X



トップページ数学
1002コメント339KB

面白い問題おしえて〜な 二十二問目©2ch.net

■ このスレッドは過去ログ倉庫に格納されています
0001132人目の素数さん 転載ダメ©2ch.net
垢版 |
2016/05/29(日) 20:27:46.04ID:Bgd/STsi
過去ログ
http://www3.tokai.or.jp/meta/gokudo-/omoshi-log/
まとめwiki
http://www6.atwiki.jp/omoshiro2ch/

1 http://cheese.2ch.net/test/read.cgi/math/970737952/
2 http://natto.2ch.net/test/read.cgi/math/1004839697/
3 http://science.2ch.net/test/read.cgi/math/1026218280/
4 http://science.2ch.net/test/read.cgi/math/1044116042/
5 http://science.2ch.net/test/read.cgi/math/1049561373/
6 http://science.2ch.net/test/read.cgi/math/1057551605/
7 http://science2.2ch.net/test/read.cgi/math/1064941085/
8 http://science3.2ch.net/test/read.cgi/math/1074751156/
9 http://science3.2ch.net/test/read.cgi/math/1093676103/
10 http://science4.2ch.net/test/read.cgi/math/1117474512/
11 http://science4.2ch.net/test/read.cgi/math/1134352879/
12 http://science6.2ch.net/test/read.cgi/math/1157580000/
13 http://science6.2ch.net/test/read.cgi/math/1183680000/
14 http://science6.2ch.net/test/read.cgi/math/1209732803/
15 http://science6.2ch.net/test/read.cgi/math/1231110000/
16 http://science6.2ch.net/test/read.cgi/math/1254690000/
17 http://kamome.2ch.net/test/read.cgi/math/1284253640/
18 http://kamome.2ch.net/test/read.cgi/math/1307923546/
19 http://uni.2ch.net/test/read.cgi/math/1320246777/
20 http://wc2014.2ch.net/test/read.cgi/math/1356149858/
21 http://wc2014.2ch.net/test/read.cgi/math/1432255115/ 
0335329
垢版 |
2016/12/31(土) 09:03:02.21ID:HJOqNwnC
329訂正
任意のデータについて圧縮後のデータサイズが元より小さくなるような可逆圧縮の方法が存在しないことを示せ
0336132人目の素数さん
垢版 |
2016/12/31(土) 15:41:51.23ID:B6Ru2oMZ
>>335
それだと条件が強すぎてくだらない。

そのような可逆圧縮が存在したとすると、
1ビットのデータは0ビットのデータに圧縮せざるをえないが、
1ビットのデータは2種類あり、0ビットのデータは1種類しかないので、
0ビットのデータの復元先が少なくとも2種類存在することになって、
可逆にできない。
0337132人目の素数さん
垢版 |
2016/12/31(土) 16:16:07.49ID:NLxhAFAx
三辺の長さ、および面積が自然数の三角形は、平面上の格子点を頂点とする三角形で実現できることを示せ。

というような問題を、昔、エレガントな解答を求む(を集めた本)で見た気がするけど、あってる?
0339 【大吉】 【303円】
垢版 |
2017/01/01(日) 00:46:18.50ID:S0zfrHlz
今更ながら e^A・e^B について Baker-Campbell-Hausdorff formula というのを知った。
0340132人目の素数さん
垢版 |
2017/01/01(日) 01:42:47.79ID:S0zfrHlz
1からnまでの自然数が書かれたカードがm枚ずつ合計mn枚ある。
これらをよく混ぜてから、m枚ずつ選んで n組に分ける。このとき、
各組から1枚ずつ選んで1からnまでの数字を揃えることができることを示せ。
0345132人目の素数さん
垢版 |
2017/01/02(月) 09:08:56.12ID:lE1Ufv7y
〔問題〕
f(x,y) がn次の同次多項式で
 f(x,y) + f(x+y,z) = f(x,y+z) + f(y,z)
を満たすならば、
 f(x,y) = c[ (x+y)^n -x^n -y^n ]
(cは定数)となることを示せ。
 (佐武一郎教授ご提出らしい。)

数セミ増刊「数学の問題」第2集、日本評論社(1978)、No.68
0346132人目の素数さん
垢版 |
2017/01/02(月) 12:27:30.25ID:gtCAemnU
>>344
正解。
1002401=(49+1000i)(49-1000i)=(20+1001i)(20-1001i)
と分解できるので
(49+1000i)-(20+1001i)=29-i=(1+i)(14-15i)
(49+1000i)+(20-1001i)=69-i=(1+i)(34-35i)
14^2+15^2=196+225=421
34^2+35^2=1156+1225=2381
と計算すれば、素因数の候補として421と2381が得られる。
あとは実際にこれらが素数であることを確認すれば終わり。
0348132人目の素数さん
垢版 |
2017/01/02(月) 16:47:49.32ID:P8buuvPO
計算術に関するこの手の問題は不毛
暗算が速い人は正攻法でやるわけだから
0350132人目の素数さん
垢版 |
2017/01/02(月) 23:54:01.14ID:gtCAemnU
n=1002401
a=49+1000i
b=49-1000i
c=20+1001i
d=20-1001i
とする。
n=ab=cdと2通りに分解されているが実際は
n=efgh (a=ef, b=gh, c=eg, d=fh)
というように分解されるはず。
このe,f,g,hを見つけるためa,cの公約数とa,dの公約数を計算する、ってな感じ。

