2000年以上前からある奇数の完全数が存在するのかという
数学上の未解決問題が、2018年8月22日に完全な証明が完成しました。
この証明が完全に正しいと公式に認定していただきたいと思います。
証明論文
Pdf文書 日本語
http://fast-uploader.com/file/7090446873724/
Pdf文書 英語
http://fast-uploader.com/file/7090447044856/
(前スレ)
奇数の完全数の存在に関する証明が完成しました
https://rio2016.5ch.net/test/read.cgi/math/1533414338/
(それより前のスレ)
最古の未解決問題が解決されたのか
https://rio2016.5ch.net/test/read.cgi/math/1522147912/
奇数の完全数の存在に関する証明は正しいはず
https://rio2016.5ch.net/test/read.cgi/math/1530434042/
(関連スレ)
奇数の完全数の有無について [無断転載禁止](c)2ch.net
https://rio2016.5ch.net/test/read.cgi/math/1483900653/
奇数の完全数の有無について2
https://rio2016.5ch.net/test/read.cgi/math/1523602627/
探検
奇数の完全数の存在に関する証明が完成しました2
レス数が1000を超えています。これ以上書き込みはできません。
2132人目の素数さん
2018/08/22(水) 10:48:12.41ID:S0tIMvkA かん‐せい〔クワン‐〕【完成】の意味
出典:デジタル大辞泉(小学館)
[名](スル)完全に出来上がること。すっかり仕上げること。「完成を見る」「ビルが完成する」「大作を完成する」
出典:デジタル大辞泉(小学館)
[名](スル)完全に出来上がること。すっかり仕上げること。「完成を見る」「ビルが完成する」「大作を完成する」
3132人目の素数さん
2018/08/22(水) 11:42:59.56ID:JZ6XLANs なおスレタイは「存在」のまま
1は何も学習しない
1は何も学習しない
4132人目の素数さん
2018/08/22(水) 11:56:13.96ID:sM8avlwB >この証明が完全に正しいと公式に認定していただきたいと思います。
1は前スレで承認してもらわなくても構わない。暇つぶしと断言したはずだが
1は前スレで承認してもらわなくても構わない。暇つぶしと断言したはずだが
6132人目の素数さん
2018/08/22(水) 12:11:46.77ID:pSDps/ix 二枚舌め
2018/08/22(水) 12:12:09.52ID:DeGlo53d
じゃあ別の場所でやってください
2018/08/22(水) 12:21:53.06ID:ML4zO2+g
こんなところに発表しても意味がないということもさんざん言われたはず
しかしよそのスレに来られても迷惑なだけなのでこのスレで妄言を垂れ流すことは見逃してやる
しかしよそのスレに来られても迷惑なだけなのでこのスレで妄言を垂れ流すことは見逃してやる
2018/08/22(水) 12:34:22.86ID:EQFoBoDI
結局、今版でも “因子” の意味は “Q[m]の因子” にしか取りようがない。
たとえばf(pr)のかわりにh(pr)に取り替えて議論してるけど、結局それも “Tiがすべて2m+1を因子にもってるから” だけどこの時点で因子はQ(m)の因子の意味にとらないと成立しない。
結局p12〜p13に至る議論はすべてQ[m]における議論で最終的に得られた
2m + 1がpr^(qr−cr−1)の倍数
という結論も “Q[m]において” でしかない。
つまり
2m+1がQ[m]においてpr^(qr−cr−1)の倍数
を証明したに過ぎず、
2m + 1 = w pr^(qr−cr−1) …I
のwもQ[m]の元でしかない。
つまりwはmの値に応じて変化するmの整式。
具体的にはw(m) = (2m+1)pr^(-pr+cr+1)。
ここでmを自由変数としてみなすことをやめて元の整数値にとりかえたときw(m)はもちろん整数になるとは限らない。
Iにおいてw(m)が整数でないという事が証明出来ていない状況でw=1などという結論は到底得られない。
たとえばf(pr)のかわりにh(pr)に取り替えて議論してるけど、結局それも “Tiがすべて2m+1を因子にもってるから” だけどこの時点で因子はQ(m)の因子の意味にとらないと成立しない。
結局p12〜p13に至る議論はすべてQ[m]における議論で最終的に得られた
2m + 1がpr^(qr−cr−1)の倍数
という結論も “Q[m]において” でしかない。
つまり
2m+1がQ[m]においてpr^(qr−cr−1)の倍数
を証明したに過ぎず、
2m + 1 = w pr^(qr−cr−1) …I
のwもQ[m]の元でしかない。
つまりwはmの値に応じて変化するmの整式。
具体的にはw(m) = (2m+1)pr^(-pr+cr+1)。
ここでmを自由変数としてみなすことをやめて元の整数値にとりかえたときw(m)はもちろん整数になるとは限らない。
Iにおいてw(m)が整数でないという事が証明出来ていない状況でw=1などという結論は到底得られない。
>>9
2m+1がpr^(qr-cr-1)の倍数でなければならないことを証明しているので、wは整数でしかありません
2m+1がpr^(qr-cr-1)の倍数でなければならないことを証明しているので、wは整数でしかありません
2018/08/22(水) 12:38:12.27ID:EQFoBoDI
>>9
✕:Iにおいてw(m)が整数でないという事が証明出来ていない状況でw=1などという結論は到底得られない。
○:Iにおいてw(m)が整数であるという事が証明出来ていない状況でw=1などという結論は到底得られない。
✕:Iにおいてw(m)が整数でないという事が証明出来ていない状況でw=1などという結論は到底得られない。
○:Iにおいてw(m)が整数であるという事が証明出来ていない状況でw=1などという結論は到底得られない。
2018/08/22(水) 12:39:48.90ID:q5K+5KiU
前々スレの105
>1はこの手の間違いを前スレから何度も繰り返している。AB = CD という等式があったときに、
「 A が C を割り切らないなら、A は D を割り切る 」
という間違った論法である。AとCが互いに素なら正しく使えるテクニックだが、
互いに素とは限らないケースでは全く使えないのである。
にも関わらず、>1は条件反射的に何度もこのミスを繰り返している。
>1がこのミスをしたのは、俺が見かけた範囲だけでも3回程度はあったはず(今回を含めて)。
おそらく、>1の中でこの間違え方は「クセ」になっている。
>1の反応を見る限り、>1はこの間違え方を全く克服できていない。
他人からその都度指摘されなければ、間違っていることが理解できない。
となれば、今後もこの間違え方を繰り返すものと思われる。
>1はこの手の間違いを前スレから何度も繰り返している。AB = CD という等式があったときに、
「 A が C を割り切らないなら、A は D を割り切る 」
という間違った論法である。AとCが互いに素なら正しく使えるテクニックだが、
互いに素とは限らないケースでは全く使えないのである。
にも関わらず、>1は条件反射的に何度もこのミスを繰り返している。
>1がこのミスをしたのは、俺が見かけた範囲だけでも3回程度はあったはず(今回を含めて)。
おそらく、>1の中でこの間違え方は「クセ」になっている。
>1の反応を見る限り、>1はこの間違え方を全く克服できていない。
他人からその都度指摘されなければ、間違っていることが理解できない。
となれば、今後もこの間違え方を繰り返すものと思われる。
2018/08/22(水) 12:40:25.55ID:q5K+5KiU
・1の書いたものが分かりにくい
・1の書いたものが正しいかどうか検証できない
・質問者を1が罵倒する
・明らかな間違いを指摘しても1が理解しない
・1の態度が悪い
・1が時々テレビから自分の悪口が聞こえると発言する
・1の書いたものが正しいかどうか検証できない
・質問者を1が罵倒する
・明らかな間違いを指摘しても1が理解しない
・1の態度が悪い
・1が時々テレビから自分の悪口が聞こえると発言する
2018/08/22(水) 12:40:42.69ID:q5K+5KiU
これまでの奇数芸人ネタ
・pは特定の値を持つはずだが0p=0であり不定になるから矛盾
・pは定数でありかつ変数である
・pが単調減少する(本当は単調減少しない)からpは素数になりえない
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか
・wは整数であり同時に整数でない
・2m+1は因数だが2m+1の倍数ではない
・a=b/3なら、aはbを因数に含む
・変数は数値に置き換えてはダメ
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然
・27/5 は 3 で割り切れる
・pは特定の値を持つはずだが0p=0であり不定になるから矛盾
・pは定数でありかつ変数である
・pが単調減少する(本当は単調減少しない)からpは素数になりえない
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか
・wは整数であり同時に整数でない
・2m+1は因数だが2m+1の倍数ではない
・a=b/3なら、aはbを因数に含む
・変数は数値に置き換えてはダメ
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然
・27/5 は 3 で割り切れる
2018/08/22(水) 12:41:03.01ID:q5K+5KiU
仮に馬鹿に馬鹿と言えば、馬鹿にしたことにはなる
仮に馬鹿証明を馬鹿証明と言えば馬鹿にしたことにはなるし、
仮に馬鹿論文を馬鹿論文と言えば馬鹿にしたことにはなるし、
仮に馬鹿著者を馬鹿著者と言えば馬鹿にしたことにはなる
仮に馬鹿証明を馬鹿証明と言えば馬鹿にしたことにはなるし、
仮に馬鹿論文を馬鹿論文と言えば馬鹿にしたことにはなるし、
仮に馬鹿著者を馬鹿著者と言えば馬鹿にしたことにはなる
2018/08/22(水) 12:41:18.93ID:q5K+5KiU
いつもの流れ
1.「間違いが見つかりました、撤回します」
↓
2.「(今論点じゃないところ)を修正しました。完成です」
↓
3.(論点について聞かれても)「もうすでに直しました(←直ってない)。読んでから言ってください」
1.「間違いが見つかりました、撤回します」
↓
2.「(今論点じゃないところ)を修正しました。完成です」
↓
3.(論点について聞かれても)「もうすでに直しました(←直ってない)。読んでから言ってください」
2018/08/22(水) 12:42:03.17ID:q5K+5KiU
2018/08/22(水) 12:42:03.23ID:EQFoBoDI
>>10
その “倍数” が “Q[m]において” です。
Q[m]においてAがBの倍数
の定義は
A = CB となる Q[m]の元Cがとれる
なので
Q[m]において2m+1がpr^(qr-cr-1)の倍数
とは
2m+1 = w pr^(qr-cr-1) となる Q[m]の元wがとれる
なのでwは整数とは限りません。
その “倍数” が “Q[m]において” です。
Q[m]においてAがBの倍数
の定義は
A = CB となる Q[m]の元Cがとれる
なので
Q[m]において2m+1がpr^(qr-cr-1)の倍数
とは
2m+1 = w pr^(qr-cr-1) となる Q[m]の元wがとれる
なのでwは整数とは限りません。
2018/08/22(水) 12:42:25.94ID:q5K+5KiU
先生「次の式を満たす自然数 p はいくつか」
p * p = 4
高木くん「右の p は1。左は4です。」
高木くん「pは固定値ではないのでそう考えることができるということ」
高木くん「よく読んでから反論してもらいたい、何の考慮に値しない反応ばかりだ」
高木くん「これから、考慮に値しない稚拙はレスは無視する」
p * p = 4
高木くん「右の p は1。左は4です。」
高木くん「pは固定値ではないのでそう考えることができるということ」
高木くん「よく読んでから反論してもらいたい、何の考慮に値しない反応ばかりだ」
高木くん「これから、考慮に値しない稚拙はレスは無視する」
2018/08/22(水) 12:42:53.15ID:q5K+5KiU
完成おめでとうございます!
