X



純粋・応用数学(含むガロア理論)10

■ このスレッドは過去ログ倉庫に格納されています
1132人目の素数さん
垢版 |
2022/03/06(日) 10:33:12.21ID:1uP7mIdZ
クレレ誌:
https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AC%E3%83%AC%E8%AA%8C
クレレ誌はアカデミーの紀要ではない最初の主要な数学学術誌の一つである(Neuenschwander 1994, p. 1533)。ニールス・アーベル、ゲオルク・カントール、ゴットホルト・アイゼンシュタインらの研究を含む著名な論文を掲載してきた。
(引用終り)

そこで
現代の純粋・応用数学(含むガロア理論)を目指して
新スレを立てる(^^;

<前スレ>
純粋・応用数学(含むガロア理論)9
https://rio2016.5ch.net/test/read.cgi/math/1623019011/
<関連姉妹スレ>
ガロア第一論文及びその関連の資料スレ
https://rio2016.5ch.net/test/read.cgi/math/1615510393/1-
箱入り無数目を語る部屋
Inter-universal geometry と ABC予想 (応援スレ) 65
https://rio2016.5ch.net/test/read.cgi/math/1644632425/
IUTを読むための用語集資料スレ2
https://rio2016.5ch.net/test/read.cgi/math/1606813903/
現代数学の系譜 カントル 超限集合論他 3
https://rio2016.5ch.net/test/read.cgi/math/1595034113/

<過去スレの関連(含むガロア理論)>
・現代数学の系譜 工学物理雑談 古典ガロア理論も読む84
https://rio2016.5ch.net/test/read.cgi/math/1582200067/
・現代数学の系譜 工学物理雑談 古典ガロア理論も読む83
https://rio2016.5ch.net/test/read.cgi/math/1581243504/
2022/03/28(月) 15:30:03.96ID:yiUrhLPR
>>312
>2で与えられたxy平面上の直径3の円周x^2+y^2=3

>2で与えられたxy平面上の原点O(0,0)を中心とする半径√3の円周x^2+y^2=3
の間違い
314132人目の素数さん
垢版 |
2022/03/28(月) 21:07:03.37ID:alTNTe3T
>>310
ご苦労
 >>297の”誤読”の指摘に対して
話題逸らしに必死に見えるのは、おれだけか?w

 >>301より
> lim←Z / b^nZ の射影系の写像を具体的に示してごらん

下記のウィーン大のDr. Wolfgang Herfort の「INTRODUCTION TO PROFINITE GROUPS」に説明あるよ
百回音読しろよw

(引用終り)
https://www.asc.tuwien.ac.at/~herfort/
Dr. Wolfgang Herfort
https://www.asc.tuwien.ac.at/~herfort/essays/
Kurzartikel - W.Herfort
https://www.asc.tuwien.ac.at/~herfort/essays/profinite.pdf
INTRODUCTION TO PROFINITE GROUPS
MIMAR SINAN FINE ARTS UNIVERSITY (ISTANBUL) 30.1.2012
WOLFGANG HERFORT
Dedicated to Peter Plaumann
Contents
1. Projective limits 1
2. Profinite groups are “large” finite groups 4
3. Profinite topology 6
4. Free constructions 8
5. Acknowledgements 11
References 11
6. Logfile 11

1. Projective limits

Here is an example:
?

6←. . . (1, 2, 3, 4, 5, 6, 6, . . .)

5←5 . . . (1, 2, 3, 4, 5, 5, . . .)

4←4←4 . . . (1, 2, 3, 4, 4, . . .)

3←3←3←3 . . . (1, 2, 3, 3, . . .)

2←2←2←2←2 . . . (1, 2, 2, . . .)

1←1←1←1←1←1 . . . (1, 1, . . .)
In this example I is the set N of natural numbers and ‘≦’ is the natural ordering
on N. For i ∈ N set Xi:= {1, 2, . . . , i} and let the arrows indicate the maps φi+1i.
E.g., φ43(4) = 3, φ43(i) = 3 for i ≧ 3 and φ43(i) = i for i < 4.

Such X is a profinite space.
In the above example Xi = {1, 2, . . . , i}. The elements of X are the infinite
“rays” (fi), for which 1 ≦ f(i) ≦ i. In particular we find “rays” of the sort
(1, 2, 3, 4, . . . , i, i, i, i, . . .) for i ∈ N and the special one ∞ := (1, 2, 3, 4, 5, 6, . . .).
Thus lim←-i∈N Xi coincides with the Aleksandrov-compactification of the natural
numbers N ∪ {∞}.
(引用終り)
以上
2022/03/28(月) 21:45:49.84
>>314
>百回音読しろよw
ニホンザルの下げマスは馬鹿声張り上げて音読だけして、
実際に実践しないからわかんねえんだよw

おまえこそ、実際にZ/nZの射影系からZ^構成してみろよw
そうすればZ^が貴様が考えるようなQ/Zとは全く一致しねえ
ってことがわかるから

#ついでいうと、Z^はQ/Zのポントリャーギン双対な
#まニホンザルには一生理解できねえだろうけどなwwwwwww
2022/03/29(火) 11:31:39.09ID:fTODphJy
>>315
分かってないのは、お前だろw
お前のやっていることは、全部おれの後追いじゃんかww
下記の Jordan Bell トロント大を、百回音読しろ www

The p-adic solenoid も読めよ
”solenoid”の原型は、リーマンが複素対数関数のリーマン面を考えた辺りまで遡ると思う

http://individual.utoronto.ca/jordanbell/notes/profinite.pdf
The profinite completion of the integers, the p-adic integers, and Pr¨ufer p-groups
Jordan Bell
Department of Mathematics, University of Toronto
December 3, 2017
P3
Namely, the morphisms ψn are compatible with the inverse system. For example,
φ15,3 ・ ψ15(22) = φ15,3(7 + (15)) = 1 + (3) = ψ3(22).
P5
7 Pontryagin duality
P6
8 Solenoids
For n ≧ 0, let πn : R → R/pnZ be the projection map, and give R/pnZ the final
topology induced by this map, with which R/pnZ is a compact abelian group.

It is immediate that the compact abelian groups R/pn and the morphisms
φn,m, n ≧ m, are an inverse system. We call the inverse limit of this sytem the
p-adic solenoid, denoted Tp, with morphisms φn : Tp → R/pnZ.Tp is a compact abelian group.

http://individual.utoronto.ca/jordanbell/notes/padicsolenoid.pdf
The p-adic solenoid
Jordan Bell
Department of Mathematics, University of Toronto
November 19, 2014

https://pipiwiki.com/wiki/Solenoid_(mathematics)
pipiwiki
Solenoid (mathematics)
p-adic solenoids
Solenoids whose ni have the same value p are known as p-adic solenoids Tp.[2][3][4]
Profinite real numbers
A profinite real number is an element of the ring
R^=lim ←R /nZ =Π Tp
where lim ←R /nZ indicates the profinite completion of R , the index p runs over all prime numbers, and Tp is the p-adic solenoid.