4n+1型の素数は2個の平方数の和としてただ1通りに表されるという定理が根拠にある。
0351132人目の素数さん
垢版 |
2017/01/03(火) 23:07:19.34ID:xdFRMF6e
2次体の整数論を知らない人向けの蛇足。
整数a,bを用いてa+biと表される数(ガウス整数)に対し
ノルムをN(a+bi)=a^2+b^2とすると、
N(αβ)=N(α)N(β)だったりする。
以下zと共役なガウス整数をz'で表すとする
n=zz'=ww'と2通りに表されるとき、N(z)=N(w)=nであり、
zとwがガウス整数としての公約数αを持ちz=αβ,w=αγとすると、
N(α)やN(β)=N(γ)はnの約数。
>>346 さんがやってるのは、
zとwがノルムが1でない(単数でない)公約数を持つなら、
それはz-wの約数である、みたいな話かと。
0354132人目の素数さん
垢版 |
2017/01/09(月) 14:17:10.80ID:taTYLZQl
自然数nについて、σ(n)をnの約数の総和とする

σ(n)>100n を満たす自然数nは存在するか?
0355132人目の素数さん
垢版 |
2017/01/09(月) 16:49:05.75ID:O/JMxhbY
不等号の向きが>だったら楽勝でしょ?
むしろ、小さい m に対して σ(n)<mn を全て求めよ
とかが問題になり得るかな。
0357132人目の素数さん
垢版 |
2017/01/09(月) 19:24:56.94ID:3pIEHjbl
アホですがさっき問題考えました。
数学あまり知らないんでアホな事書いてたらスマソ
答えはまだ知りません。

問題

次のようなピアノが有ります。
上から見ると、左端と右端が円形に曲がって、くっついている円形のピアノ。
全部で白鍵が364個あり、その円の中心から、XY座標が伸びていて、ドレミファソラシのドの
白鍵とその左のシの白鍵のちょうどその境界線の座標(X,Y)=(0,0)にしてあるものとします。
円の半径は1メートルから5メートルの範囲のものとし、白鍵の幅は全部同じでその間の幅の長さも全部同じで、0.1mm以下とし、黒鍵の幅は白鍵の幅のちょうど、半分であるものとする。
そのピアノを自動演奏するロボットが存在し、1秒間隔に一つの鍵だけをロボットの指で
叩くものとする。
さて、問題です。
@西暦2000年1月1日になったばかりの0時0分0秒に、(0,0)の右隣のド(白鍵)を叩き、
以後、1秒間隔ごとに隣の白鍵にロボットの指を移して叩く運動が永遠に為されるものとする。
西暦3000年1月1日になったばかりの0時0分0秒に、ロボットは何か所目の白鍵を叩き、
その音はドレミファソラシのうち、どの音かを、しかもその座標をも求め、その
サイン、コサイン、タンジェントをも求め、更に4秒で1小節が完了するものとし、
何小節目かをも求め、更に、左手の小指、薬指、中指、人差し指、親指、右手の親指、
人差し指、中指、薬指、小指の順番で叩き、それを繰り返すものとし、
どの指であるかをも求めよ。
ただし、暦はグレゴリオ暦に従うものの、閏秒は省くものとする。

A @と同じ条件でロボットが黒鍵のみを叩き続ける場合で、(0,0)のドの
すぐ隣のド#から始める場合を求めよ。

B @, Aと同じ条件でロボットが、白鍵も黒鍵も順番通りに、
つまり、ド,ド#,レ,レ#,ミ,ファ,ファ#,ソ,ソ#,ラ,ラ#,シの12音をその
順番の通りに叩いてゆくものとし、その場合を求めよ
0358132人目の素数さん
垢版 |
2017/01/09(月) 19:26:09.82ID:/47xeLQB
n = Π_[i=1]^[i=k] p_i

σ(n) = Π_[i=1]^[i=k] (1+p_i)

σ(n)/n > 農[i=1]^[i=k] 1/p_i → ∞ (k→∞)
0359132人目の素数さん
垢版 |
2017/01/09(月) 20:03:45.59ID:3pIEHjbl
357の追加

C白鍵の数が360個の場合、つまり、左端がドで右端がミで終わっている
ピアノでそれが円形に曲がり、くっついている場合をも求めよ。
0360132人目の素数さん
垢版 |
2017/01/09(月) 21:27:44.37ID:3pIEHjbl
357の追加(これで最後にするんでスマソ)