.。☆.゚。.。
。:☆・。゚◇*.゚。
・◎.★゚.@☆。:*・.
.゚★.。;。☆.:*◎.゚。
:*。_☆◎。_★*・_゚
\ξ \ ζ/
∧,,∧\ ξ
(´・ω・`)/
/ つ∀o
しー-J
完成したのに、なんで今更定義の誤りを修正するの?
何回完成するんですかね
.。☆.゚。.。
。:☆・。゚◇*.゚。
・◎.★゚.@☆。:*・.
.゚★.。;。☆.:*◎.゚。
:*。_☆◎。_★*・_゚
\ξ \ ζ/
∧,,∧\ ξ
(´・ω・`)/
/ つ∀o
しー-J
完成したのに、なんで今更定義の誤りを修正するの?
何回完成するんですかね
2018/08/22(水) 12:49:56.58ID:GBkE0PVl
前995
>2m+1以外の因数をu(pr)とし、h(pr)=(2m+1)u(pr)
>が成り立つ場合に、有理数多項式u(pr)がprで割り切られないことを証明しています。
「有理数多項式u(pr)が」という言い回しが気になる。
・ prを素数として、有理数u(pr)が整数環Zにおいて実際には整数になっていることを証明して、
かつ整数u(pr)がZにおいて素数prで割り切れないことを証明したのか?
・ それとも、prを変数として、prの多項式u(pr)がQ[pr]において多項式 pr で割り切れないことを証明したのか?
(言い換えれば、xの多項式u(x)が多項式環Q[x]において多項式 x で割り切れないことを証明したのか?)
もし後者なら、そんなことが言えても意味がない。
x=prを代入して整数環Zに移行したときには因子の関係が崩れるから。
例:xの多項式u(x)=(4/5)x+1は、Q[x]において多項式 x で割り切れないが、
pr=5とするとき、u(pr)は整数環Zにおいてprで割り切れる。なぜなら、
u(pr)=u(5)=5=prなので。
>2m+1以外の因数をu(pr)とし、h(pr)=(2m+1)u(pr)
>が成り立つ場合に、有理数多項式u(pr)がprで割り切られないことを証明しています。
「有理数多項式u(pr)が」という言い回しが気になる。
・ prを素数として、有理数u(pr)が整数環Zにおいて実際には整数になっていることを証明して、
かつ整数u(pr)がZにおいて素数prで割り切れないことを証明したのか?
・ それとも、prを変数として、prの多項式u(pr)がQ[pr]において多項式 pr で割り切れないことを証明したのか?
(言い換えれば、xの多項式u(x)が多項式環Q[x]において多項式 x で割り切れないことを証明したのか?)
もし後者なら、そんなことが言えても意味がない。
x=prを代入して整数環Zに移行したときには因子の関係が崩れるから。
例:xの多項式u(x)=(4/5)x+1は、Q[x]において多項式 x で割り切れないが、
pr=5とするとき、u(pr)は整数環Zにおいてprで割り切れる。なぜなら、
u(pr)=u(5)=5=prなので。
22132人目の素数さん
2018/08/22(水) 13:27:21.38ID:sM8avlwB >>16
まさにこれ。正しくないものを認めさせてどうしたいのかわからん
まさにこれ。正しくないものを認めさせてどうしたいのかわからん
23132人目の素数さん
2018/08/22(水) 13:33:41.77ID:uI/lOkSR 例示
x=3のとき
多項式xは多項式(5/3)xの因数であるが、整数xは整数(5/3)xの因数でない
多項式xは多項式(5/3)x+1の因数でないが、整数xは整数(5/3)x+1の因数である
多項式の因数と整数の因数はまったく別物
因数を根拠にするのはこの際すっぱりやめてはどうか。
x=3のとき
多項式xは多項式(5/3)xの因数であるが、整数xは整数(5/3)xの因数でない
多項式xは多項式(5/3)x+1の因数でないが、整数xは整数(5/3)x+1の因数である
多項式の因数と整数の因数はまったく別物
因数を根拠にするのはこの際すっぱりやめてはどうか。
2018/08/22(水) 14:09:55.81ID:EQFoBoDI
一応分かる人向けに。
奇素数p,qがp = 2q + 1の関係にあり
v_q((p^(n+1)-1)/(p-1)) = e
であるとき
v_q((p^(n+1)-1)/(p-1))
= v_q((1-2q)^(2n+2) - 1^(n+1))
= v_q (1-2q - 1) + v_q(n+1) (∵ 一般に a≡b (mod q)、a,bはqの倍数でないとき v_q(a^i - b^i) = v_q(a-b) + v_q(i)。)
= 1+v_q(n+1)
なので>>1の論文中のp = 2qr+1の場合v_pr((p^(n+1)-1)/(p-1))=qr-cr-1というのは多分正しい。
つまり
2m+1 = w pr^(qr-cr-1) (∃w : 奇数)
はp = 2pr + 1である場合には正しい。
でもこれが任意のrで成立するわけではないので以降の議論は成立してません。
奇素数p,qがp = 2q + 1の関係にあり
v_q((p^(n+1)-1)/(p-1)) = e
であるとき
v_q((p^(n+1)-1)/(p-1))
= v_q((1-2q)^(2n+2) - 1^(n+1))
= v_q (1-2q - 1) + v_q(n+1) (∵ 一般に a≡b (mod q)、a,bはqの倍数でないとき v_q(a^i - b^i) = v_q(a-b) + v_q(i)。)
= 1+v_q(n+1)
なので>>1の論文中のp = 2qr+1の場合v_pr((p^(n+1)-1)/(p-1))=qr-cr-1というのは多分正しい。
つまり
2m+1 = w pr^(qr-cr-1) (∃w : 奇数)
はp = 2pr + 1である場合には正しい。
でもこれが任意のrで成立するわけではないので以降の議論は成立してません。
2018/08/22(水) 14:11:11.63ID:EQFoBoDI
2018/08/22(水) 14:47:41.67ID:TjDmvh6J
このスレでは多分正しいとか証明できたと思いますみたいな表現が推奨されてるの?
2018/08/22(水) 14:50:35.15ID:q5K+5KiU
非難されまっくてるけど、1には聞く耳なし
28132人目の素数さん
2018/08/22(水) 14:58:44.64ID:+1hzjMAH >>24
v_q((p^(n+1)-1)/(p-1)) = v_q(n+1) とちゃうん?
v_q((p^(n+1)-1)/(p-1)) = v_q(n+1) とちゃうん?
2018/08/22(水) 15:21:12.18ID:8/rMiWdF
>>28
あ、失礼、そうです。±1補正して読んで下さい。
この後なぜかこの議論が全てのprで成立する事を利用して議論が進みますが、p=2pr+1を利用してるので他の素因子には使えません。証明見直せば少しは広げられるかもしれませんが。
あ、失礼、そうです。±1補正して読んで下さい。
この後なぜかこの議論が全てのprで成立する事を利用して議論が進みますが、p=2pr+1を利用してるので他の素因子には使えません。証明見直せば少しは広げられるかもしれませんが。
2018/08/22(水) 15:23:23.53ID:8/rMiWdF
>>26
そう言うわけでもないけど暇つぶしなのでそこまでキッチリ検証しないで書いてるので。
そう言うわけでもないけど暇つぶしなのでそこまでキッチリ検証しないで書いてるので。
2018/08/22(水) 16:34:20.17ID:cFHdshZo
r=
2018/08/22(水) 16:47:47.10ID:q5K+5KiU
でもこれが任意のrで成立するわけではないので以降の議論は成立してません。
2018/08/22(水) 17:14:51.76ID:VOw4FIFW
>>31
2m+1がpr^(qr - cr -1)で割り切れる…(※)
の導出に
p = 2pr -1…(*)
を利用しています。
論文中ではそれを明示してないだけです。
明示していようが、いまいが、使って導出してるのだから(※)を利用するなら(*)が成り立っているprでなければダメです。
たしかに b がpi^qiで割り切れるのは他のiでも成立してますが、そのことだけを用いて(※)を導出できていません。
2m+1がpr^(qr - cr -1)で割り切れる…(※)
の導出に
p = 2pr -1…(*)
を利用しています。
論文中ではそれを明示してないだけです。
明示していようが、いまいが、使って導出してるのだから(※)を利用するなら(*)が成り立っているprでなければダメです。
たしかに b がpi^qiで割り切れるのは他のiでも成立してますが、そのことだけを用いて(※)を導出できていません。
2018/08/22(水) 18:51:46.55ID:8/rMiWdF
>>36
cが可変とかなんとかはどうでもよろしい。
p = 2pr+1
を利用してるのだからこれが成立しないとダメです。
利用してるでしょ?
p = 2pr -1…(*)
が議論のはじまりで、ここから
f(pr) = ((2pr-1)^(n+1) - 1)/(2pr-2) = 1+p+…+p^n
となって
f(pr)のprのmultiplicity = 1+p+…+p^nのprのmultiplicity…(@)
で右辺がqr-crに等しいがすべての議論の出発点でしょ?
(ちなみにmultiplicityはその素数で何回われてるかの値です。)
これから話をh(pr)に置き換えて…が論文でやってることでしょ?
その部分にも因子問題があって全然議論成立してませんが、別の道であなたが得た結論
2m+1 のpr のmultiplicity = qr - cr -1…Iのちょっと前(←ここ±1ずれてるかもしれませんが。ちゃんと精査してないので。)
に至る方法はあります。
しかしそれも(@)、ひいては(*)がすべての議論の始まりでこれが成立してないとなにもできません。
要はbとかcとかどうでもよろしい。
p と pr について(*)が成立してないとIを導出できません。
しかし(*)をみたしてるprは一個だけで他の素因子についてはなんにもわかりません。
cが可変とかなんとかはどうでもよろしい。
p = 2pr+1
を利用してるのだからこれが成立しないとダメです。
利用してるでしょ?
p = 2pr -1…(*)
が議論のはじまりで、ここから
f(pr) = ((2pr-1)^(n+1) - 1)/(2pr-2) = 1+p+…+p^n
となって
f(pr)のprのmultiplicity = 1+p+…+p^nのprのmultiplicity…(@)
で右辺がqr-crに等しいがすべての議論の出発点でしょ?
(ちなみにmultiplicityはその素数で何回われてるかの値です。)
これから話をh(pr)に置き換えて…が論文でやってることでしょ?
