2018年7月号の講評です:

■出題1:レベル3(数学好きな高校生正解率60%)

a_{n+3}=5a_{n+2}+5a_{n+1}−a_n
a_0=1, a_1=0,a_2=5
で定まるa_nが平方数の差で表せることを示す問題。

「補題:mod4で2と合同でないなら平方数の差で表せる」
を運悪く知っている人には合同式の初歩的な練習問題でしかない。
>>845は運が悪かった一人ですが、解法は簡潔でエレガントです。
>>848もこれに似た解法)

しかし、合同式で解いたら問題自体に何も面白さが感じられない。
一般項が求められるからこそ面白い。
>>846はさすがエレ解常連という感じ。
(もう一人のとあるエレ解常連はあっさりギブアップw)

いろんな解法があり、簡単過ぎてつまらないとは言い切れない良問でしたが、
もうちょっと難しくても良いかも?
ただ出題2のおかげでバランスは取れていました。


■出題2:レベル8〜10(常連正解率20%以下)


正四面体、正八面体の各面に、隣接する2面が
同じ数字にならないように1,2,3,4の番号を振る。
同じ値が連続しない有限数列a0,a1,...,am∈{1,2,3,4}が与えられ、
その数字の面が下になるように平面状で転がしていくとき、
最後に@位置が最初と同じ、A向きが最初と同じ
になる数列の条件を求める問題

山田修司先生の良難問。
エレガントな解法は不明(コメント求む)

正四面体の場合、展開図を平面上に1通りで敷き詰めることができる。
結果的に平面上の各正三角形にはひとつの数字が対応するため
条件@、Aを見つけ出すのはそれほど苦労しない。
(論証はそれなりに面倒。レベル6〜7)

正八面体の場合、平面上の1つの正三角形は複数の数字をとりうる。
正四面体の場合と違い平面から規則性を見出すアプローチは採りづらい。
予想はなんとなくできるが、有限列と対応させて論証するのは難しい。

正八面体で詰まってしまい正十二面体には手を伸ばせなかった人が多いと予想。