D閏年の間は、1音目と2音目が1秒、3音目と4音目と5音目と6音目が0.5秒
で計4秒で1小節、つまり、4分音符2つと8分音符4つを繰り返した場合を求めよ

E以上のものを2012年1月1日になったばかりの0時0分0秒に叩いた場合を求めよ。
(3000年は失敗だったかなと思ったので少しでも簡単にということで)
0361132人目の素数さん
垢版 |
2017/01/09(月) 21:35:07.72ID:3pIEHjbl
あ、完全に間違ってた
XY=(0,0)でなくて(1,0)でした

すげー格好わるっ
スマソ
0362132人目の素数さん
垢版 |
2017/01/09(月) 23:46:45.82ID:heX4sXlu
>>354
それって、素数を小さい方から順に並べた列を{p(n)}として、
Π[n=1,∞]p(n)/(p(n)-1)
が収束するか否か、収束するならそれは100を超えるか
という問題に帰結する気がする。
0363362
垢版 |
2017/01/10(火) 00:08:03.46ID:QjFk2XmW
Nの素因数分解が
 N = Π[i=1,n]p(i)^a(i)
  ただし、p(1)〜p(n)は相異なる素数でa(1)〜a(n)は自然数
と表せるとき、Nの約数の総和は
 σ(N) = Π[i=1,n](Σ[j=0,a(i)]p(i)^j)
となるので、
 σ(N)/N = Π[i=1,n](Σ[j=0,a(i)](1/p(i))^j)
と表せる。
ここで、Σ[j=0,a(i)](1/p(i))^jを各素数毎のσ(N)/Nに寄与するファクターだとすると、
その上限はΣ[j=0,∞](1/p(i))^j = p(i)/(p(i)-1)
0367132人目の素数さん
垢版 |
2017/01/10(火) 13:00:04.08ID:qp2HyQ9j
n=m!。
σ(n)≧n(1/1+1/2+1/3+...+1/m)。
0369132人目の素数さん
垢版 |
2017/01/10(火) 22:42:34.96ID:QjFk2XmW
>>367
???
左辺はσ(n)/nのつもりなのだろうがなんでそれが言えるの?
(Σが文字化けしているが) >>358 ならわかるが。
0370132人目の素数さん
垢版 |
2017/01/10(火) 22:44:43.94ID:G1X1++ps
もうちょっと考えてみれば
大文字くんでFA
0371132人目の素数さん
垢版 |
2017/01/10(火) 23:50:17.60ID:nc8RrhJt
>>369
左辺は
> σ(n)≧n(1/1+1/2+1/3+...+1/m)。
で合ってる

m!,m!/2,m!/3,...,m!/mはm!の約数
0372132人目の素数さん
垢版 |
2017/01/11(水) 05:51:41.55ID:o5/kKbcv
1 = 1,
1/2 = 1/2,
1/3 + 1/4 > 1/4 + 1/4 = 1/2,
1/5 + 1/6 + 1/7 + 1/8 > 1/8 + 1/8 + 1/8 + 1/8 = 1/2,

m≧2^k のとき
1 +1/2 + 1/3 + … +1/m > 1 + k/2,
0373132人目の素数さん
垢版 |
2017/01/11(水) 06:53:14.63ID:o5/kKbcv
>>347

n = AA + BB = CC + DD,
のとき、
(n+AC-BD)*(n-AC-BD)
= (n-BD)^2 - (AC)^2
= (n-BD)^2 - (n-BB)*(n-DD)
= n*(B-D)^2,

|B-D|=1 ならばnは n±AC-BD で割り切れる。
0374132人目の素数さん
垢版 |
2017/01/11(水) 08:08:30.69ID:o5/kKbcv
>>350

 e = (14-15i),
 f = -(34-35i),
 g =i(34+35i),
 h =i(14+15i),

 a-c = 29-i = (1+i)e,
 a+d = 69-i = (1+i)(-f),

 eh = i|e||h| = 421i,
 fg = -i|f||g| = -2381i,
0375132人目の素数さん
垢版 |
2017/01/11(水) 10:30:39.47ID:o5/kKbcv
>>362-364
〔問題〕
調和級数の発散を使わずに、
Σ[k=1〜∞) 1/p_k が発散することをを示せ。
ここに p_k は小さい方からk番目の素数。
0376132人目の素数さん
垢版 |
2017/01/11(水) 10:31:10.73ID:3TZL7wi4
>>371
左辺うんぬんは勘違い。すんません。
なるほど。約数を全部考えずとも、わかりやすい約数だけ並べただけで
発散することが言えるって話なのですね。
0377132人目の素数さん
垢版 |
2017/01/11(水) 10:41:47.14ID:o5/kKbcv
>>375