その部分にも因子問題があって全然議論成立してませんが、別の道であなたが得た結論
2m+1 のpr のmultiplicity = qr - cr -1…Iのちょっと前(←ここ±1ずれてるかもしれませんが。ちゃんと精査してないので。)
に至る方法はあります。
しかしそれも(@)、ひいては(*)がすべての議論の始まりでこれが成立してないとなにもできません。
要はbとかcとかどうでもよろしい。
p と pr について(*)が成立してないとIを導出できません。
しかし(*)をみたしてるprは一個だけで他の素因子についてはなんにもわかりません。
38132人目の素数さん
2018/08/22(水) 19:38:29.13ID:rbmhU+3R 論文2ページで『yの素因数の指数は一つだけ奇数』と明記しており、
論文ではそのただ一つだけ奇数の指数をもつ素因数をpとしている。
算術の基本定理より、最初に仮定したyに対してpは一意に定まる。
このpに対して(p+1)/2がyの因数という性質は言えるが、
p以外のいかなる素因数pkについても(pk+1)/2がyの因数とは言えない。
そもそもpが一意だからp=2pk-1が成立するようなkもyに対して一意となる。
まさか、1は算術の基本定理も知らないのかい?まさかね。
論文ではそのただ一つだけ奇数の指数をもつ素因数をpとしている。
算術の基本定理より、最初に仮定したyに対してpは一意に定まる。
このpに対して(p+1)/2がyの因数という性質は言えるが、
p以外のいかなる素因数pkについても(pk+1)/2がyの因数とは言えない。
そもそもpが一意だからp=2pk-1が成立するようなkもyに対して一意となる。
まさか、1は算術の基本定理も知らないのかい?まさかね。
2018/08/22(水) 19:58:46.37ID:fJ5OxbRN
>まさか、1は算術の基本定理も知らないのかい?
当然知らないのですよ。
当然知らないのですよ。
40132人目の素数さん
2018/08/22(水) 21:08:22.98ID:sM8avlwB ここに公開しているといつか認めてくれる人が現れると1は考えてるようだが、これだけ
"評判の悪い広告"ついてると不利だよ
"評判の悪い広告"ついてると不利だよ
2018/08/22(水) 22:00:38.24ID:fJ5OxbRN
ここでしか1の相手をしてくれないし、
1がさっぱり勉強してこなかった数学を教えてくれるのもここだけ。
居心地が良いらしく半年も過ごしやがった。
1がさっぱり勉強してこなかった数学を教えてくれるのもここだけ。
居心地が良いらしく半年も過ごしやがった。
>>41
問題解決のためにそれだけ時間が掛かったということでしかない。
問題解決のためにそれだけ時間が掛かったということでしかない。
yとpが一対一対応するのは当然ですが、pが複数あった場合はただ
奇数の完全数が複数存在するというだけで何の問題もありません
奇数の完全数が複数存在するというだけで何の問題もありません
2018/08/22(水) 22:15:32.20ID:n6D4ACsY
↑この発言はかなりやばい。もはや数学じゃない。
46132人目の素数さん
2018/08/22(水) 22:19:04.18ID:X5MN+zZX 1「奇数の完全数は奇素数の数だけ存在すると仮定できます。だから、奇数の完全数は無数に存在します」
47132人目の素数さん
2018/08/22(水) 22:33:38.22ID:5lRrIxGh >>46
なるほどね。
1の発言を素直に解釈するとそうなるな
>pが複数あった場合はただ奇数の完全数が複数存在するというだけで何の問題もありません
ということは、1の過去の主張によると、奇素数 p があると、
(根拠は分からないが)そこから b と c を決定でき、2b=c(p^n+…+1) となるようにできる。
こうなる b と p を使って y=b×p^n とすると、y は奇数の完全数になる。
よって、奇素数の数だけ完全数が存在するという理屈にはなるな。全く理解できないが。
スレタイは間違っていなかったわけだ。
なるほどね。
1の発言を素直に解釈するとそうなるな
>pが複数あった場合はただ奇数の完全数が複数存在するというだけで何の問題もありません
ということは、1の過去の主張によると、奇素数 p があると、
(根拠は分からないが)そこから b と c を決定でき、2b=c(p^n+…+1) となるようにできる。
こうなる b と p を使って y=b×p^n とすると、y は奇数の完全数になる。
よって、奇素数の数だけ完全数が存在するという理屈にはなるな。全く理解できないが。
スレタイは間違っていなかったわけだ。
2018/08/22(水) 22:35:44.58ID:+4gdWOUh
>>42
2b=c(p^n+…+1)となり、cが各kに対して変化するので、pが複数あっても構わないという考えです。
2b=c(p^n+…+1)で最初に選んだp以外で同じ議論をしようと思ってもそうはいきません。
pがうごけば肩の数字のnも動きます。crも変化します。
そしてその変化させたp(仮にqとしましょう。)q = 2qr -1となるqrは存在するかどうかわかりません。
I の仮定は最初のpにたいしてp = 2pr-1となるprが存在するときです。
かりにq = 2qr -1となるqrがあったとしましょう。
しかしこのときnやcrももとのnとcrとは違うあたいです。
さらに
2y = (1+q+…+q^n’)A’ =2q^m B’
のn’はqがp以外の素因子なのでn’は偶数です。
つまり「Iを導出したのと同様に」は通用しません。
しかもそれで仮になにかn’やqs-cs’についての情報が
(何かしらの n’ の式) =qr’ - cr’ - 1
のような形で得られてもここに n も m は出てきません。
つまりこれから
2m + 1 = w’ps^(qs - cs -1)
が導かれるわけではありません。
2b=c(p^n+…+1)となり、cが各kに対して変化するので、pが複数あっても構わないという考えです。
2b=c(p^n+…+1)で最初に選んだp以外で同じ議論をしようと思ってもそうはいきません。
pがうごけば肩の数字のnも動きます。crも変化します。
そしてその変化させたp(仮にqとしましょう。)q = 2qr -1となるqrは存在するかどうかわかりません。
I の仮定は最初のpにたいしてp = 2pr-1となるprが存在するときです。
かりにq = 2qr -1となるqrがあったとしましょう。
しかしこのときnやcrももとのnとcrとは違うあたいです。
さらに
2y = (1+q+…+q^n’)A’ =2q^m B’
のn’はqがp以外の素因子なのでn’は偶数です。
つまり「Iを導出したのと同様に」は通用しません。
しかもそれで仮になにかn’やqs-cs’についての情報が
(何かしらの n’ の式) =qr’ - cr’ - 1
のような形で得られてもここに n も m は出てきません。
つまりこれから
2m + 1 = w’ps^(qs - cs -1)
が導かれるわけではありません。
2018/08/22(水) 22:38:06.19ID:fJ5OxbRN
>>19 だな
高木時空では、1変数pが複数の値を同時に取ると。
高木時空では、1変数pが複数の値を同時に取ると。
2018/08/23(木) 00:47:55.13ID:jIv6qxil
だいたいpのかわりの素因子qをつかったらy = q^l B’(B’はqと互いに素)とおいたときのlは奇数じゃないからl = 4k+1と置くこともできないし、
さらにB’は(q+1)/2の倍数であるとすらいえない。
こんな状況でなんでpを取り替えてもいいと思えるんだろう?
取り替えてもいいのかなと勘違いしても、チェックしてみれば1分かからずダメと分かりそうなもんだけど。
さらにB’は(q+1)/2の倍数であるとすらいえない。
こんな状況でなんでpを取り替えてもいいと思えるんだろう?
取り替えてもいいのかなと勘違いしても、チェックしてみれば1分かからずダメと分かりそうなもんだけど。
2018/08/23(木) 01:45:54.86ID:HquG05xP
何に依存してるかがわかるように、p(y)とか書いてみたらどうかね?
もちろん違うyに依存するならそれがわかるように。
おかしいなこれ、ってなると思うんだけど……
もちろん違うyに依存するならそれがわかるように。
おかしいなこれ、ってなると思うんだけど……
2018/08/23(木) 02:22:39.37ID:HquG05xP
「任意の奇数の完全数yに対して, 指数が奇数のyの素因数p(y)がただ一つ存在し, p(y)≡1(mod 4)」
は真だが
「任意の奇素数p,p≡1(mod 4)に対して, p=p(y)となる奇数の完全数yが存在する」
は必ずしも真ではない(逆は真ならず)
よって, p_kに対して対応するpがあるとは限らんね
は真だが
「任意の奇素数p,p≡1(mod 4)に対して, p=p(y)となる奇数の完全数yが存在する」
は必ずしも真ではない(逆は真ならず)
よって, p_kに対して対応するpがあるとは限らんね
2018/08/23(木) 08:58:59.52ID:jjOcfQbu
まずyを決めているというのが理解できてないんですか?
2018/08/23(木) 09:10:50.09ID:jjOcfQbu
だから先にyを決めてるんですよね?
論文を読んでください
論文を読んでください
2018/08/23(木) 09:12:44.91ID:I1eZArX+
yを作っちゃったぞ
>>57
定義はしていますが、値は定めていません
定義はしていますが、値は定めていません
2018/08/23(木) 09:45:38.34ID:aDhxWP96
↑この発言がいかに意味不明かを本人に理解させるために俺らができることは何か
2018/08/23(木) 10:05:11.72ID:K06i0J+R
これまでの奇数芸人ネタ
・pは特定の値を持つはずだが0p=0であり不定になるから矛盾
・pは定数でありかつ変数である
・pが単調減少する(本当は単調減少しない)からpは素数になりえない
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか
・wは整数であり同時に整数でない
・2m+1は因数だが2m+1の倍数ではない
・a=b/3なら、aはbを因数に含む
・変数は数値に置き換えてはダメ
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然
・27/5 は 3 で割り切れる
・定義はしていますが、値は定めていません (NEW)
・pは特定の値を持つはずだが0p=0であり不定になるから矛盾
・pは定数でありかつ変数である
・pが単調減少する(本当は単調減少しない)からpは素数になりえない
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか
・wは整数であり同時に整数でない
・2m+1は因数だが2m+1の倍数ではない
・a=b/3なら、aはbを因数に含む
・変数は数値に置き換えてはダメ
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然
・27/5 は 3 で割り切れる
・定義はしていますが、値は定めていません (NEW)
2018/08/23(木) 10:10:37.89ID:6p7BvH4m
大きなフリを効かせて、ちょうどいい頃合いで新ネタを披露してくれるあたり、芸人の鑑と言える。
応援するよ。
応援するよ。
2018/08/23(木) 10:10:45.76ID:K06i0J+R
何度同じことを書けばいいんだか
最初に仮定した奇数の完全数y
→pk、qkを設定する
→a,bを決定する
→それに対応する、p,c,n(複数でも可)が定まれば
→yが定まる
最初に仮定した奇数の完全数y
→pk、qkを設定する
→a,bを決定する
→それに対応する、p,c,n(複数でも可)が定まれば
→yが定まる
2018/08/23(木) 10:11:12.38ID:K06i0J+R
最初に仮定した奇数の完全数yと、pが一対一対応するのは当然。
このpが複数あった場合は、ただ奇数の完全数が複数存在するというだけで何の問題もありません。
このpが複数あった場合は、ただ奇数の完全数が複数存在するというだけで何の問題もありません。
2018/08/23(木) 12:18:16.27ID:HquG05xP
背理法の証明やったことないのかな
2018/08/23(木) 12:22:26.19ID:M5ZubL2y
一応ここは数学板なんですが
コントは他でやって
コントは他でやって
67132人目の素数さん
2018/08/23(木) 12:22:50.71ID:+Bb/gGkm 高木くん「√2は有理数です」
先生「なぜそう言えるのですか?