つづく
2022/03/29(火) 11:32:06.41ID:fTODphJy
>>316
つづき

https://en.wikipedia.org/wiki/Solenoid_(mathematics)
Solenoid (mathematics)

https://ja.wikipedia.org/wiki/%E8%A4%87%E7%B4%A0%E5%AF%BE%E6%95%B0%E5%87%BD%E6%95%B0
複素対数函数

http://www.core.kochi-tech.ac.jp/m_inoue/work/sekiguti.html
故関口晃司名誉教授の業績のご案内 高知工科大学
http://www.core.kochi-tech.ac.jp/m_inoue/work/pdf/sekiguti/colleage/6.pdf
対数関数のリーマン面 複素関数論入門、リーマン面、riemann ; 2010 年 10 月 7 日版
(引用終り)
以上
2022/03/29(火) 11:51:47.68ID:fTODphJy
>>315 追加
分かってないのは、お前だろw
お前のやっていることは、全部おれの後追いじゃんかww

>#ついでいうと、Z^はQ/Zのポントリャーギン双対な

それについても
下記の Jordan Bell トロント大 その他を、百回音読しろよ www

ポントリャーギン双対ね
なつかしいな。何年振りかなw
いや、自分が理解しているとは言わん
が、あんたが理解できていないのは確かだろw

「> 1のm乗根のなす乗法群の射影極限たる 円分物には、何が含まれるのか?」>>17より
 >>17の時点で、ポントリャーギン双対 に言及していたなら、「この人ちょっとレベル高い」と思ったろうが
今言われても、全部おれの後追いでしかないぜよww

(参考)
http://individual.utoronto.ca/jordanbell/notes/QPontryaginDual.pdf
The Pontryagin duals of Q/Z and Q
Jordan Bell
Department of Mathematics, University of Toronto
January 5, 2015
P2
3 Q/Z and Q^/Z
P7
6 Topology of Zp
P8
7 Rings of fractions and localization
P14
10 The ring of adeles

https://ncatlab.org/nlab/show/profinite+completion+of+the+integers
nLab
profinite completion of the integers

2. Properties
Pontryagin duality
Under Pontryagin duality, Z^ maps to Q/Z, see at Pontryagin duality for torsion abelian groups.

Z[p^-1]/Z→Q/Z→R/Z
 ↓hom(-,R/Z)
Zp    ←-Z ^←-Z

つづく
2022/03/29(火) 11:52:22.60ID:fTODphJy
>>318
つづき

https://en.wikipedia.org/wiki/Pontryagin_duality
Pontryagin duality

https://ja.wikipedia.org/wiki/%E3%83%9D%E3%83%B3%E3%83%88%E3%83%AA%E3%83%A3%E3%83%BC%E3%82%AE%E3%83%B3%E5%8F%8C%E5%AF%BE
ポントリャーギン双対
ポントリャーギン双対性(ポントリャーギンそうついせい、英語: Pontryagin duality)はフーリエ変換の一般的な性質を説明する。ポントリャーギン双対は実数直線あるいは有限アーベル群上の函数の、たとえば

有限アーベル群上の複素数値函数はその(もとの群と自然同型ではないが同型な)双対群上の函数としての離散フーリエ変換を持ち、有限群上の任意の函数がその離散フーリエ変換から復元することができる。

といったようないくつかの話題を統一的にみることができる文脈に属する。この理論はレフ・ポントリャーギンによって導入され、フォン・ノイマンやヴェイユらの導入したハール測度の概念やそのほか局所コンパクトアーベル群の双対群に関する理論などと結び付けられた。
(引用終り)
以上
2022/03/29(火) 12:46:50.73ID:eZn0odxC
> lim←Z / b^nZ の射影系の写像を具体的に示してごらん

雑談は全然質問の意味が分かってないな。
射影極限の←は射の意味であって
右側に現れる集合の列が同じでも、射の意味が違っていれば
まったく異なる極限になることだってある。
「lim←Z / b^nZ」の"←"がp進数やZ^と同じ意味
だとすれば、その極限が円周上の点に収束する
というのはおかしい。

だから、多分「b進小数」のような意味だと思う。
射の意味が違うってことだね。
数学の内容が分からず、字面しか追えないバカ
ならではの誤解ですな。
2022/03/29(火) 13:39:10.48ID:fTODphJy
>>318
> >>17の時点で、ポントリャーギン双対 に言及していたなら、「この人ちょっとレベル高い」と思ったろうが
>今言われても、全部おれの後追いでしかないぜよww

補足
 すでに、>>53 時点で
https://arxiv.org/pdf/2202.00219.pdf
Approximating Absolute Galois Groups
Gunnar Carlsson, Roy Joshua
February 2, 2022
Proof: Statement (1) is one version of the statement of the Pontrjagin duality theorem,
(引用終り)

と引用してある
”Pontrjagin duality”(ポントリャーギン双対)が、こんなところに出てくるのかと
その時は、”へー”思った
その後、あちこちのProfinite integer文献で、”Pontrjagin duality”は出てきた
 >>318 で挙げた文献は、その中でも ”Pontrjagin duality”について比較的まとまった記述がものとして挙げたんだ

因みに、ポントリャーギン先生は、昔は盲目の幾何学者(位相幾何)として、著名だった
また、岩波のポントリャーギン「連続群論(上下)」というのがあって、名前だけは知っていた
「連続群論」は、昔は定番扱いだった気がする
”ポントリャーギン双対”も、何度か目にした(目にしただけですがw)

(参考)
https://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%95%E3%83%BB%E3%83%9D%E3%83%B3%E3%83%88%E3%83%AA%E3%83%A3%E3%83%BC%E3%82%AE%E3%83%B3
ポントリャーギン(1908年9月3日-1988年5月3日)は、ロシアの数学者
https://upload.wikimedia.org/wikipedia/commons/3/39/Lev_Pontrjagin.jpg
略歴
ロシア革命前のモスクワに生まれ、ソビエト連邦崩壊直前にこの世を去った。彼の家庭はとても貧しく月謝の安い実験学校さえ行けず、4年制の小学校で最初の教育を受けた。14歳の時にプリムス・ストーブの爆発事故により失明した。そんな彼が数学者となれたのは母親の献身的な努力があったからだと言われている。 農家の主婦だった彼の母親タチヤーナ・アンドリェーエヴナ・ポントリャーギナは、彼が身を立てるための一切の世話を引き受けた。文献を読んで聞かせたり、論文に式を書き込んだり、さらに彼女自身外国語を習得して彼の完全な「秘書」を勤めた。数学者となった彼の専門分野は、幾何学(微分幾何学)だった

つづく
2022/03/29(火) 13:39:36.72ID:fTODphJy
>>321
つづき

https://en.wikipedia.org/wiki/Lev_Pontryagin
Lev Pontryagin
Work
Pontryagin worked on duality theory for homology while still a student. He went on to lay foundations for the abstract theory of the Fourier transform, now called Pontryagin duality.

https://web.sfc.keio.ac.jp/~kawazoe/
Takeshi Kawazoe
https://web.sfc.keio.ac.jp/~kawazoe/essey.html
http://web.sfc.keio.ac.jp/~kawazoe/mathbook.pdf
本との出合い「連続群論(上下)」河添 健 慶応 (『この数学書が面白い』−数学書房2006年)
どのような経緯で決めたのかはもう
忘れたが(多分私が主張したのだと思う)、「連続群論(上下)」(柴岡泰光,
杉浦光夫,宮崎功訳:ポントリャーギン著)を読むことになった。私を含め
て3人の輪読である。

https://www.iwanami.co.jp/book/b265477.html
岩波書店
連続群論 上
著者 ポントリャーギン 著 , 柴岡 泰光 訳 , 杉浦 光夫 訳 , 宮崎 功 訳
刊行日 1957/10/31
(引用終り)
以上
2022/03/29(火) 17:55:41.78ID:CNVOB0in
コピペにうんざり
2022/03/29(火) 19:32:59.20
>>316
>分かってないのは、お前だろ
 いや、お前だよ 下げマス