{1,2,…,N} を2組に分ける。

A={ p(m+1) 以上の素因数を含むn}
 p(k) の倍数は [N/p(k)] 個 ゆえ
 #A ≦ Σ[k>m] N/p(k),

B={ p(m) 以下の素因数のみを含むn}
 n = uvv, (uは平方因子をもたない。)と分解する。
 u は 2^m 通り以下、1≦v≦√N ゆえ、
 #B ≦ (2^m)√N,

∴ N = #A + #B ≦ Σ[k>m] N/p(k) + (2^m)√N,

∴ 1 ≦ Σ[k>m] 1/p(k) + (2^m)/√N,

いま、N = [ {(2^m)/(1-a)}^2 +1] とおく。(0<a<1)

∀m>0: a ≦ Σ[k>m] 1/p(k),

∴ 右辺はコーシー列でないので、収束しない。
0379132人目の素数さん
垢版 |
2017/01/12(木) 17:57:16.59ID:KoI7U9S5
自分の中ではまだ未解決だけど投稿します

n
Σ(-1)^k・nCk・√k
k=0

はn→∞で0に収束するか。
0381132人目の素数さん
垢版 |
2017/01/13(金) 11:52:05.12ID:JzyUEpxB
>>380
和をnの指数に乗っけてみたりしたけどだめだった…
何でその式で評価できたかヒントくれたら嬉しい
0383132人目の素数さん
垢版 |
2017/01/16(月) 10:03:05.48ID:mSWsA3+7
>>382
n次正方行列Pを
(0 0 0 … 0 1)
(1 0 0 … 0 0)
(0 1 0 … 0 0)
(0 0 1 … 0 0)
( … … … )
(0 0 0 … 1 0)
のように定めると、任意の巡回行列Aは P^i (i=0,1,…,n-1) の線型結合で書ける。
よって、A^m (mは任意の自然数)も同様に P_i の線型結合で書けるので巡回行列。
Aの固有方程式を
f(x) = x^n + a_(n-1)・x^(n-1) + … + (a_1)x + a_0
とおくと、A^-1 が存在する時、
A^-1 = -A^(n-1) - a_(n-1)・A^(n-2) - … - (a_1)A^0
も P_i の線型結合で書けるので巡回行列。

見にくくてすまぬ
0384132人目の素数さん
垢版 |
2017/01/16(月) 11:45:16.96ID:mSWsA3+7
>>383
最後の長い式は
(a_0)A^-1 = …
だったわ…でも A^-1 が存在するなら a_0≠0 だし、両辺を a_0 で割ればおk
0385132人目の素数さん
垢版 |
2017/01/16(月) 11:46:42.02ID:hl6bP1li
>>382
A が巡回行列のとき、A の余因子行列(Bとする)も
巡回行列であることを示せば十分である。
そのためには、tB (Bの転置) が巡回行列であることを示せば十分である。
A の (i,j) 余因子を Δ(i,j) (係数(−1)^{i+j} は含まない定義を採用する)と書くと、
B = ((−1)^{i+j}Δ(j,i))_{i,j} であるから、tB = ((−1)^{i+j}Δ(i,j))_{i,j} である。
よって、これが巡回行列であることを言えばよい。簡単な考察により、係数 (−1)^{i+j} を
削除した (Δ(i,j))_{i,j} が巡回行列であることを示せば十分であることが分かる。

さて、A は n×n の行列で巡回行列とする。A=(a_{i,j})_{i,j} の添え字は
1≦i,j≦n の範囲しか動かないが、これを i,j∈Z 全体に「周期的に」拡張する。
さらに、ij平面 H を用意し、H の上に a_{i,j} (i,j∈Z) を敷き詰める。
ただし、H での座標の取り方は、右方向に行くほど j の値が増え、
下方向に行くほどi の値が増えるものとする。

この平面 H において、(n−1)×(n−1) マスの a_{i,j} の塊 S を任意に考える。
また、S の位置から右方向に+1マス, 下方向に+1マスずれた場所にある塊を S' とする。
S と S' の中に書き込まれている a_{i,j} の配置は完全に一致していることが
分かる( A が巡回行列であることから即座に従う)。

続く
0386132人目の素数さん
垢版 |
2017/01/16(月) 11:53:24.01ID:hl6bP1li
続き

次に、各 Δ(s,t) について、Δ(s,t)=det(C) と行列式表示する。
ただし、C は A から第s行, 第t列を取り除いた (n−1)×(n−1)行列である。
C の中身の a_{i,j} の配置について、

・ a_{i,j} の配置全体を上方向に s−1 マスずらす
 (上端からはみ出た行は順次下端に持っていく)

・ そのあと、a_{i,j} の配置全体を左方向に t−1 マスずらす
 (左端からはみ出た列は順次右端に持っていく)