√2の既約分数をa/bとします。
a^2=2b^2となるのでaは偶数、
左辺が4の倍数になるのでbも偶数です。
a/bが既約分数という仮定と矛盾しますよ」
高木くん「いいえ、そのa/bを約分したら必ず既約分数となります。
√2の既約分数が複数存在すると言うだけで何の問題もありません
そんな簡単なこともわからないのですか」
先生「なぜそう言えるのですか?
√2の既約分数をa/bとします。
a^2=2b^2となるのでaは偶数、
左辺が4の倍数になるのでbも偶数です。
a/bが既約分数という仮定と矛盾しますよ」
高木くん「いいえ、そのa/bを約分したら必ず既約分数となります。
√2の既約分数が複数存在すると言うだけで何の問題もありません
そんな簡単なこともわからないのですか」
2018/08/23(木) 12:45:51.69ID:HquG05xP
>>68
>「完全数yが存在すると仮定した場合以下の式が成り立つ。」
>とでも書けばいいんですね。
>そのような形式的なことは私からすると、些末なことでどうでもいいことなのですけど。
「完全数yが存在すると仮定した場合、このyに対して以下の式が成り立つ。」
などになるでしょうね。
「予め一つ定めたy」に対する主張になります。
それを些末だと思って認識から外していると誤謬を招きます。
>「完全数yが存在すると仮定した場合以下の式が成り立つ。」
>とでも書けばいいんですね。
>そのような形式的なことは私からすると、些末なことでどうでもいいことなのですけど。
「完全数yが存在すると仮定した場合、このyに対して以下の式が成り立つ。」
などになるでしょうね。
「予め一つ定めたy」に対する主張になります。
それを些末だと思って認識から外していると誤謬を招きます。
2018/08/23(木) 12:47:56.45ID:K06i0J+R
>この問題は完全に解決していますから
そう言いながら100回も修正するんだからもうバレてるの。
1自身が、いかにこのPDFをいい加減に落書きしたのか認識しているはず。
自分ですら信じてないのに完成!完成!と言っても騙せないよ。
そう言いながら100回も修正するんだからもうバレてるの。
1自身が、いかにこのPDFをいい加減に落書きしたのか認識しているはず。
自分ですら信じてないのに完成!完成!と言っても騙せないよ。
2018/08/23(木) 13:12:41.64ID:aDhxWP96
みんなが粘って指摘し続けてるためか、最初の最初の背理法の仮定にまで指摘が昇華されてきててなかなか面白いな。
しかし反論が意味不明でこれ以上の昇華が見込めるかどうか
しかし反論が意味不明でこれ以上の昇華が見込めるかどうか
2018/08/23(木) 13:24:27.55ID:kByImh9Z
>>53
ダメです。
Iは無条件に成立する式ではありません。
Iを示すまでで示したことをキチンとまとめれば
∃y A B p
yは奇数の完全数,pは素数でv_p(y) = 4m+1 …(A)
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A …(B)
qr = v_pr(B) …(C)
cr = v_pr(A) …(D)
p = 2pr -1 …(E)
⇒∃w 2m+1 = wpr^(qr-cr-1) …(F)
ですよね?
結論(F)の式の中には陽にyやpは出てきませんが、だからyやpに無関係な(C)〜(F)だけを拾い出して
(C)〜(E)⇒(F)
が証明できたことになんてなりません。
一例をあげるなら
x=t^2,y=t^4 …(X)
x>2, y>3 …(Y)
⇒y=x^2 …(Z)
は正しい推論ですが、(Z)のなかにはtがないからといって
(Y)⇒(Z) i.e. x>2,y>3 ⇒ y=x^2
が証明できたなんて主張はできないでしょ?
つまり(F)式がすべての素数psについて成立するというなら任意の素数psにたいしてy', p', A', B'で
y'は奇数の完全数,p'は素数でv_p'(y') = 4m+1 …(A)
2y' = 2p'^(4m+1)B' = (1+p'+…+p'^(4m+1))A' …(B)
qs = v_ps(B') …(C)
cs = v_ps(A') …(D)
p' = 2ps -1 …(E)
をすべて満たすものが存在することを証明しなければなりません。
そしてその証明は現時点で論文にはないのでyを取り替えることによって任意の素数psについてIが示されているとは言えません。
ダメです。
Iは無条件に成立する式ではありません。
Iを示すまでで示したことをキチンとまとめれば
∃y A B p
yは奇数の完全数,pは素数でv_p(y) = 4m+1 …(A)
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A …(B)
qr = v_pr(B) …(C)
cr = v_pr(A) …(D)
p = 2pr -1 …(E)
⇒∃w 2m+1 = wpr^(qr-cr-1) …(F)
ですよね?
結論(F)の式の中には陽にyやpは出てきませんが、だからyやpに無関係な(C)〜(F)だけを拾い出して
(C)〜(E)⇒(F)
が証明できたことになんてなりません。
一例をあげるなら
x=t^2,y=t^4 …(X)
x>2, y>3 …(Y)
⇒y=x^2 …(Z)
は正しい推論ですが、(Z)のなかにはtがないからといって
(Y)⇒(Z) i.e. x>2,y>3 ⇒ y=x^2
が証明できたなんて主張はできないでしょ?
つまり(F)式がすべての素数psについて成立するというなら任意の素数psにたいしてy', p', A', B'で
y'は奇数の完全数,p'は素数でv_p'(y') = 4m+1 …(A)
2y' = 2p'^(4m+1)B' = (1+p'+…+p'^(4m+1))A' …(B)
qs = v_ps(B') …(C)
cs = v_ps(A') …(D)
p' = 2ps -1 …(E)
をすべて満たすものが存在することを証明しなければなりません。
そしてその証明は現時点で論文にはないのでyを取り替えることによって任意の素数psについてIが示されているとは言えません。
2018/08/23(木) 13:25:04.77ID:IqK/6D9+
2018/08/23(木) 13:31:01.74ID:IqK/6D9+
∃∀が出てくると1にはさっぱりだし、
数学板のレベルに遠すぎてどうしようもない。
1は算数からやり直せ。
数学板のレベルに遠すぎてどうしようもない。
1は算数からやり直せ。
>>69
yはpが存在すれば、yはその式で表されるとしか書いていません
>>70
この問題は難問であり、背理法で証明しなければならないので、少しでも計算間違いや
論理の間違いをすると、それが答えだと思い込む問題だから仕方がない。
この内容も3度書いた。
>>71
正解に到達したわけだから、正当な反論ができないのは普通のこと。
>>72
式Iは無条件に成り立つ式ではないというのは間違っています。少なくとも一つはそうなる
pkが存在しないと、全てのpk^qkでbが割り切られないから不適になります。
ということで、そのkが存在しなければなりませんが、bの形から全てのkに対して式Iが
成り立たなければならないのは自明ではないのでしょうか?
>>74
お前がなー
yはpが存在すれば、yはその式で表されるとしか書いていません
>>70
この問題は難問であり、背理法で証明しなければならないので、少しでも計算間違いや
論理の間違いをすると、それが答えだと思い込む問題だから仕方がない。
この内容も3度書いた。
>>71
正解に到達したわけだから、正当な反論ができないのは普通のこと。
>>72
式Iは無条件に成り立つ式ではないというのは間違っています。少なくとも一つはそうなる
pkが存在しないと、全てのpk^qkでbが割り切られないから不適になります。
ということで、そのkが存在しなければなりませんが、bの形から全てのkに対して式Iが
成り立たなければならないのは自明ではないのでしょうか?
>>74
お前がなー
2018/08/23(木) 20:45:20.19ID:27oyyIdd
>少なくとも一つはそうなる
>そのkが存在しなければなりませんが
>全てのkに対して式Iが成り立たなければならない
いつもの∃∀の理解できない1による
すごく頭の悪い迷言キター
>そのkが存在しなければなりませんが
>全てのkに対して式Iが成り立たなければならない
いつもの∃∀の理解できない1による
すごく頭の悪い迷言キター
>>76
飽きた
飽きた
78132人目の素数さん
2018/08/23(木) 20:58:32.08ID:8Xy8APGJ 飽きようが何しようが間違っとるもんは間違っとるんよ
79132人目の素数さん
2018/08/23(木) 21:07:53.88ID:+M/ERTfV 1が「飽きた」「つまらん」「論文をよく読んで」「考慮に値しない」「未解決問題ですから」を繰り出すときは反論に詰まったとき。
いわゆる白旗を揚げた状態ととらえてよい。
いわゆる白旗を揚げた状態ととらえてよい。
82\math135
2018/08/23(木) 21:11:21.96ID:ziRzgMWB つまらない反論もどきはこれから全て無視する
2018/08/23(木) 21:12:08.38ID:LGJTq8r8
正しい証明の可能性はゼロ
乱数で文字を並べるよりも可能性は低い
乱数で文字を並べるよりも可能性は低い
84132人目の素数さん
2018/08/23(木) 21:21:54.39ID:hk0DZdiZ 怒りに震えて思わず酉を晒してしまう高木くん可愛いw
85132人目の素数さん
2018/08/23(木) 21:25:40.93ID:8Xy8APGJ よっぽど図星だったんだな
2018/08/23(木) 21:26:25.14ID:27oyyIdd
これまでの奇数芸人ネタ
・pは特定の値を持つはずだが0p=0であり不定になるから矛盾
・pは定数でありかつ変数である
・pが単調減少する(本当は単調減少しない)からpは素数になりえない
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか
・wは整数であり同時に整数でない
・2m+1は因数だが2m+1の倍数ではない
・a=b/3なら、aはbを因数に含む
・変数は数値に置き換えてはダメ
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然
・27/5 は 3 で割り切れる
・定義はしていますが、値は定めていません (NEW)
・少なくとも一つはそうなる、ということで
全てに対して成り立たなければならない (NEW)
・pは特定の値を持つはずだが0p=0であり不定になるから矛盾
・pは定数でありかつ変数である
・pが単調減少する(本当は単調減少しない)からpは素数になりえない
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか
・wは整数であり同時に整数でない
・2m+1は因数だが2m+1の倍数ではない
・a=b/3なら、aはbを因数に含む
・変数は数値に置き換えてはダメ
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然
・27/5 は 3 で割り切れる
・定義はしていますが、値は定めていません (NEW)
・少なくとも一つはそうなる、ということで
全てに対して成り立たなければならない (NEW)
2018/08/23(木) 21:45:12.76ID:vqOp3/ww
一は全、全は一やからな
>>1は哲学者や
>>1は哲学者や
2018/08/23(木) 22:44:01.80ID:MO0VXEB9
>>75
>式Iは無条件に成り立つ式ではないというのは間違っています。
論文中Iを導出している前の方をにいろいろ仮定しています。
>奇数の完全数を y、そのうち一つの素因数を p、p の指数を整数 n(n ≧ 1)、p 以外の素
>因数を𝑝1,𝑝2,𝑝3,…𝑝𝑟とし、𝑝𝑘の指数を𝑞𝑘、素数 p 以外の積の組み合わせの合計を a とす
>る
明示してませんが、この文章ですでに”∃y ∃p …”と仮定してますね。
あと場合わけの仮定
>T. pr = (p + 1)/2のとき
これも仮定です。
あなたが式Iに到達した議論までで示されたのはキチンと論理式でかけば
∃y A B p
yは奇数の完全数,pは素数でv_p(y) = 4m+1 …(A)
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A …(B)
qr = v_pr(B) …(C)
cr = v_pr(A) …(D)
p = 2pr -1 …(E)
⇒∃w 2m+1 = wpr^(qr-cr-1) …(F)
です。
>bの形から全てのkに対して式Iが
>成り立たなければならないのは自明ではないのでしょうか?