>お前のやっていることは、全部おれの後追いじゃんか
 いや、お前は、自分がコピペした文章を全く理解してない
 具体的にいえば、ポントリャーギン双対が全然分かってない

>下記の・・・を、百回音読しろ
 百遍どころか千遍「音」読しても無駄 脳味噌で読んでないから
 ニホンザルの下げマスには考えるための脳味噌が皆無だろwww

 例えば
 http://individual.utoronto.ca/jordanbell/notes/padicsolenoid.pdf
 の

 0→Zp→Tp→R/Z→0 (Tp=Z[1/p]* Z[1/p]*は準同型Z[1/p]→S^1の集まり)
 
 が短完全系列ってどういう意味か分かってるか?

 Tp/Zp=R/Zってことだぞ
(ついでにいうとR^/Z^=R/Z)

 そもそもどうつもりでソレノイド!って絶叫してるか知らんけど
 下げマスの主張「Z^は円周群の部分群の筈!」とは全然関係ないから
 wwwwwww 
2022/03/29(火) 19:35:11.53
>>318
>ポントリャーギン双対ね
>なつかしいな。何年振りかなw

文字列と読み方だけ記憶してるだけで
肝心の定義はどうしても理解できない
日本人失格のニホンザル 下げマスが
キッキキッキと吠えまくる吠えまくる

ギャハハハハハハ!!!(嘲笑)
2022/03/29(火) 19:37:03.63
>>318
>いや、自分が理解しているとは言わん
 下げマスは正則行列も行列式も理解できないもんなwwwwwww
 そりゃ射影系も射影極限も理解できんわなwwwwwww
2022/03/29(火) 19:42:09.72
>>319
下げマスってどこが定義かも読めない馬鹿野郎なんだな
どうして意味のない文章だけコピペするんだろ?w

コピペするなら、真っ先にここ↓だろ

「G を局所コンパクト可換群とするとき、
 G の指標とは円周群 T に値を持つ G 上の連続群準同型のことである。
 G の指標全体の成す集合はそれ自身が G の双対群と呼ばれる
 局所コンパクト群を成すことが示される。」

ま、ニホンザルの下げマスは、どうせ指標も知らねえんだろ(嘲)
2022/03/29(火) 19:45:14.84
>>327の続き
「整数全体が加法に関して成す無限巡回群 Z 上の指標は、
 生成元である 1 の行き先によって決まる。
 つまり、Z 上の指標 χ に対し χ(n) = χ(1)n が成り立ち、
 さらにこの式は T から χ(1) となるべき値を任意に選ぶことで定まる。
 したがってこのことから、
 Z の代数的双対群が円周群 T に同型であること
 は直ちにわかる。
 コンパクト集合上一様収束の位相はこの場合、各点収束位相に一致する。
 またこの位相が複素数全体 C における通常の位相を
 円周群に制限したものに一致することも簡単に示される。
 以上のことから Z の双対群は T に自然同型である。」

意味わかるか?人間失格のニホンザル 下げマス(嘲)
2022/03/29(火) 19:46:43.90
>>328のつづき
「逆に T 上の指標は適当な整数 n によって z → z^n の形に書ける。
 T はコンパクトゆえ、一様収束位相であるその双対群上の位相は離散位相となり、
 結果として T の双対は Z に自然同型となる。」

意味わかるか?人間失格のニホンザル 下げマス(嘲)
2022/03/29(火) 21:09:18.52
下げマス 死す!!!
2022/03/30(水) 10:02:07.86ID:4nlep8X1
>>323
>コピペにうんざり

じゃ、あなた何か書いてみなよ
「323です」とか、分かるように名乗ってね
それ見て、大口叩く資格あるかを見るよw
2022/03/30(水) 10:20:21.79ID:4nlep8X1
>>330
話題そらしに必死のおっさんがいるなw

 >>307 より再録
(円周群より https://ja.wikipedia.org/wiki/%E5%86%86%E5%91%A8%E7%BE%A4
 >>297 "In the same way that the real numbers are a completion of the b-adic rationals for every natural number b > 1, the circle group is the completion of the Prufer group for b, given by the inverse limit lim ← Z/b^nZ."
で、”for every natural number b > 1”なので
∪ the Prufer group for b(集合和)だ
これの”a completion of the b-adic rationals for every natural number b > 1”が、円分物 Z^(1) ってことでしょう
円周群 T=R/Z は、もともとは 有理数Qの有理コーシー列による(通常の)完備化から得られるものだが
Z^での ”a completion of the b-adic rationals”は、一味違う完備化で
円分物 Z^(1) も、こちらの完備化だね
そして、繰り返すが ∪ μn つまり Q/Z の同型群の 逆極限による 完備化(もどき)として、円分物 Z^(1) がある
∪ μn =∪ the Prufer group for b でもある
(引用終り)

 ここ、おっさんは誤読していたよね
 >>294
 Prüfer group のページ読んだか?
 Prüfer groupは、direct limit(直極限・帰納極限)って書いてあるだろ
 Z(p∞)=lim→ Z /p^n Z"
(引用終り)

だってwww

つづく
2022/03/30(水) 10:22:11.55ID:4nlep8X1
>>332
つづき

全く的外れじゃん
そもそも、おれの>>17 "1のm乗根のなす乗法群の射影極限たる 円分物には、何が含まれるのか?"
に対して、おっさんは「単位元以外に位数有限の元はないから、n乗して1になる1以外の元はない。」を繰り返すだけだったww

で、おれは>>41
”profinite 完備化も同じように考えて良いんじゃね?
つまり、1 の n 乗根と同一視できるものが、Z^(1)には含まれているんじゃないかな?
そこを、いま調べている”と書いた

その関連の記述が、上記の ”円周群 https://ja.wikipedia.org/wiki/%E5%86%86%E5%91%A8%E7%BE%A4 の ”
”In the same way that the real numbers are a completion of the b-adic rationals for every natural number b > 1, the circle group is the completion of the Prufer group for b, given by the inverse limit lim ← Z/b^nZ.”
だったわけだw

おっさん、ご苦労さん
必死の話題そらし、ご苦労さんw

以上
2022/03/30(水) 10:26:08.29ID:pts3zt/a
雑談=セタ って、自分が脳みそ腐ってるレベルだって自覚ないの?
2022/03/30(水) 10:40:35.00ID:pts3zt/a
http://www4.math.sci.osaka-u.ac.jp/~ochiai/ss2009proceeding/ss2009yamauchi.2010-2-13.pdf
に書いてあるよ。自分の頭で考えられない雑談のための引用だよ。
Z_l(1)≅Z_l。この場合、Z_l^{n+1}Z←Z/l^nZ 射"←"は環準同型で一意的に決まっている。
もともと、「ガロア群の表現」を目的とする構成だから
環準同型でなければ意味を持たない。

https://en.wikipedia.org/wiki/Circle_group
に載っている、lim←Z/b^nZ は恐らく全く別の意味。
p進数とb進小数の違い。
この← は p進数の構成における"←"と両立しない。
大体R/ZはRと局所同相で、Z_pと同じ位相が入るわけない
つまり、同じ「収束先」を持つわけない。
2022/03/30(水) 10:45:23.32ID:pts3zt/a
>>330氏はわたしと別人だよ。
しかし、自分の知性でわたしと全く同じ結論に達している。
Z^(1)に1のn乗根は含まれないとね。

