〔X〕
f0〔a〕=(ゑ^a)a#a(〔a#a〕#a)
f(b+1)〔a〕=(fb)^a〔a〕
ここでf関数の〔〕の中も多変数にして
f^9〔9#9〕 をゑゑ数とする
0300132人目の素数さん
垢版 |
2017/04/12(水) 17:46:38.55ID:uAHqcfU6
θ(α,β)
αをパラメータとしてβを強化する (β≥Ωのときも)

θ(0,b) = ω^b
θ(0,b+c) = b*c
θ(0,b*c) = b^c
残りは後で
0301132人目の素数さん
垢版 |
2017/04/13(木) 10:27:47.20ID:l9SdByqa
多変数のアッカーマン関数を再考

2変数アッカーマン関数
f(0,a)=a+1
f(b+1,0)=f(b,1)
f(b+1,a+1)=f(b,f(b+1,a))

3変数アッカーマン関数
f(0,0,a)=a+1
f(0,b+1,0)=f(0,b,1)
f(b+1,0,0)=f(b,1,1)
f(0,b+1,a+1)=f(0,b,f(0,b+1,a))
f(b+1,0,a+1)=f(b,f(b+1,0,a),f(b+1,0,a))
f(c+1,b+1,0)=f(c,f(c+1,b,1),f(c+1,b,1))
f(c+1,b+1,a+1)=f(c,f(c+1,b,f(c+1,b+1,a)),f(c+1,b,f(c+1,b+1,a)))
0302132人目の素数さん
垢版 |
2017/04/13(木) 10:29:04.82ID:l9SdByqa
4変数アッカーマン関数
f(0,0,0,a)=a+1
f(0,0,b+1,0)=f(0,0,b,1)
f(0,b+1,0,0)=f(0,b,1,1)
f(b+1,0,0,0)=f(b,1,1,1)
f(0,0,b+1,a+1)=f(0,0,b,f(0,0,b+1,a))
f(0,b+1,0,a+1)=f(0,b,f(0,b+1,0,a),f(0,b+1,0,a))
f(b+1,0,0,a+1)=f(b,f(b+1,0,0,a),f(b+1,0,0,a),f(b+1,0,0,a))
f(0,c+1,b+1,0)=f(0,c,f(0,c+1,b,1),f(0,c+1,b,1))
f(c+1,0,b+1,0)=f(c,f(c+1,0,b,1),f(c+1,0,b,1),f(c+1,0,b,1))
f(c+1,b+1,0,0)=f(c,f(c+1,b,1,1),f(c+1,b,1,1),f(c+1,b,1,1))
f(0,c+1,b+1,a+1)=f(0,c,f(0,c+1,b,f(0,c+1,b+1,a)),f(0,c+1,b,f(0,c+1,b+1,a)))
f(c+1,0,b+1,a+1)=f(c,f(c+1,0,b,f(c+1,0,b+1,a)),f(c+1,0,b,f(c+1,0,b+1,a)),f(c+1,0,b,f(c+1,0,b+1,a)))
f(c+1,b+1,0,a+1)=f(c,f(c+1,b,f(c+1,b+1,0,a),f(c+1,b+1,0,a)),f(c+1,b,f(c+1,b+1,0,a),f(c+1,b+1,0,a)),f(c+1,b,f(c+1,b+1,0,a),f(c+1,b+1,0,a)))
f(d+1,c+1,b+1,0)=f(d,f(d+1,c,f(d+1,c+1,b,1)),f(d+1,c,f(d+1,c+1,b,1)),f(d+1,c,f(d+1,c+1,b,1)))
f(d+1,c+1,b+1,a+1)=f(d,f(d+1,c,f(d+1,c+1,b,f(d+1,c+1,b+1,a))),f(d+1,c,f(d+1,c+1,b,f(d+1,c+1,b+1,a))),f(d+1,c,f(d+1,c+1,b,f(d+1,c+1,b+1,a))))
0303132人目の素数さん
垢版 |
2017/04/13(木) 13:28:25.34ID:l9SdByqa
再考した多変数アッカーマン関数の定義の省略方法を思いつかなかったので挫折
>>274を参考に多変数アッカーマン関数を定義

X : 0個以上の0以上の整数
a,b,n : 0以上の整数
a#b : b個のa

f(0#n,a)=a+1
f(X,b+1,0#(n+1))=f(X,b,1#(n+1))
f(X,b+1,0#n,a+1)=f(X,b,f(X,b+1,0#n,a)#(n+1))
0304132人目の素数さん
垢版 |
2017/04/13(木) 16:14:18.64ID:5tqF0ona
f(0#n,a)=a+1 はもっと強くできると思います
f(0#n,a)=f(a#n)
f(a)=a+1  みたいな
0305132人目の素数さん
垢版 |
2017/04/13(木) 18:40:18.07ID:l9SdByqa
>>304
こんな感じにしてみた