という変換をしたあとの行列を D とすると、
Δ(s,t) = det(D) * (−1)^{(n−2)(s−1+t−1)} = det(D) * (−1)^{n(s+t)}
となることが分かる。また、D における a_{i,j} の配置は、
H における何らかの (n−1)×(n−1) マスの塊 S に書き込まれた
a_{i,j} の配置と完全に一致する( A → C → D という変換の過程を
平面 H の中で見ればすぐに分かる)。

Δ(s+1,t+1) に対しても同じことをすると、
Δ(s+1,t+1)=det(D') * (−1)^{n(s+t)}
という形になることが分かる。また、D' に対応する H における塊 S' は、
さっきの S の位置から右方向に+1マス, 下方向に+1マスずれた場所の塊である。
既に見たように、S=S' だったから、結局、Δ(s,t)=Δ(s+1,t+1) が成り立つ。
(ただし、s=n のときは s+1 を 1 に読み替える。t も同様。)
よって、(Δ(i,j))_{i,j} は巡回行列である。
よって、Aの余因子行列は巡回行列である。
0387132人目の素数さん
垢版 |
2017/01/19(木) 15:48:05.48ID:8ENcHfIC
>>379 の類題のうち自力で解決できた問題

n
Σ(-1)^k・nCk・1/√(k+2)
k=0

は n→∞ で0に収束するか。
0388132人目の素数さん
垢版 |
2017/01/22(日) 03:33:49.40ID:j1H92TDS
>>387

1/√(k+2)=(2/√π)∫(0〜∞)e^{-(k+2)xx}dx,

(与式)=(2/√π)∫(0〜∞)e^(-2xx){1-e^(-xx)}^n dx,

xx=y とおくと、
f(y)=e^(-2y){1-e^(-y)}^n
=(4/nn){(n/2)e^(-y)}^2・{1−e^(-y)}^n
≦(4/nn){n/(n+2)}^(n+2)   ←相乗・相加平均
={4/n(n+2)}{n/(n+2)}^(n+1)
=f(y0)
≒4/{een(n+2)},

∵ (1+2/n)^((n+1)/2) ≒e,

f(y)は y0=log((n+2)/2)にただ1つの極大をもつ。
その近傍を正確に求めるため、放物線→Gaussian で近似する。
f(y)≒f(y0){1−((n+2)/n)(y−y0)^2}
  ≒f(y0)e^{−((n+2)/n)(y−y0)^2},

これをyで積分する(-∞〜∞)と
dx=dy/(2√y)≒dy/(2√y0),

(与式)≒f(y0)/√{y0・(n+2)/n}
≒4/{ee(n+1)(n+2)√y0}
→ 0 (n→∞)

鞍点法、峠点法、WKB法とか云うのかな?
0390132人目の素数さん
垢版 |
2017/01/22(日) 22:12:52.74ID:1YIxsAJX
>>388
おお…
何というか、これが正攻法か…って感じで圧倒されました

自分が用意した解法の概略は以下の通りです。参考までに
@C^∞((-1,∞))上の作用素Δを (Δf)(x):=f(x+1)-f(x) と定める
AΔとD(微分)が可換であることを示す
Bf(x):=1/√(x+1) とおくと、任意の非負整数n,mについて (-D)^m・(-Δ)^n・f は正である
C数列 {(-Δ)^n・f(0)} は収束する
D (-Δ)^n・f(1) = (-Δ)^n・f(0) - (-Δ)^(n+1)・f(0) より、左辺は0に収束する

この方法では 1/√(x+1+ε) までにしか適用できないのが残念
0391132人目の素数さん
垢版 |
2017/01/22(日) 22:14:18.36ID:dtyBLRsS
F(n)をn番目のフィボナッチ数、
φ(k)を1以上k以下の整数のうちkと互いに素であるものの個数とする。
任意の非負整数nに対して
Σ[k=1〜F(n+2)]φ(k)>=2^n
が成り立つことを示せ。
0392132人目の素数さん
垢版 |
2017/01/23(月) 00:21:58.45ID:oMlmpzrt
>>388
この積分表示だと、pを0以上の実数、lを正整数、z∈C は |z+1|<1 を満たすとして

lim[n→∞] Σ[k=0〜n] nCk z^k (k+l)^{−p} = 0

が出るね。
0393389
垢版 |
2017/01/23(月) 04:19:53.08ID:EqA4X0wX
>>379 >>381

>>387-388と同様にやると、

1/√(k+1)=(2/√π)∫(0〜∞)e^{-(k+1)xx}dx,

(与式)=n納k=1,n] C[n-1,k-1] / √k
=n納k=0,n-1] C[n-1、k] / √(k+1)
=(2n/√π)∫(0〜∞)e^(-xx){1−e^(-xx)}^(n-1) dx,

xx=y とおくと、
f(y)=e^(-y){1−e^(-y)}^(n-1)
=(1/(n-1)){(n-1)e^(-y)}・{1−e^(-y)}^(n-1)
≦(1/(n-1)){(n-1)/n}^n    ←相乗・相加平均
=(n-1)^(n-1) / (n^n)
=f(y0)
≒1/{e√(n(n-1))},