逆に、このスレに来たひとの中で、貴方=雑談と同じ
結論を持っているひとがいますかね?
いませんね。貴方によると「レベルの高いひと」
も来ているらしいがw
2022/03/30(水) 10:50:13.15ID:pts3zt/a
訂正>>335
>Z_l^{n+1}Z←Z/l^nZ
正しくは、Z/l^nZ←Z_l^{n+1}Z
2022/03/30(水) 11:06:59.68ID:pts3zt/a
自覚のないバカの雑談のために、前スレから引用しておきましょうか。
754
雑談さんには分からないであろう、円分体と円分物の違い。
円分体には1のべき根が含まれている。
しかし、1のm乗根のなす乗法群の射影極限である
円分物には、1以外の1のべき根は含まれない。
時枝記事も理解できず、無限と有限の区別も付かない
雑談さんには、絶対理解できない論点。

758
>>754
それだけなら誰でも理解できそうなことに
思えますが?

この758さんも全くの別人。
数学が分かるひとなら、このくらい自明だってこと。
それを何週間もかけて理解できない雑談は
「脳みそ腐ってる」レベルw
2022/03/30(水) 17:29:02.02ID:9EMgaiv8
教えて乞食が「俺に分かるように教えろ」と文句を言うスレ
2022/03/30(水) 18:37:50.43
>>332-333
>話題そらしに必死のおっさんがいるな
>おっさん、必死の話題そらし、ご苦労さん

とかなんとかいってる間に、wiki書き換えられてんなwww
https://en.wikipedia.org/wiki/Circle_group
In the same way that
the real numbers are a completion of the b-adic rationals Z[1/b] for every natural number b>1,
the circle group is the completion of the Prüfer group Z[1/b]/Z for b, given by the direct limit lim→ Z/b^nZ.

下げマス 焼死wwwwwww
2022/03/30(水) 19:20:11.51ID:pts3zt/a
訂正>>335,>>337
環準同型
正しくは、Z/l^nZ←Z/l^{n+1}Z
この射による射影系の極限として定まるのがl進整数環Z_l。
Z_l(1)は、この加法群と同型。

加群準同型
Z/l^nZ→Z/l^{n+1}Z
は逆向きにもあって、この射による
帰納系の極限として定まるのがプリューファー群Z(l^∞)。

>>340
どなたかが訂正されたようですね。
意味は通ってますね。
2022/03/30(水) 19:43:40.47ID:pts3zt/a
雑談は→が準同型写像であることさえ分かってなさそう。
(勿論、列に現れるのが代数系でなく集合であれば
ただの「写像」であることもありうる。)
準同型写像→と←の中身が分かっていれば
Z_lとZ(l^∞)は単なる矢印の向きの違いでないと分かるはず。
必死になって、「もしかして一致している」文献を
字面だけ見て探しまくるなんて無駄なことをするはずがないw
自分の知性で数学の正しさが判断できないって悲しいね。
343132人目の素数さん
垢版 |
2022/03/31(木) 07:18:06.04ID:r7WGJV69
>>340
ありがと

>とかなんとかいってる間に、wiki書き換えられてんなwww
>https://en.wikipedia.org/wiki/Circle_group
>In the same way that
>the real numbers are a completion of the b-adic rationals Z[1/b] for every natural number b>1,
>the circle group is the completion of the Prüfer group Z[1/b]/Z for b, given by the direct limit lim→ Z/b^nZ.

見た。確かにw
だが、主張は変えないよ

Profinite integer Z^から始めよう
Z^=lim ← Z/nZ =Πp Zp
これが、the profinite completion of Z (下記)は、いいよね

では、星の円分物 Z^(1) def := lim ←-n μn(Ω) で、μn(Ω) ⊆ Ω は, Ω の中の 1 の n 乗根のなす群(>>240)
で、1 の n 乗根のなす群は、巡回群であって、 Z/nZに同型だ
ここまでは良いだろう?

1 の n 乗根のなす群たちを、nについて全て集めたものは また(可算無限)乗法群になる(>>110
これが、Q/Zに同型も良いよね(>>332
これを、∪ μn と書く(>>332

だから、星の円分物 Z^(1) def := lim ←-n μn(Ω) は、
群 ∪ μn を、群として profinite completion したものだってことでしょ

つづく
344132人目の素数さん
垢版 |
2022/03/31(木) 07:18:36.14ID:r7WGJV69
>>343
つづき

そして、Q/Zには ねじれがあるが、円分物 Z^(1)では ねじれ が消える
ねじれ が消えるメカニズムは、>>241で 山内 http://www4.math.sci.osaka-u.ac.jp/~ochiai/ss2009proceeding/ss2009yamauchi.2010-2-13.pdf
を教えて貰って、>>253-254に書いた通りだ。群 ∪ μn 中の 例えば 7乗根 ζ7 には無限のしっぽがついて、何乗しても、1にはならない
だから、ねじれ フリー。そこは、>>253-254で解決済み

星の円分物 Z^(1) の中には、例えば 7乗根 ζ7 は、「無限のしっぽがついて、何乗しても、1にはならない」形で入っていて
そういう対応はつく

だから、Qを普通にコーシー列で完備化したときは、QはそのままR中に埋め込まれるが
群 ∪ μn の profinite completion Z^(1) は、∪ μnはそのままR中に埋め込まれていない(ねじれ が無くなる)
でも、profinite completion と呼んで良いんじゃね? 用語の濫用かもしれないがね

(参考)
https://en.wikipedia.org/wiki/Profinite_integer
Profinite integer
Z^=lim ← Z/nZ =Πp Zp
where
lim ← Z/nZ
indicates the profinite completion of Z , the index p runs over all prime numbers, and Zp is the ring of p-adic integers.
(引用終り)
以上
345132人目の素数さん
垢版 |
2022/03/31(木) 07:33:40.32ID:r7WGJV69
>>336
ご苦労さん

>Z^(1)に1のn乗根は含まれないとね。

そもそも問いは、
「星の円分物 Z^(1) def := lim ←-n μn(Ω) で、μn(Ω) ⊆ Ω は, Ω の中の 1 の n 乗根のなす群(>>240)」
で、ここに何が含まれるか?(>>17) だよ