X : 0個以上の0以上の整数
a,b,n : 0以上の整数
a#b : b個のa

f(a)=a+1
f(0#(n+1),a)=f(a#(n+1))
f(X,b+1,0#(n+1))=f(X,b,1#(n+1))
f(X,b+1,0#n,a+1)=f(X,b,f(X,b+1,0#n,a)#(n+1))
0306132人目の素数さん
垢版 |
2017/04/13(木) 19:06:02.95ID:l9SdByqa
今思いついたけど
#の記号をa#b#cと並べたら
c×b個のaとできるね
そしてa#a#a#…n個…#aをa##nと表現して
a##nは、a↑n個のaと表現できて
a##a##a##…n個…##aをa###nと表現すれば
a###nは、a↑↑n個のaと表現できるね
0307132人目の素数さん
垢版 |
2017/04/13(木) 19:25:14.17ID:vYGqrry8
E表記か
0308132人目の素数さん
垢版 |
2017/04/13(木) 20:47:02.18ID:5tqF0ona
多変数アッカーマンの拡張やろうとしたら駄目だったので定義だけ書いておく
X : 0個以上の0以上の'(後述)で区切られた整数
a,b,n,m : 0以上の整数
a(#0)b : 「,」で区切られたaがb個
a(#(n+1))b : 「#n」で区切られたaがb個
' : 「,」もしくは「#n」
0309132人目の素数さん
垢版 |
2017/04/15(土) 13:03:38.80ID:V9p8xxkB
オンプ関数を次のように定義する
 a(♪0)=Ack(a,a,a(a回)a)
 a(♪b+1)=a((♪b)^a)
そして
 a(♪♪0)=a(♪a)
 a(♪♪b+1)=a((♪♪b)^a)
同様に、♪がいくつあっても
 a(♪(c個)♪0)=a(♪(c-1個)♪a)
 a(♪(c個)♪b)=a((♪(c個)♪(b-1))^a)
そして、ここで縦に無限に広がるテープを考える。その表の一番前の所に1と書く。テープの二番目からは、前にある数をxとして、
 x(♪(x個)♪x)
で、できた数を書く。実際に計算すると一番前は1で、1(♪1)=2なので、二番目の数は2となる。三番目の数は、
 2(♪♪2)=2(♪♪1)(♪♪1)=(省略、、)=Ack(7,7,7,7,7,7,7)(♪1)(♪♪0)(♪♪1) という事になるので、もう巨大な数となる。
さらに巨大にするために、テープを表に拡張させる。ここで、:(横,縦) という表記を用いる事にする。
一番左の行は、前述テープと同じで、二行目からは、まず:(a,1)に1を書き、
:(a,b)=:(a-1,:(a,a-1)♪) とする。
そうした時の、:(9(♪9),9(♪9))
0310132人目の素数さん
垢版 |
2017/04/15(土) 15:29:35.19ID:gfDBAhGk
>>309
a(♪0)はアッカーマンを繰り返しているからω+1
a(♪b+1)=a((♪b)^a)は^がべき乗ならあまり意味がない
おそらく十分大きなaに対して (a+1)(♪0) >> a(♪…(a個)…♪a)

後半のテープに書くやつは前の演算を繰り返す操作だから
数字が1増えてω+2

二次元テープのやつはどうなんだろ
内部のアッカーマンとの絡みがないので急激には増えない
アッカーマン的操作なのでωは追加されそう
なのでω2+2+αぐらいな気がする
ω3はいかない気がする
0312132人目の素数さん
垢版 |
2017/04/15(土) 16:06:25.45ID:V9p8xxkB
べき乗というか、繰り返し
a(♪b+1)=a((♪b)^a)=a(♪b)(♪b)(♪b)(♪b)・・・a回・・・(♪b)
0313132人目の素数さん
垢版 |
2017/04/15(土) 16:24:05.76ID:hf5FtIR0
X : 0個以上の非負整数
a,b,c,d : 非負整数
m#n : m個のn

A(X,0,0)=1
A(0,b)=b+1
A(X,a+1,0)=A(X,a,1)
A(X,a+1,b+1)=A(X,a,A(X,a+1,b))
A(X,d+1,c#0,0,b)=A(X,d,(c+2)#b)

多次元空間の表を使った手順の計算がやり易そうな多変数アッカーマン関数
0314132人目の素数さん
垢版 |
2017/04/15(土) 19:12:27.25ID:PnOAmFoK
そういえば多重リストアッカーマンってまだ厳密に定義されてないんだっけ?
もしかしてε0はペアノ算術超えてるから数式では書き表せないとかいう落ちがあるんだろうか?
0315132人目の素数さん
垢版 |
2017/04/16(日) 00:08:15.17ID:z2+M0+1f
2重リストアッカーマンの解説読んでみたけど
基本的なアイディアはヒドラと同じなのかな?
じゃあヒドラをパクれば多重リストアッカーマンも厳密に定義できるかな?
0316132人目の素数さん
垢版 |
2017/04/16(日) 12:43:35.50ID:l4MmwnQd
Alist1(X) 関数は二重リストと同じ
Alist2(0,a)=Alist1([a#a]#a) つまりaがa個入った[]がa個、さらにそれをリストにして、、、っていうのを考えてみた
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況