これは既に指摘したとおり許されない論理です。
式の形だけですべてのkについて成り立つなどという論法は数学の世界には存在しません。
すべてのkに対してIが成立することを示すにはすべてのkに対してIを導出した仮定、すなわち前述(A)〜(E)の成立を証明しなければなりません。
>式Iは無条件に成り立つ式ではないというのは間違っています。
論文中Iを導出している前の方をにいろいろ仮定しています。
>奇数の完全数を y、そのうち一つの素因数を p、p の指数を整数 n(n ≧ 1)、p 以外の素
>因数を𝑝1,𝑝2,𝑝3,…𝑝𝑟とし、𝑝𝑘の指数を𝑞𝑘、素数 p 以外の積の組み合わせの合計を a とす
>る
明示してませんが、この文章ですでに”∃y ∃p …”と仮定してますね。
あと場合わけの仮定
>T. pr = (p + 1)/2のとき
これも仮定です。
あなたが式Iに到達した議論までで示されたのはキチンと論理式でかけば
∃y A B p
yは奇数の完全数,pは素数でv_p(y) = 4m+1 …(A)
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A …(B)
qr = v_pr(B) …(C)
cr = v_pr(A) …(D)
p = 2pr -1 …(E)
⇒∃w 2m+1 = wpr^(qr-cr-1) …(F)
です。
>bの形から全てのkに対して式Iが
>成り立たなければならないのは自明ではないのでしょうか?
これは既に指摘したとおり許されない論理です。
式の形だけですべてのkについて成り立つなどという論法は数学の世界には存在しません。
すべてのkに対してIが成立することを示すにはすべてのkに対してIを導出した仮定、すなわち前述(A)〜(E)の成立を証明しなければなりません。
2018/08/23(木) 22:44:24.91ID:w3TRtxb6
じゃもう変更はないということで解散ですね
2018/08/23(木) 22:48:15.13ID:LGJTq8r8
おめでとう!
2018/08/23(木) 23:49:20.41ID:Wfpp6fmq
仮に「bはpk^qkの積だから、全てのkに対して式Iが成り立たなければならない」ことが自明なら、それを容易に証明できるはず
つべこべ言わずに>>89の(A)〜(E)の成立を示してあげなよ
つべこべ言わずに>>89の(A)〜(E)の成立を示してあげなよ
2018/08/24(金) 00:57:46.35ID:IyGxJGLw
こんだけ熱意があれば大学初年級の集合論理や代数の本はすぐ読めそうだけど
そしてそれを読んでから再度挑戦でも全然よさそうなもんだけど
そしてそれを読んでから再度挑戦でも全然よさそうなもんだけど
2018/08/24(金) 01:01:42.64ID:WzkHXo1C
この問題を解決したければ数学科入り直すのが一番の近道だろうね
2018/08/24(金) 02:15:34.22ID:BCgag6Bk
前スレで一度書いたけど、
やはり >1 は「何を前提に何を主張しているか」が整理できていないのだと思われます。
「形式的な、些末なこと」などと思わず、一度「何を前提に何を主張しているか」を整理してみてはいかがでしょう。
>>75
>この問題は難問であり、背理法で証明しなければならないので、少しでも計算間違いや
>論理の間違いをすると、それが答えだと思い込む問題だから仕方がない。
このようにお考えでしたらなおのこと、主張の整理は必要でしょう。
やはり >1 は「何を前提に何を主張しているか」が整理できていないのだと思われます。
「形式的な、些末なこと」などと思わず、一度「何を前提に何を主張しているか」を整理してみてはいかがでしょう。
>>75
>この問題は難問であり、背理法で証明しなければならないので、少しでも計算間違いや
>論理の間違いをすると、それが答えだと思い込む問題だから仕方がない。
このようにお考えでしたらなおのこと、主張の整理は必要でしょう。
変更点
・crの場合分けを修正しました
Pdf文書 日本語
http://fast-uploader.com/file/7090613671732/
Pdf文書 日本語
http://fast-uploader.com/file/7090613768405/
・crの場合分けを修正しました
Pdf文書 日本語
http://fast-uploader.com/file/7090613671732/
Pdf文書 日本語
http://fast-uploader.com/file/7090613768405/
>>1 訂正
2018年8月22日→2018年8月24日
2018年8月22日→2018年8月24日
誤解されるレスをしてしまいましたが、正確には、ck<qk-1となる全てのkに対して
式Iが成り立つということです。
今までは、ck≠qk-1でしたが、ck<qk-1に修正しました。
式Iが成り立つということです。
今までは、ck≠qk-1でしたが、ck<qk-1に修正しました。
2018/08/24(金) 06:50:13.78ID:02RtuJ/f
いい加減でデタラメなゴミPDFを
うpするのはよくない。
うpするのはよくない。
100132人目の素数さん
2018/08/24(金) 08:57:23.98ID:l45C8tPV >>98
それは「誤解されそう」とは言わない。「間違っていた」だ。とことん自分に甘い男だな。
それは「誤解されそう」とは言わない。「間違っていた」だ。とことん自分に甘い男だな。
101132人目の素数さん
2018/08/24(金) 10:10:15.05ID:hIzgRVDP まんま>>16やね
102132人目の素数さん
2018/08/24(金) 10:30:53.91ID:AN3TK8OT 前スレまででも、さんざん1はやらかしてきたんだよな
>>16
いつもの流れ
1.「間違いが見つかりました、撤回します」
↓
2.「(今論点じゃないところ)を修正しました。完成です」
↓
3.(論点について聞かれても)「もうすでに直しました(←直ってない)。読んでから言ってください」
>>16
いつもの流れ
1.「間違いが見つかりました、撤回します」
↓
2.「(今論点じゃないところ)を修正しました。完成です」
↓
3.(論点について聞かれても)「もうすでに直しました(←直ってない)。読んでから言ってください」
>>100
ここに書いた内容に関して補足したのであって、論文の間違いは別の問題
ここに書いた内容に関して補足したのであって、論文の間違いは別の問題
104132人目の素数さん
2018/08/24(金) 12:06:06.52ID:IgLz8/E6 また意味不明なこと言ってる
105132人目の素数さん
2018/08/24(金) 12:09:14.12ID:yYt21NmJ >2.「(今論点じゃないところ)を修正しました。完成です」
まさに、これだな
まさに、これだな
106132人目の素数さん
2018/08/24(金) 12:14:32.06ID:CuH5Mpfc フェイズ2と呼ぼう
107132人目の素数さん
2018/08/24(金) 13:44:52.78ID:yYt21NmJ すぐにフェイズ3に!
変更点
・14ページ文章中の数式の誤りを修正しました
Pdf文書 日本語
http://fast-uploader.com/file/7090644743952/
Pdf文書 英語
http://fast-uploader.com/file/7090645054852/
・14ページ文章中の数式の誤りを修正しました
Pdf文書 日本語
http://fast-uploader.com/file/7090644743952/
Pdf文書 英語
http://fast-uploader.com/file/7090645054852/
109132人目の素数さん
2018/08/24(金) 15:22:02.00ID:Bc69laW4 なんで権威ある学術誌に投稿しないのか
110132人目の素数さん
2018/08/24(金) 15:53:18.11ID:fEBY+BAU ねらー相手ならあの程度で騙せると踏んだんだろうな
実際は、数学の知識の無い者には無駄に複雑すぎて理解できず、
数学が理解できる者には容易にゴマカシが見破れてしまう内容になっている。
いずれの場合もゴマカシが成功していない
実際は、数学の知識の無い者には無駄に複雑すぎて理解できず、
数学が理解できる者には容易にゴマカシが見破れてしまう内容になっている。
いずれの場合もゴマカシが成功していない
111132人目の素数さん
2018/08/24(金) 16:12:50.02ID:CuH5Mpfc またフェイズ2に戻ったw
112132人目の素数さん
2018/08/24(金) 16:49:35.84ID:BCgag6Bk 1=2の証明みたいになってると
114132人目の素数さん
2018/08/24(金) 17:28:28.64ID:CuH5Mpfc フェイズ3w
115132人目の素数さん
2018/08/24(金) 17:36:19.36ID:rV3350F0 いきなりフェイズ3で開始したか!