∵ (1+1/(n-1))^(n-1/2) ≒e,

f(y)は y0=log(n)にただ1つの極大をもつ。
その近傍を正確に求めるため、放物線→Gaussian で近似する。
f(y)≒f(y0){1−(n/2(n-1))(y−y0)^2}
  ≒f(y0)e^{−(n/2(n-1))(y−y0)^2},

これをyで積分する(-∞〜∞)と
dx=dy/(2√y)≒dy/(2√y0),

(与式)≒f(y0)・√{2n(n-1)/y0}
≒(√2)/(e√y0)
→ 0 (n→∞)
ひじょうに遅いものの、収束すると思うよ。
0394132人目の素数さん
垢版 |
2017/01/24(火) 07:22:18.33ID:/67xEPsV
任意の正整数iに対してiとi+1は互いに素だから
任意の整数jはiまたはi+1と互いに素となるので
φ(i)+φ(i+1)≧i+1(1はiとi+1のどちらとも互いに素なので)
これにより任意の正整数mに対して
2Σ[k=1〜m]φ(k)
=φ(1)+{φ(1)+φ(2)}+{φ(2)+φ(3)}+…+{φ(m-1)+φ(m)}+φ(m)
≧1+2+…+m+φ(m)
=m(m+1)/2+φ(m)
したがってΣ[k=1〜m]φ(k)≧m(m+1)/4+φ(m)/2
0≦n≦3のとき、直接代入することによって
Σ[k=1〜F(n+2)]φ(k)≧F(n+2)(F(n+2)+1)/4+φ(F(n+2))/2≧2^n
がいえる。
n≧4のとき、F(n)の一般項を考えると
Σ[k=1〜F(n+2)]φ(k)≧F(n+2)^2/4≧2^n
がいえる。
0396132人目の素数さん
垢版 |
2017/01/24(火) 08:25:00.65ID:IVNfGnSQ
>>394
残念だが例えば6は15,16のどちらとも互いに素ではないぞ
0397132人目の素数さん
垢版 |
2017/01/24(火) 21:13:57.09ID:/67xEPsV
>>396の言うとおりで、盛大に間違ってたw
φ(i)+φ(i+1)≧i+1はi=14のとき成り立たない。
φ(i)+φ(i+1)≧iなら言えるかと思ったけどi=69のとき成り立たない。
根本的に考え方を変える必要がありそう。
0398132人目の素数さん
垢版 |
2017/01/25(水) 18:26:27.68ID:+jePaw10
>>391 解答
数列{a[n,m]}(n=0,1,...,m=0,1,2,...,2^n)を以下に従って帰納的に定める:

a[0,0]=a[0,1]=1,
i≧0において
a[i+1.2k]=a[i,k](k=0,1,...,2^i),
a[i+1.2k-1]=a[i,k-1]+a[i,k](k=1,2,...,2^i).

このときmax{a[n.0],a[n,1],...,a[n,2^n]}=F(n+2)(n≧0)が帰納的に示される.
よって数列a[n.0],a[n,1],...,a[n,2^n]はF(n+2)に対応するファレイ数列の,各項の分母のみを取り出してできる数列の部分列である(ファレイ数列の性質より).
一方ファレイ数列に現れる分母がk(≧2)の分数は高々φ(k)個であるから,φ(1)=1に注意すると所望の不等式が得られる.(終)
0399132人目の素数さん
垢版 |
2017/01/26(木) 13:24:07.65ID:XqEhia1F
>>398
こんな難しいことしなくても、チェビシェフによる素数定理の
初等的な評価の仕方を真似した方が、オーソドックスなのに
より強い結果が出る。
0401132人目の素数さん
垢版 |
2017/01/26(木) 16:39:43.50ID:wshNWY83
鶏を割くに焉んぞ牛刀を用いん。
あえて牛刀を用いるマゾ体質に突っ込みを入れちゃぁいけないなあ。
0402132人目の素数さん
垢版 |
2017/01/26(木) 17:16:45.84ID:XqEhia1F
どっちのことを牛刀と言っているのかは知らんが、
チェビシェフの計算を牛刀と証するのは物凄い違和感がある。
0403132人目の素数さん
垢版 |
2017/01/26(木) 17:50:23.14ID:j2A74GYu
定理を引用するのではなく計算の技巧を参考にするだけなら
論理的に不経済というわけではないわな
0407132人目の素数さん
垢版 |
2017/01/29(日) 08:17:23.68ID:rLY/JPwp
>>405
a[1]>0 は素数とする。
a[1]=1 のとき、a[4]=15=3*5 は素数でない。
a[1]=2 のとき、a[6]=95=5*19 は素数でない。
a[1]=p (奇素数) のとき
 a[p]=2^(p-1)・(a[1]+1)-1≡2^(p-1)-1≡0 (mod p)
 ここでフェルマーの小定理を用いた。
 また、a[p]>a[1]=pゆえ、a[p] は素数でない。
0408132人目の素数さん
垢版 |
2017/02/01(水) 18:41:56.03ID:TKvbT5iP
mを0以上の整数,nを2以上の整数とするとき,
2Σ[k=0〜m]C[2m,2k]n^{2k}(n+1)^{m-k}(n-1)^{m-k}
は平方数でないことを示せ.
0409132人目の素数さん
垢版 |
2017/02/01(水) 20:34:06.07ID:1riayXnc
x = √(nn-1) とおく。