”何が含まれるか?”に、「1のn乗根は含まれない」では、答えになっていない
「Aは含まれるが、1のn乗根は含まれない」なら、一つの回答ではある

「Z^(1)に1のn乗根は含まれない」は、>>241を教えて貰って
自力で解決済みだよ。 そこは、>>253-254で解決済み

>貴方によると「レベルの高いひと」

うん、>>241の ID:kPzJ68nv氏
この人の紹介した
山内 http://www4.math.sci.osaka-u.ac.jp/~ochiai/ss2009proceeding/ss2009yamauchi.2010-2-13.pdf
を見て、この文献には、自力では到達できないと思った
 >>241の ID:kPzJ68nv氏は、この山内PDFを知っていたんだね
ということは、この周辺は自家薬籠中の物だってことだろう
だから、自分とはちょっとレベルが違うと思ったよ
2022/03/31(木) 16:47:57.92ID:g1RHrbVs
純粋数学史上最も重要で難しい未解決問題って何ですか?
2022/03/31(木) 17:49:41.47ID:AndK/JUq
>だから、星の円分物 Z^(1) def := lim ←-n μn(Ω) は、
>群 ∪ μn を、群として profinite completion したものだってことでしょ

ならないよ。射有限完備化の定義を見てみなよ。
>>268-269参照。

>星の円分物 Z^(1) の中には、例えば 7乗根 ζ7 は、「無限のしっぽがついて、何乗しても、1にはならない」形で入っていて

訳の分からない説明ですね。
正確には、Z^(1)(またはZ_7(1))からZ/7Z(1),Z/49Z(1),...に射影(全射準同型写像)があるんですよ。
それで、a∈Z^(1)はこの射影によって、7乗根にも49乗根にも写りうるわけだから
「7乗根 ζ7 は、無限のしっぽがついて」というのは正しい理解とは言えない。

そして、どんなa∈Z^(1)を取っても、その射影が
7乗根∈Z/7Z(1),7乗根∈Z/49Z(1),...のようになることはありえない。
7乗根∈Z/7Z(1),49乗根∈Z/49Z(1),...とか
1∈Z/7Z(1),7乗根∈Z/49Z(1),49乗根∈Z/343Z(1),...
のようになる。
だから、torsion freeなんだよ。

>この文献には、自力では到達できないと思った

「テイト捻り」で検索すれば上の方に出てくるでしょ。
数学自体ではなく、「文献の雰囲気」に感心するのが雑談らしい。
雑談にとって参考文献とは水戸黄門の印籠みたいなもんなんだろうw
2022/03/31(木) 17:52:06.68ID:AndK/JUq
>ねじれ が消えるメカニズムは、>>241で 山内 http://www4.math.sci.osaka-u.ac.jp/~ochiai/ss2009proceeding/ss2009yamauchi.2010-2-13.pdfを教えて貰って

嘘だな。ガロア表現の解説にそんな初歩が解説されてるわけないだろw
2022/03/31(木) 19:54:56.21
>>343
>主張は変えないよ
 そもそも何主張してた?
 今一度はっきりここに書いてみ

>1 の n 乗根のなす群たちを、
>nについて全て集めたものは…
>Q/Zに同型、も良いよね
>これを、∪ μn と書く
 もしかして、
 「1 の n 乗根のなす群たちを
  nについて全て集めたものQ/Z」が
 「μn(Ω) に関する射影系の射影極限」
 だと思ってる?

それ、全然誤解だぞ(嘲)
射影系とは何か?
射影極限とは何か?
定義から確認しろって
ま、日本語読めないニホンザルには
到底無理だろうがな(嘲)

射影系がなんなのかも理解できない奴に
射影極限がわかるわけなかろうが(嘲)

>だから、星の円分物
>Z^(1) def := lim ←-n μn(Ω) は、
>群 ∪ μn を、群として
>profinite completion
>したものだってことでしょ
 いいや、全然w
 いつどこでだれがそんな嘘をついた?(嘲)
350132人目の素数さん
垢版 |
2022/03/31(木) 20:02:31.55
>>344
>Q/Zには ねじれがあるが、円分物 Z^(1)では ねじれ が消える
>ねじれ が消えるメカニズムは、>>253-254に書いた通りだ。
>だから、ねじれ フリー。そこは、>>253-254で解決済み
 つまり
 Z^(1)⊃Q/Z
 とかほざいてたニホンザルの下げマスが
 間違っていたと自ら認めて焼身自●したわけだ(嘲)

 で?
>星の円分物 Z^(1) の中には、
>例えば 7乗根 ζ7 は、
>「無限のしっぽがついて、何乗しても、1にはならない」
>形で入っていてそういう対応はつく
 下げマス、代数が初歩から理解できない馬鹿野郎だったんだな(嘲)
 何乗しても1にならないものがなぜ1の7乗根ζ7なんだ?(嘲)
 今自分がいかに支離滅裂で狂ったこといったか自覚ないのか?(嘲)
 もし自覚がないなら貴様には数学は無理だから諦めて死ね(嘲)

>だから、
>Qを普通にコーシー列で完備化したときは、
>QはそのままR中に埋め込まれるが
>群 ∪ μn の profinite completion Z^(1) は、
>∪ μnはそのままR中に埋め込まれていない(ねじれ が無くなる)
 下げマス、代数が初歩から理解できない馬鹿野郎だったんだな(嘲)
 そもそも、∪ μnからZ^(1)への準同型写像で
 ∪ μnの「有限乗で1になる元」に対応する
 Z^(1)のある元が「何乗しても1にならない」なら
 その写像は準同型でもなんでもないだろ 白痴か?(嘲)

>でも、profinite completion と呼んで良いんじゃね?
>用語の濫用かもしれないがね
 濫用じゃなく誤用w
 もう言葉の意味すら理解できない
 ニホンザルは数学諦めて死ねよ(嘲)
351132人目の素数さん
垢版 |
2022/03/31(木) 20:06:40.06
>>345
>そもそも問いは、
>「星の円分物 Z^(1) def := lim ←-n μn(Ω) で、
> μn(Ω) ⊆ Ω は, Ω の中の 1 の n 乗根のなす群」
>で、「円分物Z^(1)」に何が含まれるか?だよ
 だからいってるだろう
 Z^(1)⊃Q/Z
 ではないとw

 特にQ/Zの元でで単位元以外のものはZ^(1)には含まれない

>「1のn乗根は含まれない」なら、一つの回答ではある
 下げマスの馬鹿な「嘘」に対する完全な回答だ
 貴様は「1のn乗根は全て含まれる!」と言い切ったのだからな
 それが全くの嘘であったと示された時点で
 ニホンザルの貴様は負けた、死んだ(嘲)

>「Z^(1)に1のn乗根は含まれない」は、自力で解決済みだよ。
> そこは、>>253-254で解決済み
 「自力で?」何言ってんだこの馬鹿(嘲)
 Z^(1)⊃Q/Z!
 とほざいてた下げマスは
 >>223の完全に具体的な説明に対して
 何の反論もできなかった
 それは「自力で解決」とはいわない
 「人の真似したニホンザルの完敗」という(嘲)

 諦めて今すぐ死ね 貴様に生きる価値はない
 人間様の俺に食われちまえ、この畜生が(嘲)
352132人目の素数さん
垢版 |
2022/03/31(木) 20:12:40.13
猿食文化
https://ja.wikipedia.org/wiki/%E7%8C%BF%E9%A3%9F%E6%96%87%E5%8C%96
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
日本の一部地域では猿肉が珍味と見なされてきた。
古くは縄文時代の遺跡から猿の骨が出土し、
江戸時代の『宜禁本草集要歌』や『嬉遊笑覧』にも言及が見られる。
石川県では「秋猿は嫁に食わすな」との言い伝えがある。
サル肉を食べることでで無数の健康効果が得られると言われ、
たとえば、日本の女性は出産後に元気を取り戻すために
サル肉を食べていたとされる。
また、美食家として有名な北大路魯山人も食べたことを著作に記している。
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー

ただし、1974年に野生のニホンザルは狩猟鳥獣の対象から除外されており、有害駆除の許可が下りた場合を除いて狩猟の対象にはできないため、21世紀においてはきわめて流通に乏しく「幻の肉」とも称される[21]。
2022/03/31(木) 20:52:33.36ID:CC3gN1cQ
阪大ザルは実態として理科大卒以下の学力で勘違いしてアカデミズムきどるゴミ受験猿が百万遍より多い。
2022/04/01(金) 00:42:01.05ID:ThOqdJui
>何乗しても1にならないものがなぜ1の7乗根ζ7なんだ?(嘲)
ふいたw
2022/04/01(金) 06:36:14.53
先手うって下げマスに釘さしとこ

「今日はエープリルフールだから」とかいう言い訳で
何も考えずに口からデマカセ書くの禁止な

どうせ下げマスはエヴリディフールなんだからw
356132人目の素数さん
垢版 |
2022/04/01(金) 06:40:00.30
下げマスは言葉の文字面だけで妄想することが思考だと誤解してる

「円分物」(cyclotome)という言葉から、
「当然、∪ μnを部分群として含んでいる」
と勝手に脊髄反射する

それが毎度恒例の馬鹿な初歩的誤解だとも気づかず

ニホンザルは何度同じ誤りを犯せば気が済むのか?
357132人目の素数さん
垢版 |
2022/04/01(金) 06:44:10.79
ニホンザルが「指標」という言葉の意味を理解する日は永遠に来ない…
https://ja.wikipedia.org/wiki/%E5%86%86%E5%88%86%E6%8C%87%E6%A8%99
2022/04/02(土) 09:51:43.60
下げマス 何も言い返せず ダンマリ
ほんま わかりやすいやっちゃなあw
359132人目の素数さん
垢版 |
2022/04/02(土) 12:05:34.53
下げマス クタバルw
2022/04/03(日) 14:50:59.89
下げマス 安らかに眠れw
2022/04/03(日) 15:54:45.69ID:K8PoYvWB
下げマスくんに数学は無理だと思う
彼の問題に向かう態度は数学的なそれとは正反対だから
これは長年のうちに染み着いてしまったものだから変えるには時すでに遅し
2022/04/03(日) 17:04:55.54
そもそも下げマスは勉学意欲がない

キーワードで検索して出てきた文章を全く読みもせずにコピペするだけ
しかも数式はコピペできないので全部捨てるwww
肝心なのは数式で書かれた定義の箇所であるにもかかわらず
それ以外のカス文だけドヤ顔でコピペ
それじゃわかるわけねえわw
2022/04/03(日) 17:12:01.16ID:wjGjxtQD
でも>>361っておっちゃんだろ?
>彼の問題に向かう態度は数学的なそれとは正反対だから
とか真顔で言われても嗤うしかないんだが。
掛け合い漫才から遠隔漫才に変えたのか?w
2022/04/03(日) 17:36:05.90ID:wjGjxtQD
数学=問題に向かう態度 と捉えるのがおっちゃん的。
これは正に
数学=未解決問題に挑戦すること
と捉えて、「おれはその態度が出来ている」
とこれまで関わった他人の誰一人思っていないことを
たった一人自分では思っているというのが
皆さんに笑ってほしいところ。
「染み着いてしまったものだから変えるには時すでに遅し」
のところで皆が
「オモエモナー!」と心のツッコミを入れる箇所まで
用意してある。漫才としては秀逸w
365132人目の素数さん
垢版 |
2022/04/03(日) 18:21:11.18
数学=問題の解き方、とおもってる点で 下げマスと乙は同類
しかも、論理が理解できず、数学書が正しく読めない点も同じ
2022/04/04(月) 03:15:49.69ID:4+cDhR7n
>>363
>でも>>361っておっちゃんだろ?
バカタレw 昨日は他のことで忙しくてここに呑気に書いている暇はなかった
>361の ID:K8PoYvWB は私(おっちゃん)ではない。>361は別人だよ。何いってんだよw
よく書き方を見ろよ。>361は「下げマスくん」と書いている
それに対し私は殆ど「瀬田君」と「くん」の箇所を「君」と漢字を用いて書いている
正に文体研究不足
東大話法の研究をして東大話法の特徴をつかんだ人の著書があるから、個人特定して判断する前にその本の概要を知れ

>>364
>漫才としては秀逸w
記憶が正しければ、私が笑いを取ろうとして成功したことはない筈
2022/04/04(月) 03:22:01.69ID:4+cDhR7n
>>365
見事に釣られたなw
2022/04/04(月) 03:50:21.97ID:4+cDhR7n
>>364
>数学=問題に向かう態度
>これは正に
>数学=未解決問題に挑戦すること
必ずしも「数学=問題に向かう態度」と「数学=未解決問題に挑戦すること」とは同じこととはいえないのに、
これら2つを何の根拠もなく同じことと判断した時点で科学的な判断ではない
単なる思い込みだけで書いたレスだな
2022/04/04(月) 05:54:11.11
>>367
乙は数学諦めろ
統失で理科大中退したんだろ?
病気の治療が先だ
2022/04/04(月) 06:09:22.10ID:4+cDhR7n
>>369
>乙は数学諦めろ
見知らぬ他人が、他人のことをとやかくいって、他人の人生を操る資格はない

>統失で理科大中退したんだろ?
約20年前に卒業した
2022/04/04(月) 18:20:50.80ID:QZh9tyZ2
>>366
やっちまったか。
そう思って見ればおっちゃんじゃない気もするな。
おっちゃんじゃないとすれば、漫才じゃない普通の意見にも見えるなw
2022/04/04(月) 18:41:37.80ID:QZh9tyZ2
おっちゃんが数学上の未解決問題に取り組んでるのは事実。
「いやいやいや、未解決問題とか言う前に
初歩的事項の理解からして怪しいだろ」
というのが、おっちゃんの天然のおかしさ。

セタのおかしさはまた別だが
二人の間で、絶妙な呼吸で頓珍漢問答が
成立することがあり、それがハタから見ると
「掛け合い漫才」。
2022/04/05(火) 02:52:56.24ID:MFyLQ9Uf
>>371-372
4月4日の ID を見ると、4日の0時位に Inter-universal geometry とABC 予想48 スレで
民族的考察による怪しげな天才論のような代物を語っていたようだが、
この天才論のような代物はDNA判定による考察をしている訳でもなく何の科学的根拠もない下らん議論だぞ
その天才論のような代物こそ漫才に相応しいよw

>おっちゃんが数学上の未解決問題に取り組んでるのは事実。
>「いやいやいや、未解決問題とか言う前に初歩的事項の理解からして怪しいだろ」
>というのが、おっちゃんの天然のおかしさ。
別に未解決問題に取り組んでいるだけ訳ではない
他の試みの中で未解決問題が解けた可能性があるというだけの話
君、一体誰だよ。このバカタレ
いい加減、見ず知らずの他人に口出ししたりするのは止めてくれ
2022/04/05(火) 02:59:49.09ID:MFyLQ9Uf
>>371-372
珍しくキレてしまったw
>>373の訂正
>別に未解決問題に取り組んでいるだけ訳ではない
ここは
>別に未解決問題に取り組んでいるだけという訳ではない
の間違い
君、私にもう絡まないでくれ
2022/04/05(火) 06:48:53.78ID:Ua8MdWYf
>民族的考察による怪しげな天才論のような代物を語っていたようだが、