116132人目の素数さん
2018/08/24(金) 17:37:15.53ID:ooXdJggB 数学的に完全に正しい
と言いさえすれば正しくなると思える神経がすごいな
確かにまともな人間には真似できない
と言いさえすれば正しくなると思える神経がすごいな
確かにまともな人間には真似できない
117132人目の素数さん
2018/08/24(金) 17:41:49.34ID:DLCTMBU7 「数学的に完全に正しい」も1の敗北宣言な。
118132人目の素数さん
2018/08/24(金) 18:01:06.20ID:rV3350F0 いつも1は、大ウソつき
1 名前: ◆H4n21Ym7mA [age] 投稿日:2018/08/22(水) 10:12:54.32 ID:SxQ2y3ZV
完全な証明が完成しました。
Pdf文書 日本語
88 名前: ◆RK0hxWxT6Q [sage] 投稿日:2018/08/23(木) 21:56:38.93 ID:ziRzgMWB
完全に正しいと考えられる。
96 名前: ◆RK0hxWxT6Q [age] 投稿日:2018/08/24(金) 06:07:30.73 ID:XQ6EMHV0 [1/6]
Pdf文書 日本語
http://fast-uploader.com/file/7090613671732/
108 名前: ◆RK0hxWxT6Q [age] 投稿日:2018/08/24(金) 14:48:05.07 ID:XQ6EMHV0 [5/6]
Pdf文書 日本語
http://fast-uploader.com/file/7090644743952/
113 名前: ◆RK0hxWxT6Q [sage] 投稿日:2018/08/24(金) 16:59:50.81 ID:XQ6EMHV0 [6/6]
誤魔化は一切ないし、数学的には完全に正しくなった
1 名前: ◆H4n21Ym7mA [age] 投稿日:2018/08/22(水) 10:12:54.32 ID:SxQ2y3ZV
完全な証明が完成しました。
Pdf文書 日本語
88 名前: ◆RK0hxWxT6Q [sage] 投稿日:2018/08/23(木) 21:56:38.93 ID:ziRzgMWB
完全に正しいと考えられる。
96 名前: ◆RK0hxWxT6Q [age] 投稿日:2018/08/24(金) 06:07:30.73 ID:XQ6EMHV0 [1/6]
Pdf文書 日本語
http://fast-uploader.com/file/7090613671732/
108 名前: ◆RK0hxWxT6Q [age] 投稿日:2018/08/24(金) 14:48:05.07 ID:XQ6EMHV0 [5/6]
Pdf文書 日本語
http://fast-uploader.com/file/7090644743952/
113 名前: ◆RK0hxWxT6Q [sage] 投稿日:2018/08/24(金) 16:59:50.81 ID:XQ6EMHV0 [6/6]
誤魔化は一切ないし、数学的には完全に正しくなった
119132人目の素数さん
2018/08/24(金) 18:04:57.26ID:KL8GFrzC121前スレの分
2018/08/24(金) 18:37:21.23ID:rV3350F0 1 名前:[age] 2018/08/05(日) 05:25:38.78 ID:CcBDiEWJ [1/8]
完全な証明が完成しました。
Pdf文書 日本語
9 名前:[age] 2018/08/05(日) 09:28:56.66 ID:CcBDiEWJ
Pdf文書 日本語
26 名前:[age] 2018/08/06(月) 09:01:56.27 ID:1wlVJfjw
Pdf文書 日本語
27 名前:[sage] 2018/08/06(月) 11:30:16.67 ID:1wlVJfjw
Pdf文書 日本語
64 名前:[age] 2018/08/07(火) 11:57:35.78 ID:Cc7tnWeO
Pdf文書 日本語
133 名前:[sage] 2018/08/07(火) 18:29:04.97 ID:Cc7tnWeO
ここで指摘されていない間違いが見つかりましたので削除します
完全な証明が完成しました。
Pdf文書 日本語
9 名前:[age] 2018/08/05(日) 09:28:56.66 ID:CcBDiEWJ
Pdf文書 日本語
26 名前:[age] 2018/08/06(月) 09:01:56.27 ID:1wlVJfjw
Pdf文書 日本語
27 名前:[sage] 2018/08/06(月) 11:30:16.67 ID:1wlVJfjw
Pdf文書 日本語
64 名前:[age] 2018/08/07(火) 11:57:35.78 ID:Cc7tnWeO
Pdf文書 日本語
133 名前:[sage] 2018/08/07(火) 18:29:04.97 ID:Cc7tnWeO
ここで指摘されていない間違いが見つかりましたので削除します
122前スレの分
2018/08/24(金) 18:38:44.64ID:rV3350F0 136 名前:[age] 2018/08/07(火) 19:03:40.24 ID:Cc7tnWeO
Pdf文書 日本語
232◆H4n21Ym7mA [age] 2018/08/09(木) 11:23:30.95 ID:qa1PqB1o
Pdf文書 日本語
297◆H4n21Ym7mA [age] 2018/08/10(金) 16:14:01.78 ID:fX825M0q
Pdf文書 日本語
303◆H4n21Ym7mA [sage] 2018/08/10(金) 16:56:23.51 ID:fX825M0q
直すところがなくなったと考えられるので、これで終わりかもしれません
311◆H4n21Ym7mA [sage] 2018/08/10(金) 18:40:55.87 ID:fX825M0q
もう直すところがない
Pdf文書 日本語
232◆H4n21Ym7mA [age] 2018/08/09(木) 11:23:30.95 ID:qa1PqB1o
Pdf文書 日本語
297◆H4n21Ym7mA [age] 2018/08/10(金) 16:14:01.78 ID:fX825M0q
Pdf文書 日本語
303◆H4n21Ym7mA [sage] 2018/08/10(金) 16:56:23.51 ID:fX825M0q
直すところがなくなったと考えられるので、これで終わりかもしれません
311◆H4n21Ym7mA [sage] 2018/08/10(金) 18:40:55.87 ID:fX825M0q
もう直すところがない
123前スレの分
2018/08/24(金) 18:39:24.21ID:rV3350F0 314◆H4n21Ym7mA [age] 2018/08/10(金) 20:32:13.56 ID:fX825M0q
Pdf文書 英語
317◆H4n21Ym7mA [sage] 2018/08/10(金) 20:51:01.96 ID:fX825M0q
正しい論文になったら終わるでしょう
325◆H4n21Ym7mA [age] 2018/08/11(土) 09:41:39.58 ID:VzBbEbSZ
Pdf文書 日本語
331◆H4n21Ym7mA [sage] 2018/08/11(土) 11:39:08.08 ID:VzBbEbSZ
間違いが見つかりましたので、>>325を削除しました
Pdf文書 英語
317◆H4n21Ym7mA [sage] 2018/08/10(金) 20:51:01.96 ID:fX825M0q
正しい論文になったら終わるでしょう
325◆H4n21Ym7mA [age] 2018/08/11(土) 09:41:39.58 ID:VzBbEbSZ
Pdf文書 日本語
331◆H4n21Ym7mA [sage] 2018/08/11(土) 11:39:08.08 ID:VzBbEbSZ
間違いが見つかりましたので、>>325を削除しました
124前スレの分
2018/08/24(金) 18:40:03.68ID:rV3350F0 360◆H4n21Ym7mA [age] 2018/08/12(日) 20:21:00.52 ID:tsksl0/C
Pdf文書 日本語
http://fast-uploader.com/file/7089628227091/
361◆H4n21Ym7mA [sage] 2018/08/12(日) 21:01:22.49 ID:tsksl0/C
間違いが見つかりましたので削除しました
362◆H4n21Ym7mA [age] 2018/08/12(日) 21:45:48.34 ID:tsksl0/C
Pdf文書 日本語
377◆H4n21Ym7mA [sage] 2018/08/13(月) 21:10:26.14 ID:1sIym2cm
間違いが見つかりましたので削除しました
Pdf文書 日本語
http://fast-uploader.com/file/7089628227091/
361◆H4n21Ym7mA [sage] 2018/08/12(日) 21:01:22.49 ID:tsksl0/C
間違いが見つかりましたので削除しました
362◆H4n21Ym7mA [age] 2018/08/12(日) 21:45:48.34 ID:tsksl0/C
Pdf文書 日本語
377◆H4n21Ym7mA [sage] 2018/08/13(月) 21:10:26.14 ID:1sIym2cm
間違いが見つかりましたので削除しました
125前スレの分
2018/08/24(金) 18:40:29.62ID:rV3350F0 396◆H4n21Ym7mA [age] 2018/08/13(月) 23:26:57.99 ID:1sIym2cm
Pdf文書 日本語
410◆H4n21Ym7mA [age] 2018/08/14(火) 08:47:20.89 ID:/Ahykgzy
Pdf文書 日本語
442◆H4n21Ym7mA [sage] 2018/08/14(火) 22:43:55.76 ID:/Ahykgzy
この未解決問題は解決したのにも関わらず、関係のないレスばかりになっている
642◆H4n21Ym7mA [sage] 2018/08/16(木) 13:40:53.22 ID:Q7fJTSPI
数学的に正しいものは、修正する必要がない。
693◆H4n21Ym7mA [sage] 2018/08/16(木) 20:41:12.36 ID:Q7fJTSPI
もう完全に正しいから無理に間違いを披露しなくて結構です
Pdf文書 日本語
410◆H4n21Ym7mA [age] 2018/08/14(火) 08:47:20.89 ID:/Ahykgzy
Pdf文書 日本語
442◆H4n21Ym7mA [sage] 2018/08/14(火) 22:43:55.76 ID:/Ahykgzy
この未解決問題は解決したのにも関わらず、関係のないレスばかりになっている
642◆H4n21Ym7mA [sage] 2018/08/16(木) 13:40:53.22 ID:Q7fJTSPI
数学的に正しいものは、修正する必要がない。
693◆H4n21Ym7mA [sage] 2018/08/16(木) 20:41:12.36 ID:Q7fJTSPI
もう完全に正しいから無理に間違いを披露しなくて結構です
126前スレの分
2018/08/24(金) 18:40:59.55ID:rV3350F0 715◆H4n21Ym7mA [age] 2018/08/17(金) 06:23:02.46 ID:0c+DAEJM
Pdf文書 日本語
822◆H4n21Ym7mA [age] 2018/08/18(土) 07:46:40.38 ID:OBvJ9bTb
Pdf文書 日本語
906◆H4n21Ym7mA [sage] 2018/08/19(日) 21:35:07.10 ID:BehawhAJ
普通の数学研究者には理解されうる内容に決まっている。以上。
935◆H4n21Ym7mA [sage] 2018/08/20(月) 14:46:08.31 ID:N+36Ptxg
完全に正しい証明を書いた
947◆H4n21Ym7mA [age] 2018/08/21(火) 10:06:30.21 ID:KkjwiMLB
Pdf文書 日本語
989◆H4n21Ym7mA [age] 2018/08/22(水) 07:48:25.38 ID:SxQ2y3ZV
Pdf文書 日本語
Pdf文書 日本語
822◆H4n21Ym7mA [age] 2018/08/18(土) 07:46:40.38 ID:OBvJ9bTb
Pdf文書 日本語
906◆H4n21Ym7mA [sage] 2018/08/19(日) 21:35:07.10 ID:BehawhAJ
普通の数学研究者には理解されうる内容に決まっている。以上。
935◆H4n21Ym7mA [sage] 2018/08/20(月) 14:46:08.31 ID:N+36Ptxg
完全に正しい証明を書いた
947◆H4n21Ym7mA [age] 2018/08/21(火) 10:06:30.21 ID:KkjwiMLB
Pdf文書 日本語
989◆H4n21Ym7mA [age] 2018/08/22(水) 07:48:25.38 ID:SxQ2y3ZV
Pdf文書 日本語
127132人目の素数さん
2018/08/24(金) 18:47:23.61ID:lQ7owNFh 完成したんだったら直すなよ!?絶対直すなよ!?→直す
っていう芸風なんだろ
っていう芸風なんだろ
128132人目の素数さん
2018/08/24(金) 18:49:19.71ID:tqui2hKP >>120
差分とれるようにバージョン書けって何度もお願いしたのに何ですぐ過去の奴消すん?
差分とれるようにバージョン書けって何度もお願いしたのに何ですぐ過去の奴消すん?
129132人目の素数さん
2018/08/24(金) 18:50:01.49ID:HeaACyN5 >>120
つpandoc
つpandoc
130132人目の素数さん
2018/08/24(金) 19:45:30.24ID:02RtuJ/f なんで5chは、レス毎にフォントが変わるのだろう???
131学術
2018/08/24(金) 19:54:16.34ID:L5bxyQLn リアクション芸
132学術
2018/08/24(金) 19:55:51.03ID:L5bxyQLn 人 と レスポンス芸者。
>>127
公開した後で誤りに気付くから仕方がない
公開した後で誤りに気付くから仕方がない
>>129
pdf or word → latexです
pdf or word → latexです
135132人目の素数さん
2018/08/24(金) 20:11:18.37ID:KL8GFrzC136132人目の素数さん
2018/08/24(金) 20:12:57.29ID:noqd2vPn >>136
できました、ありがとうございます
できました、ありがとうございます
138132人目の素数さん
2018/08/24(金) 21:46:02.14ID:3weK3pAS 体裁とか気にする段階じゃないだろ
>>138
個人的には、証明は完了していますから
個人的には、証明は完了していますから
140132人目の素数さん
2018/08/24(金) 22:24:54.37ID:02RtuJ/f 1は、あいかわらず詐欺師だねぇ
懲りないやつ
反省の無いやつ
懲りないやつ
反省の無いやつ
141132人目の素数さん
2018/08/24(金) 22:30:16.06ID:1OvBgvPC >>139
他の人の指摘にまともな反論はしていないようだが
他の人の指摘にまともな反論はしていないようだが
143132人目の素数さん
2018/08/24(金) 22:54:12.71ID:DLCTMBU7 「個人的には完了」も敗北宣言
反論ができない時点で1の敗北
反論ができない時点で1の敗北
145132人目の素数さん
2018/08/24(金) 22:56:43.41ID:1OvBgvPC 証明のしようがないことが論文に残っていたらダメだろ
>>143
何に対してだ?ほら間違いを一つでも挙げてみろ
何に対してだ?ほら間違いを一つでも挙げてみろ
148132人目の素数さん
2018/08/24(金) 23:08:04.43ID:tWX0+783 証明できないなら正しいとは言えないが
149132人目の素数さん
2018/08/24(金) 23:08:56.89ID:q2Zpn13X 証明のしようがないってなんだよw簡単な内容なんじゃなかったのか?