S_M ≡ 2Σ[k=0〜[M/2]] C[M,2k] n^(2k) x^(M-2k)
= (n+x)^M + (n-x)^M,
S_0 = 2,
S_1 = 2n,
S_M = 2n・S_{M-1} - S_{M-2},
より、S_M は自然数。

S_{2m} = (S_m)^2 -2 は平方数でない。
0411132人目の素数さん
垢版 |
2017/02/02(木) 16:51:21.91ID:QUlHCgVf
任意の正の整数a,mに対して,以下の条件を満たす正の整数nが無限個存在することを示せ.
条件:an^2+1が相異なるm個以上の素因数をもつ.
0412132人目の素数さん
垢版 |
2017/02/02(木) 16:56:34.95ID:LPUN159x
a[k+1]=2a[k]+1を満たす数列は素数でない項をもたない。
=>a[k+1],a[k] が素数、しかし いずれかは偶数
で おかしい。

よって
a[k+1]=2a[k]+1を満たす数列は素数でない項をもつ
0413132人目の素数さん
垢版 |
2017/02/02(木) 19:05:10.56ID:QUlHCgVf
ちなみに+1を+b(bは任意の正の整数)に置き換えても同じことが成り立つとさっきわかった
0414132人目の素数さん
垢版 |
2017/02/02(木) 19:16:40.30ID:QUlHCgVf
bが負でも成り立つ
0415132人目の素数さん
垢版 |
2017/02/07(火) 01:09:53.07ID:c7gyGBYg
rを有理数とし,f(r)=(cosrπ)^2とする.
(1)f(2r)をf(r)で表せ.
(2)(1)を利用して,f(r)が有理数となるときその値は0,1/4,1/2,3/4,1のいずれかであることを示せ.
0418132人目の素数さん
垢版 |
2017/02/08(水) 02:56:29.13ID:2fqf+cAz
rを二倍二倍していくと、f(r)はあるところから循環する
f(r)がそれらの値でないと、分母が肥大化していく
0419132人目の素数さん
垢版 |
2017/02/08(水) 10:07:16.46ID:K+Bn4kwP
Σ1/(p^2+q^2)
は収束するか。ただしp,qは全ての素数を動く
0422132人目の素数さん
垢版 |
2017/02/08(水) 12:42:09.60ID:czrKVw+O
書き方悪かったかも
Σ1/(p^2+q^2)
p,qは素数
0423132人目の素数さん
垢版 |
2017/02/08(水) 16:09:59.38ID:QjknNwlq
{p,q}で前空間を覆う

integrate((1/r^2)r, {r,1,Infinity}] で発散するが

適当な薬て実用麺では、積分可能になるので使い方次第。
0424132人目の素数さん
垢版 |
2017/02/09(木) 07:21:21.80ID:8w5nXYYM
>>422
xが大きい所での素数率は 1/log(x) なので(素数定理)
納p]… ≒∫[a,∞)… dx/log(x)

(与式)≒ ∬[a,∞)1/{(xx+yy)log(x)log(y)} dxdy
> ∬[a,∞) 1/{(xx+yy)log(√(xy))^2} dxdy
> ∬[a,∞) 1/{(xx+yy)log(√((xx+yy)/2))^2} dxdy
= ∫[a,∞) 1/{r・log(r/√2)^2} (π/2)dr
=[ -π/2log(r/√2) ](r=a,∞)
= π/{2log(a/√2)},

う〜む
0426132人目の素数さん
垢版 |
2017/02/09(木) 08:41:33.67ID:PWbnnAhW
p[k]をk番目の素数とする

p[k]^2+p[n-k]^2 は、k=[n/2]で最小になることに注目すると、

Σ[i,1,N]Σ[j,1,N] 1/(p[i]^2+p[j]^2)
=Σ[n,2,2N]{Σ[k,1,n] 1/(p[k]^2+p[n-k]^2)} - 2Σ[余分に足した領域]
<Σ[n,2,2N]{Σ[k,1,n] 1/(p[k]^2+p[n-k]^2)}
<Σ[k,1,N] {(2k-1)/(2p[k]^2) + 2k/(2p[k]*p[k+1])}
<Σ[k,1,2N] k/p[k]^2
たぶん 収束
0427132人目の素数さん
垢版 |
2017/02/09(木) 14:57:50.34ID:8w5nXYYM
p[k]をk番目の素数とする。

s_n = Σ[k=1,n-1]1/(p[k]^2 + p[n-k]^2) < π/n^2,  …(*)