それを「天才論」と捉えるのが誤り。
(「天才」というワードにそこまで拘るのは
自身の心の反映w)
古代イスラエルの血統など意味はないとか
世界史はもっと広い視野から見た方がいい
という意味のことを書いた。
で、なんでそんなことを書いたかと言うと
日ユ同祖論を力説してるひとがいたから。
このひとは、ある意味でおっちゃんと似てるのである。
極めて不合理な信念を持たなければ
自信を持って生きていけないという点でね。
2022/04/05(火) 06:50:57.80ID:Ua8MdWYf
>君、私にもう絡まないでくれ

自分が1ミリも理解していない「ガロア理論」スレ
などに来るから弄られる。
こちらから出向いてるわけではなく
そっちが覗きに来てるだけ〜w
2022/04/05(火) 08:12:01.76ID:u6cwV6I/
>>375
>>民族的考察による怪しげな天才論のような代物を語っていたようだが、

>それを「天才論」と捉えるのが誤り。
>(「天才」というワードにそこまで拘るのは自身の心の反映w)
>古代イスラエルの血統など意味はないとか
>世界史はもっと広い視野から見た方がいい
>という意味のことを書いた。
君が書いた以下のレスからそのことは読み取れない

>150132人目の素数さん2022/04/04(月) 00:31:01.39ID:QZh9tyZ2
>天才が多いとして有名なユダヤ人がアシュケナジーで
>古代イスラエルとは何の関係もないってことは
>「古代イスラエルの血統」なんてものも
>何の意味もないってことだなw
>
>151132人目の素数さん2022/04/04(月) 00:36:40.91ID:QZh9tyZ2
>遊牧民か農耕民かというのは大きな違いで
>遊牧民の暴力を受けた地域=ロシア・中国が
>専制主義的で、周辺でそれから逃れた地域
>=欧州・日本に共通点があるというのは
>偶然ではない。
2022/04/05(火) 08:23:46.85ID:u6cwV6I/
>>376
君のような数論バカは数論に必ずガロア理論が必要だと思っているから困るw
この無能がw
チョット寝過ごしたから ID は変わっている
379132人目の素数さん
垢版 |
2022/04/05(火) 08:44:57.29ID:JlZwQVwy
Serreの著作のうちcitationのランキングのトップは

Serre, Jean-Pierre Local fields. Translated from the French by Marvin Jay Greenberg. Graduate Texts in Mathematics, 67. Springer-Verlag, New York-Berlin, 1979. viii+241 pp.

岩澤の「局所類体論」より1年早い。
2022/04/05(火) 17:21:02.53ID:Ua8MdWYf
>君のような数論バカは数論に必ずガロア理論が必要だと思っているから困るw

誰もそんなこと言ってないよ。
ガロア理論がなくても数論で証明できることは
いくらでもあるだろうが、初歩の論理さえ間違う
おっちゃんが自力で証明できる非自明な定理は
無いだろう。

>この無能がw

誤答おじさん・究極の○○のあなたに言われてもね。
ま、いつも他人から言われていたから
たまには自分が言ってみたかったんだろうw
2022/04/05(火) 17:41:13.35ID:Ua8MdWYf
>世界の中で散逸した民族なんて山ほどあるわけで。

とも書いたが、あえて抜かすのが姑息。
ひとの他スレでの書き込みをツールで検索した
上で引っ張ってきたり
おっちゃんが意外に卑怯者で性格も狂暴だと
いうことは分かった。
まぁ、これまではセタがうまくおだてていたのだろう。
そのせいで誇大妄想は悪化してるがw

ガロア理論がなくても数論で出来ることはあるが
あなたにとっては「酸っぱい葡萄」でしょ。
ガロア理論だけでなく、ディオファントス理論であれ
実解析であれ、およそ一つの数学理論をおっちゃんが
モノにしていることはないだろう。
セタと同じく引用が出来るだけ。
前に「ガロア理論の用語をしっかり覚えて(論文に生かしたい)」
ようなことを言っていたと思うが
「いろいろな本や理論を知っているから(それらを後ろ盾として)
おれの論文はトンデモじゃないし、信用度が上がる」
と思っているなら全くの誤り。
数学でそんな誤魔化しは利きませんから。
2022/04/05(火) 17:58:09.40ID:Ua8MdWYf
過去の掛け合い漫才には、おっちゃんとセタが
岩澤理論の良い文献について語り合うというシュール
なのもあったw
2022/04/05(火) 19:12:43.78ID:+2WUht8a
>>380
>>君のような数論バカは数論に必ずガロア理論が必要だと思っているから困るw

>誰もそんなこと言ってないよ。
君のレスの内容を総合的に見ると、君は概して代数を使う数論バカに見える
>(他の部分)
5チャンには紙に書くのとは違って地べたに座って学習机に置いた
パソコンに書くという通常では書きにくい環境でキーボードを打って書いている
だから、昔から私はどこかで間違い易く、結果的に私がバカに見え易いのだろう

>>381
>151132人目の素数さん2022/04/04(月) 00:36:40.91ID:QZh9tyZ2
>遊牧民か農耕民かというのは大きな違いで
>遊牧民の暴力を受けた地域=ロシア・中国が
>専制主義的で、周辺でそれから逃れた地域
>=欧州・日本に共通点があるというのは
>偶然ではない。
本当にこの文章は世界史について語っているとは思えないんだが
384132人目の素数さん
垢版 |
2022/04/05(火) 19:21:03.30ID:+2WUht8a
>>381
>前に「ガロア理論の用語をしっかり覚えて(論文に生かしたい)」
>ようなことを言っていたと思う
もしかしたら、軽いノリではいったことがあるかも知れない

まあ、学習とか計算などのジャマはしないでくれ
それにも関わらずしょーもないことでジャマをしているから、
君のことを バカタレ っていいたくなるんだよ
2022/04/05(火) 19:22:05.55ID:+2WUht8a
あ、age ちゃった
2022/04/05(火) 19:25:05.28ID:+2WUht8a
>>382
岩沢理論の具体的なテキストは知らないといっていい
2022/04/09(土) 15:25:21.65ID:IJSaWkmD
ま、どこの誰だかよく分からないが、短期は損気ということか
2022/04/09(土) 15:38:49.76ID:IJSaWkmD
あ、漢字間違えちゃった
短期は損気 → 短気は損気
しかしまあ、論文を書いた後の先行きについて、
現在の日本の制度では院を出てない者が論文を書いてもアカポスなどとは無縁になることは読める
2022/04/09(土) 23:51:44.43ID:RK+B35Bq
院は関係無い
書いた論文が糞なだけ
2022/04/10(日) 01:15:01.30ID:3Ot1DoJ9
ゴミの証明
2022/04/10(日) 03:40:50.19ID:4HHmLsuN
test
2022/04/10(日) 03:46:54.48ID:4HHmLsuN
>>389
「論文を書いた後の先行き」や「論文を書いても」と書いたことに対して
勝手に書いたことを前提に「書いた論文が糞なだけ」と反応するのが不可解だが、
実はまだ論文は書いていない
2022/04/10(日) 03:53:57.74ID:4HHmLsuN
>>391
>院は関係無い
おいおい、院の博士課程を経てアカポスに就くのは現在の日本では常識になっていることだぞ
2022/04/10(日) 03:59:31.09ID:4HHmLsuN
本来は sage て進む筈のスレがいつの間にか上に age られているのが不思議だが、
この不思議な現象のお陰で、やっと私(おっちゃん)に粘着する人物像、
または粘着する人物に関する実態や心理状態が把握出来た
なるほどね〜、そういうことか
2022/04/10(日) 04:03:56.05ID:4HHmLsuN
>>389