150132人目の素数さん
2018/08/24(金) 23:13:21.92ID:6zlcHWzg 前スレの指摘で直ってない間違いがあるね
|986132人目の素数さん2018/08/21(火) 23:16:54.64ID:EO419+q9
|15ページ
|>n+1=f×(pk-1)
|>となることが必要である。ek≠1となる全てのkに対して成り立たなければならないから、奇数をgとして
|>n+1=g×Π(pk-1)
|これはダウトだな
| すべてのpk-1は偶数であり少なくとも2を共通因数として持つし、2以外の共通因数をもたないとも限らない。
|せめてn+1=g×LCM{pk-1|1≦k≦r∧ek≠1}としなければならないが、これだとその先の証明が成り立たない。
たとえば pk が 7, 11, 19 とすると (pk-1) の倍数というのは
(6の倍数)かつ(10の倍数)かつ(18の倍数)ってことになるけど、これは(6×10×18の倍数)とは異なる
90の倍数であればいいので、n≡1 (mod4) とは矛盾しない。
すべての pk で n+1=f×(pk-1) となったとしても n+1=g×Π(pk-1) とはいえないのでこの部分は誤り。
|986132人目の素数さん2018/08/21(火) 23:16:54.64ID:EO419+q9
|15ページ
|>n+1=f×(pk-1)
|>となることが必要である。ek≠1となる全てのkに対して成り立たなければならないから、奇数をgとして
|>n+1=g×Π(pk-1)
|これはダウトだな
| すべてのpk-1は偶数であり少なくとも2を共通因数として持つし、2以外の共通因数をもたないとも限らない。
|せめてn+1=g×LCM{pk-1|1≦k≦r∧ek≠1}としなければならないが、これだとその先の証明が成り立たない。
たとえば pk が 7, 11, 19 とすると (pk-1) の倍数というのは
(6の倍数)かつ(10の倍数)かつ(18の倍数)ってことになるけど、これは(6×10×18の倍数)とは異なる
90の倍数であればいいので、n≡1 (mod4) とは矛盾しない。
すべての pk で n+1=f×(pk-1) となったとしても n+1=g×Π(pk-1) とはいえないのでこの部分は誤り。
152132人目の素数さん
2018/08/24(金) 23:24:10.00ID:5VqIPUhH >>152
証明しろといってもどうすればいいのか分からない。ck<qk-1のkに対しては
式Iが成立するので、bの形から、ck<qk-1となる全てのkに対して
式Iが成立しなければならないのは当然だと考える
証明しろといってもどうすればいいのか分からない。ck<qk-1のkに対しては
式Iが成立するので、bの形から、ck<qk-1となる全てのkに対して
式Iが成立しなければならないのは当然だと考える
154132人目の素数さん
2018/08/24(金) 23:33:52.68ID:5VqIPUhH155132人目の素数さん
2018/08/24(金) 23:40:16.88ID:EHxixVAp ck<qk-1となるkが存在するのかどうかも証明されてないんだからどうこう言っても始まらないな
156132人目の素数さん
2018/08/24(金) 23:53:04.73ID:WzkHXo1C 因数云々と変数云々って解決したの?
157132人目の素数さん
2018/08/24(金) 23:53:34.55ID:haO4NUeV 当然未消化
158132人目の素数さん
2018/08/25(土) 00:10:35.46ID:ygRZb9ps もう個別に指摘しても埒が開かんわ
この際全部書き出しとこうぜ
・完全数yを先に決めたか素因数pや整数b,cを先に決めたかが不明瞭
・多項式の因数と整数の因数を混同
・ただ一つのkでしか成り立たないものをすべてのkて成り立つと言い張る(∃と∀の混同)
・公倍数と総乗を混同
あと何かあったら追加してくれ
この際全部書き出しとこうぜ
・完全数yを先に決めたか素因数pや整数b,cを先に決めたかが不明瞭
・多項式の因数と整数の因数を混同
・ただ一つのkでしか成り立たないものをすべてのkて成り立つと言い張る(∃と∀の混同)
・公倍数と総乗を混同
あと何かあったら追加してくれ
159132人目の素数さん
2018/08/25(土) 05:15:55.33ID:1qqT9j0c 問題点多すぎ
全体的にゴミ・落書き
改善なし
証明論文を完成させたなど、大ボラ詐欺
全体的にゴミ・落書き
改善なし
証明論文を完成させたなど、大ボラ詐欺
>>158
指導?
>・完全数yを先に決めたか素因数pや整数b,cを先に決めたかが不明瞭
この内容なこの前のスレで何度も答えているはずだ。
>・多項式の因数と整数の因数を混同
これはそういう議論をしてくる人間がこのスレにいただけであって
私はそれはない。そういうふうに誤解されるようなレスをしただけだ。
>・ただ一つのkでしか成り立たないものをすべてのkて成り立つと言い張る
誤解のさいたるものだ。ck<qk-1のkに対して成り立たなければならないのは
bの形から、自明。もし成り立たなければそのkの値で、bがpk^qkに
割り切られないだけ。何故このような自明な内容に噛みつくのか分からないし
自明なことを証明することは難しい。
指導?
>・完全数yを先に決めたか素因数pや整数b,cを先に決めたかが不明瞭
この内容なこの前のスレで何度も答えているはずだ。
>・多項式の因数と整数の因数を混同
これはそういう議論をしてくる人間がこのスレにいただけであって
私はそれはない。そういうふうに誤解されるようなレスをしただけだ。
>・ただ一つのkでしか成り立たないものをすべてのkて成り立つと言い張る
誤解のさいたるものだ。ck<qk-1のkに対して成り立たなければならないのは
bの形から、自明。もし成り立たなければそのkの値で、bがpk^qkに
割り切られないだけ。何故このような自明な内容に噛みつくのか分からないし
自明なことを証明することは難しい。
>>155
存在しない場合も証明に書いているから問題ない
存在しない場合も証明に書いているから問題ない
163132人目の素数さん
2018/08/25(土) 07:53:43.53ID:S4mcgiRU 自明というのはね、証明が簡単すぎるから自明というんだよ。覚えておいてね
164132人目の素数さん
2018/08/25(土) 08:07:15.72ID:NP3T2RR8 奇数の完全数は存在しません
証明
自明な為省略
証明
自明な為省略
165132人目の素数さん
2018/08/25(土) 08:20:28.67ID:2TOt2Ru3 答えていると解決しているの区別がついていない
166132人目の素数さん
2018/08/25(土) 08:32:29.74ID:ostKV3bB 少し読んでみた。
p.8に
「以上から、0 ≦ c_r ≦ q_r − 1の値をc_rが取るときに、p^(n−1) + p^(n−3) + ⋯ + 1がp_r^(q_r−c_r−1)で割り切られなければならない。」
ってあるけど、
2b = (1+p+…+p^n)c
の両辺の素因数分解考えたら,
q_r = (1+p+…+p^nの素因数分解におけるp_rの指数) + c_r.
これ、普通は「明らかに成り立つ」と言うのでは。
p.8に
「以上から、0 ≦ c_r ≦ q_r − 1の値をc_rが取るときに、p^(n−1) + p^(n−3) + ⋯ + 1がp_r^(q_r−c_r−1)で割り切られなければならない。」
ってあるけど、
2b = (1+p+…+p^n)c
の両辺の素因数分解考えたら,
q_r = (1+p+…+p^nの素因数分解におけるp_rの指数) + c_r.
これ、普通は「明らかに成り立つ」と言うのでは。
>>89のレスに加担して私を批判しているのは数学を理解していないしったかの素人で
数学的に意味のある正当な批判でないことを理解できていない(笑)
数学的に意味のある正当な批判でないことを理解できていない(笑)
168132人目の素数さん
2018/08/25(土) 08:59:05.32ID:2TOt2Ru3 数学を理解していないしったかの素人とかいう自己紹介
169132人目の素数さん
2018/08/25(土) 09:03:45.84ID:ostKV3bB f(p_r)に関する議論ですが、
多項式として「〜次の項が」等と論じるのであれば、p_rを適当な文字(例えばXなど)に置き換えてから論じる必要があります。
多項式として「〜次の項が」等と論じるのであれば、p_rを適当な文字(例えばXなど)に置き換えてから論じる必要があります。
170132人目の素数さん
2018/08/25(土) 09:20:18.05ID:ostKV3bB でないと、多項式fと、fにp_rを代入した値とが区別できず、混乱を招きます。
>>170
数学力がある人はそのような些末な問題にさいなまれることはありません
数学力がある人はそのような些末な問題にさいなまれることはありません
174132人目の素数さん
2018/08/25(土) 09:56:38.44ID:NP3T2RR8175132人目の素数さん
2018/08/25(土) 09:57:36.70ID:qwJRgcQw ては「数学力がある」「些末な」も1の敗北宣言ととらえていいな
いくつ敗北宣言あるんだこの1はw
いくつ敗北宣言あるんだこの1はw
176132人目の素数さん
2018/08/25(土) 10:10:07.18ID:YKaHb2vp177132人目の素数さん
2018/08/25(土) 10:34:56.99ID:ostKV3bB 混乱を招くというか、
的確に定義されていないために議論が無意味になってます。
「p_rを文字と考えた多項式として扱いたいのだろう」と推測はできますが、p_rは素数として定義されてますし。
的確に定義されていないために議論が無意味になってます。
「p_rを文字と考えた多項式として扱いたいのだろう」と推測はできますが、p_rは素数として定義されてますし。
178132人目の素数さん
2018/08/25(土) 10:45:34.56ID:rlbynoBU >>167
なんだ、結局証明できないのかw
なんだ、結局証明できないのかw
179132人目の素数さん
2018/08/25(土) 11:05:54.28ID:r6awhQfP 「自明」で逃げる馬鹿って一定数いるよね
自明なら証明してみろと言いたい
自明なら証明してみろと言いたい
>>179
自明なことをどう証明するのか書いてみてくれよ。私は一のkに対して当てはまる証明が
何故同じ条件ck<qk-1のkに対して成り立つのかを、私が書いた証明から自明という
形でしか書くことができない。それを証明するのは、他の手段でそれを示さなければならない
ということであり、そのようなことができるとは思えない。つまらない内容でしつこすぎ。
自明なことをどう証明するのか書いてみてくれよ。私は一のkに対して当てはまる証明が
何故同じ条件ck<qk-1のkに対して成り立つのかを、私が書いた証明から自明という
形でしか書くことができない。それを証明するのは、他の手段でそれを示さなければならない
ということであり、そのようなことができるとは思えない。つまらない内容でしつこすぎ。
181132人目の素数さん
2018/08/25(土) 11:20:03.54ID:2TOt2Ru3 自明なら証明も簡単なはずですが...