∴ Σ[n=2,N]s_n < Σ[n=2,N]π{1/(n-1/2) - 1/(n+1/2)} = π{2/3 - 1/(N+1/2)} < 2π/3,
0428132人目の素数さん
垢版 |
2017/02/09(木) 15:02:18.71ID:8w5nXYYM
>>427
nが小さい所では

s_2 = 1/8 = 0.125
s_3 = 0.153846154
s_4 = 0.124521073
s_5 = 0.096559378
s_6 = 0.070482759
s_7 = 0.053972336
s_8 = 0.041964605
s_9 = 0.034264846
s_10 = 0.028833721
s_11 = 0.024079395
s_12 = 0.020750266
s_13 = 0.017804386
s_14 = 0.015494523
s_15 = 0.013698936
s_16 = 0.012221603 = 3.128730 / 16^2
s_17 = 0.010254314
s_18 = 0.008568337
s_19 = 0.007161035
s_20 = 0.005957559
s_21 = 0.004919547
s_22 = 0.004035864
s_23 = 0.003270644
s_24 = 0.002596187
s_25 = 0.002023219
s_26 = 0.001549861
0429132人目の素数さん
垢版 |
2017/02/10(金) 00:29:51.15ID:ijSdRiOW
>>422 の答えは『収束する』です。
一応用意してた証明の概略はこんな感じ↓

@素数定理を使って、 p[n]≦(nlogn)/2 を満たす自然数nが有限個しか存在しないことを示す
A和を積分で評価した後、x>1 の範囲で (xlogx)^2 が下に凸であることを利用して簡単にしてから計算し、収束を示す
0430132人目の素数さん
垢版 |
2017/02/11(土) 07:13:41.85ID:Frh1QIAf
x以下の素数の数をπ(x)とおく。

〔補題〕
π(n)< 2n/log(n),

(略証)
n以下の自然数で、dで割りきれないものは
n -[n/d]≦ n -(n/d)+(d-1)/d
=(n+1)(1-1/p)
=(n+1)/(1+1/p+1/pp+…)
よって
π(n)= n - Σ_(p)[n/p]+ Σ_(p<p')[n/pp']- Σ_(p<p'<p")[n/pp'p"]+ …
< n・Π_p (n+1)(1-1/p)
< n・(n+1)^((n+1)/2)/(1+1/2+1/3+…+1/n)   (←*)
< 2n/{log(n)+γ}

* p(n)≧2n-1 より、π(n)≦[(n+1)/2],
ここに γ = 0.5772156649(オイラー定数)

〔系〕
p[n] > n・log(n)/2
0431132人目の素数さん
垢版 |
2017/02/11(土) 14:08:52.75ID:JwSvP5mr
フィボナッチ数列F(n)について次の等式を証明せよ
Σ[k=0,n-1]F(2^k)F(3*2^k)=F(2^n-1)F(2^n+1)
0432132人目の素数さん
垢版 |
2017/02/11(土) 15:04:04.63ID:JwSvP5mr
もうひとつ。次の等式を証明せよ
Σ[k=0,n-1](-1)^(n-k-1)*F(3^k)F(2*3^k)=F((3^n-1)/2)F((3^n+1)/2)
0433132人目の素数さん
垢版 |
2017/02/11(土) 16:37:04.79ID:Frh1QIAf
>>431-432

G(n)= √{5・F(n)^2 + 4・(-1)^n},
とおくと
F(n+m)F(n-m)={G(2n)- (-1)^n・G(2m)}/5,


・参考
sinh(a+b)sinh(a-b) = {cosh(2a) - cosh(2b)}/2,
cosh(a+b)cosh(a-b) = {cosh(2a) + cosh(2b)}/2,
0434132人目の素数さん
垢版 |
2017/02/11(土) 21:17:05.61ID:Frh1QIAf
>>433 に補足。。。

G(n) = F(n-1) + F(n+1),
F(n)={G(n-1) + G(n+1)}/5,

∴ G(n+1)= G(n)+ G(n-1),

倍角公式
F(2n) = F(n)G(n),
G(2n) = G(n)G(n) - 2(-1)^n,


・参考
nが偶数のとき
F(n) =(2/√5)sinh(nα),
G(n) = 2cosh(nα),

nが奇数のとき
F(n) =(2/√5)cosh(nα),
G(n)= 2sinh(nα),

α = log(φ)= log((1+√5)/2),
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況