>>393は、>>391(私)ではなく、>>389へのレス
396132人目の素数さん
垢版 |
2022/04/10(日) 08:24:02.63
>>392
>実はまだ論文は書いていない
 今の乙には長文を書くだけの集中力はもはやない
397132人目の素数さん
垢版 |
2022/04/10(日) 08:26:14.82
>>393
>院の博士課程を経てアカポスに就くのは現在の日本では常識になっている
 正しくは「院の博士課程で博士の学位を取得してアカデミックポストにつく」だな
 つまり必要な条件は博士課程に3年間いることではなく博士の学位を取得すること
 ここわからん奴は馬鹿ね
398132人目の素数さん
垢版 |
2022/04/10(日) 08:34:07.60
>>394
sage機能が働いていない理由は不明だが
「全ての現象を”自分を陥れる陰謀”t解釈する」のは
統合失調症の典型的な症状

乙が、高木某と同様の
「自分が天才だと妄想することでのみ
 自我をかろうじて保つ統合失調症患者」
であることは間違いない

世間はありふれた精神病患者を抹殺する計画を立てるほど暇ではない
生暖かく見守るだけのこと
399132人目の素数さん
垢版 |
2022/04/10(日) 08:35:48.18
>>395
乙はレス番号を正しくつけるだけの集中力すら有しない
統合失調症患者であることの最も重要な証拠
400132人目の素数さん
垢版 |
2022/04/10(日) 08:38:28.18
統合失調症の認知障害
 本を最後まで読まなくなる
 指示通りに物事を進められない
 話の筋を理解できない
 単純作業をやり終えることができない
 気持ちや考えを集中することができない
2022/04/10(日) 08:48:48.70ID:Z+KTa8p3
>>396
>>実はまだ論文は書いていない
> 今の乙には長文を書くだけの集中力はもはやない
これをいうなら、集中力というよりむしろ英語力が不足していると自覚している
外国人が話すスピードで英会話が出来る訳でもない

>>397
文章の些末な書き方で突っ込み過ぎだよ
ホントにこういうレスを見ていると笑えて来るよw
2022/04/10(日) 08:57:06.24ID:Z+KTa8p3
>>398
>sage機能が働いていない理由は不明だが
>「全ての現象を”自分を陥れる陰謀”t解釈する」のは
>統合失調症の典型的な症状
sage機能が働いていない理由に関しては、何らかの5チャンでsage機能を働かせずにレスする機能があると分析出来る
403132人目の素数さん
垢版 |
2022/04/10(日) 09:22:03.95ID:JfaVaId9
今夜、お見逃し無く
4月10日(日)午後9:00
NHKスペシャル「数学者は宇宙をつなげるか? abc予想証明をめぐる数奇な物語」
30秒予告動画つき
https://www.nhk.jp/p/special/ts/2NY2QQLPM3/episode/te/PMMKK4872L/
初回放送日: 2022年4月10日
2020年春、数学の難問“abc予想”を日本人が証明したというニュースが報じられた。京大数理解析研の望月新一教授の論文「宇宙際タイヒミューラー理論」が専門誌に掲載されたのだ。だが数学界では「証明が理解できない」「いや絶対に正しい」と激論が続く。論理を積み上げれば誰もが同じ答えにたどり着くはずの数学の世界で、なぜ主張が真っ向から対立するのか?前代未聞の議論を追い、数学の魅力に迫る。▼語り・小倉久寛
2022/04/10(日) 10:19:53.72
>>401
>集中力というよりむしろ英語力が不足している
 英語どころか日本語でも書けない
 論理的に思考する能力が失われてるから
2022/04/10(日) 10:22:09.60
>>403
>2020年春、数学の難問“abc予想”を
>日本人が証明したというニュースが報じられた。
 ガセですけどね よくあることです
406132人目の素数さん
垢版 |
2022/04/10(日) 10:24:34.69
>>403
>京大数理解析研の望月新一教授の論文「宇宙際タイヒミューラー理論」が
>専門誌に掲載されたのだ。
 専門誌ではなく数解研が出してる雑誌ですね
 査読はあるとかいうけど実際はないんでしょう よくあることです 日本では
407132人目の素数さん
垢版 |
2022/04/10(日) 10:26:36.57
>>403
>だが数学界では「証明が理解できない」「いや絶対に正しい」と激論が続く。

激論はないですね
著者以外は証明が理解できない
著者だけが自明だと開き直ってるだけ
この手のことはよくあることです 特に数学後進国 日本では
408132人目の素数さん
垢版 |
2022/04/10(日) 10:30:36.91
>>403
>論理を積み上げれば誰もが同じ答えにたどり着くはずの数学の世界で、
>なぜ主張が真っ向から対立するのか?
 対偶をとればアホでもわかります
 「論理を積み上げれば誰もが同じ答えにたどり着く」の対偶は
 「それぞれ異なる答えに辿り着くのは論理を積み上げてないから」
 論理的に考えずに、自明だ!自明だ!!自明だ!!!と
 初歩的誤りをおかしつづけるのはよくあることです
 特に野蛮な土人の住む極東アジアの知的最後進国 ニッポンでは
409132人目の素数さん
垢版 |
2022/04/10(日) 10:32:54.71
ちなみにNHKは以前にもリーマン予想でガセネタを信じて
クソ番組を作った三流放送局なので信頼する馬鹿はいません

こんな番組が放送されたからといって
「これでICM特別賞間違いなし!!!」
と力みかえるのは毛深いニホンザルだけでしょう(嘲)
2022/04/10(日) 16:37:47.35ID:9f4z/4jV
>>404
正に手のひらの上で上手に手玉に取って受け流すことが最善の対策になるね
どこから統合失調症とか精神科とか出て来たのか不明だが、そもそも医者でないと正確な診断は不可能だぞ
心療内科とかのように、精神科に似て非なる診療科が幾つかある
そして、精神科と、心療内科とかのように精神科に似て非なる診療科で、それぞれ扱う病気の種類は微妙に異なる
2022/04/10(日) 18:11:07.54
>>410
やっぱり統合失調症だったか

別に恥じることはない ただの病気だ

気長に治療しろよ そうすれば自分が天才だなんて虚勢張って
わかりもしない数学を振り回すみっともないマネなんてしなくなるから
412132人目の素数さん
垢版 |
2022/04/10(日) 22:07:40.18ID:l+77rUFM
Nスぺは予想通りだった
何も言っていない
■ このスレッドは過去ログ倉庫に格納されています
5ちゃんねるの広告が気に入らない場合は、こちらをクリックしてください。

ニューススポーツなんでも実況