182132人目の素数さん
2018/08/25(土) 11:20:20.46ID:ZiXINhJi 自明なことは証明できない!←New!
183132人目の素数さん
2018/08/25(土) 11:21:42.80ID:r6awhQfP184132人目の素数さん
2018/08/25(土) 11:27:54.22ID:PTd+mqMA >>1は “式の形からすべての〜である〜について〜が成立する” という数学のロジックにないロジックを使っている。
∀x P(x) の形の命題を導出する唯一の推論則は “普遍汎化” でどうゆう状況で使ってよいか、どのように使うのかについて厳密に定められている。
https://ja.wikipedia.org/wiki/%E6%99%AE%E9%81%8D%E6%B1%8E%E5%8C%96
何を公理とするのか?その公理から定理を導出するのにどのような推論則を用いてよいのかについての合意を無視したらもはやそれは数学ではない。
ある一つの変数 pr についてしか証明を与えていない命題
2m+1 = w pr^(qr-cr-1) (∃w : 奇数)
をその “普遍汎化則” にはない
>bの形から全てのkに対して式Iが成り立たなければならないのは自明
とか
>誤解されるレスをしてしまいましたが、正確には、ck<qk-1となる全てのkに対して
>式Iが成り立つということです。
とかいう数学には存在しない “独自の普遍汎化推論則を勝手に自作” して他の “pk” について適用してる。
“数学の論文としてどこがまちがってるか” 以前に “数学の論文ですらない” としかいえない。
もし、そうではない、きちんと “普遍汎化推論則” の範囲内で
∀k (ck<qk-1⇒ ∃w : 奇数 2m+1 = w pr^(qr-cr-1) )
が導出できるというなら、実際にそれをやってみせないといけない。
「“bの形から” 普遍汎化できる」などという推論則は数学にはない。
∀x P(x) の形の命題を導出する唯一の推論則は “普遍汎化” でどうゆう状況で使ってよいか、どのように使うのかについて厳密に定められている。
https://ja.wikipedia.org/wiki/%E6%99%AE%E9%81%8D%E6%B1%8E%E5%8C%96
何を公理とするのか?その公理から定理を導出するのにどのような推論則を用いてよいのかについての合意を無視したらもはやそれは数学ではない。
ある一つの変数 pr についてしか証明を与えていない命題
2m+1 = w pr^(qr-cr-1) (∃w : 奇数)
をその “普遍汎化則” にはない
>bの形から全てのkに対して式Iが成り立たなければならないのは自明
とか
>誤解されるレスをしてしまいましたが、正確には、ck<qk-1となる全てのkに対して
>式Iが成り立つということです。
とかいう数学には存在しない “独自の普遍汎化推論則を勝手に自作” して他の “pk” について適用してる。
“数学の論文としてどこがまちがってるか” 以前に “数学の論文ですらない” としかいえない。
もし、そうではない、きちんと “普遍汎化推論則” の範囲内で
∀k (ck<qk-1⇒ ∃w : 奇数 2m+1 = w pr^(qr-cr-1) )
が導出できるというなら、実際にそれをやってみせないといけない。
「“bの形から” 普遍汎化できる」などという推論則は数学にはない。
185132人目の素数さん
2018/08/25(土) 11:31:28.81ID:QKrpL5rY 高木時空では証明を必要としない
186132人目の素数さん
2018/08/25(土) 11:33:31.02ID:2TOt2Ru3 これまでの奇数芸人ネタ
・pは特定の値を持つはずだが0p=0であり不定になるから矛盾
・pは定数でありかつ変数である
・pが単調減少する(本当は単調減少しない)からpは素数になりえない
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか
・wは整数であり同時に整数でない
・2m+1は因数だが2m+1の倍数ではない
・a=b/3なら、aはbを因数に含む
・変数は数値に置き換えてはダメ
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然
・27/5 は 3 で割り切れる
・定義はしていますが、値は定めていません
・少なくとも一つはそうなる、ということで
全てに対して成り立たなければならない
・自明なことは証明できない(NEW!)
・pは特定の値を持つはずだが0p=0であり不定になるから矛盾
・pは定数でありかつ変数である
・pが単調減少する(本当は単調減少しない)からpは素数になりえない
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか
・wは整数であり同時に整数でない
・2m+1は因数だが2m+1の倍数ではない
・a=b/3なら、aはbを因数に含む
・変数は数値に置き換えてはダメ
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然
・27/5 は 3 で割り切れる
・定義はしていますが、値は定めていません
・少なくとも一つはそうなる、ということで
全てに対して成り立たなければならない
・自明なことは証明できない(NEW!)
187132人目の素数さん
2018/08/25(土) 11:39:47.91ID:PTd+mqMA >>184
訂正
✕:∀k (ck<qk-1⇒ ∃w : 奇数 2m+1 = w pr^(qr-cr-1) )
○:∀k (ck<qk-1⇒ ∃w : 奇数 2m+1 = w pr^(qk-ck-1) )
訂正
✕:∀k (ck<qk-1⇒ ∃w : 奇数 2m+1 = w pr^(qr-cr-1) )
○:∀k (ck<qk-1⇒ ∃w : 奇数 2m+1 = w pr^(qk-ck-1) )
188132人目の素数さん
2018/08/25(土) 11:39:49.77ID:lFGEJlNi 芸人としては立派だと思う
健常者には「自明なことを証明するのは難しい」なんて発想ができない
健常者には「自明なことを証明するのは難しい」なんて発想ができない
189132人目の素数さん
2018/08/25(土) 11:42:04.85ID:YKaHb2vp 自明だから証明しない、ならただの逃げ
自明だから証明できない、なら数学の無知
いずれにしても説得力がない
自明だから証明できない、なら数学の無知
いずれにしても説得力がない
190132人目の素数さん
2018/08/25(土) 11:59:45.63ID:ostKV3bB やっぱり釣り、と判断すべきかね
記号の重複とか、基本的な数学知識があれば明らかなことをやたらと複雑に書くとか、無駄な遠回りで誤謬を隠してるようにしか見えないや。
記号の重複とか、基本的な数学知識があれば明らかなことをやたらと複雑に書くとか、無駄な遠回りで誤謬を隠してるようにしか見えないや。
>>190
6ヵ月もかけて釣りなんてことがあるわけがないだろう
6ヵ月もかけて釣りなんてことがあるわけがないだろう
193132人目の素数さん
2018/08/25(土) 12:04:49.16ID:2TOt2Ru3 >>191
要するにあなたは証明に失敗してるということ?
要するにあなたは証明に失敗してるということ?
194132人目の素数さん
2018/08/25(土) 12:18:32.08ID:ostKV3bB 釣りじゃないなら、あなたは数学における証明というものに対して知識も経験も足りないのではないかな。
大学レベルの数学の教科書を1冊でいいから通して読んでみた方がいいかもしれない。
大学で数学を専門に学んでも、6ヵ月程度じゃろくに証明ができない学生なんて珍しくもないよ
数学以外に時間を使うせいもあるけれど。
大学レベルの数学の教科書を1冊でいいから通して読んでみた方がいいかもしれない。
大学で数学を専門に学んでも、6ヵ月程度じゃろくに証明ができない学生なんて珍しくもないよ
数学以外に時間を使うせいもあるけれど。
195132人目の素数さん
2018/08/25(土) 12:22:38.11ID:UMWGN7ci >>195
ある一つのkに対して成り立つものが、bが同じ形をしているから、他のck<qk-1となる
kに対して成り立つのは自明だと書いている。(4度目以上)
しつこすぎ。( こ の 件 に 関 し て 完 全 終 了 )
ある一つのkに対して成り立つものが、bが同じ形をしているから、他のck<qk-1となる
kに対して成り立つのは自明だと書いている。(4度目以上)
しつこすぎ。( こ の 件 に 関 し て 完 全 終 了 )
198132人目の素数さん
2018/08/25(土) 12:36:01.75ID:PTd+mqMA 自明といえるのは公理、推論規則そのものズバリかほぼ同じときのみ
あなたが証明した(といっている)
y:完全数、pは多重度奇数の素因子…⇒∃w : 奇数 2m+1 = w pr^(qr-cr-1)
からは
https://ja.wikipedia.org/wiki/%25E6%2599%25AE%25E9%2581%258D%25E6%25B1%258E%25E5%258C%2596
の “普遍汎化推論則” を適用しても
∀k (ck<qk-1⇒ ∃w : 奇数 2m+1 = w pr^(qk-ck-1) )
を得られない。
実際書いてみると示されたのは(ここももダメダメだけど)
∃y A B p
yは奇数の完全数,pは素数でv_p(y) = 4m+1 …(A)
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A …(B)
qr = v_pr(B) …(C)
cr = v_pr(A) …(D)
p = 2pr -1 …(E)
⇒∃w 2m+1 = wpr^(qr-cr-1) …(F)
で、これにおいて束縛されてない変数は m, pr で、これは m, pr についての命題。
prについて普遍汎化してえられる命題は
(※)
∀m pr
∃y A B p
yは奇数の完全数,pは素数でv_p(y) = 4m+1 …(A)
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A …(B)
qr = v_pr(B) …(C)
cr = v_pr(A) …(D)
p = 2pr -1 …(E)
⇒∃w 2m+1 = wpr^(qr-cr-1) …(F)
これに対し、ここから君が自明に導かれると主張するのは
(*)
∀m pk
∃A ∃B
qk = v_pk(B)
ck = v_pk(A)
ck<qk-1 ⇒ ∃w 2m+1 = wpk^(qk-ck-1)
比較して書いてみれば、”自明に” (※)から(*)が導出されるなんて到底いえないとわかる。
これを自明といっているなら数学の論文ではない。
(※)から(*)を導く証明がつけられない限り論文が完成することはない。
あなたが証明した(といっている)
y:完全数、pは多重度奇数の素因子…⇒∃w : 奇数 2m+1 = w pr^(qr-cr-1)
からは
https://ja.wikipedia.org/wiki/%25E6%2599%25AE%25E9%2581%258D%25E6%25B1%258E%25E5%258C%2596
の “普遍汎化推論則” を適用しても
∀k (ck<qk-1⇒ ∃w : 奇数 2m+1 = w pr^(qk-ck-1) )
を得られない。
実際書いてみると示されたのは(ここももダメダメだけど)
∃y A B p
yは奇数の完全数,pは素数でv_p(y) = 4m+1 …(A)
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A …(B)
qr = v_pr(B) …(C)
cr = v_pr(A) …(D)
p = 2pr -1 …(E)
⇒∃w 2m+1 = wpr^(qr-cr-1) …(F)
で、これにおいて束縛されてない変数は m, pr で、これは m, pr についての命題。
prについて普遍汎化してえられる命題は
(※)
∀m pr
∃y A B p
yは奇数の完全数,pは素数でv_p(y) = 4m+1 …(A)
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A …(B)
qr = v_pr(B) …(C)
cr = v_pr(A) …(D)
p = 2pr -1 …(E)
⇒∃w 2m+1 = wpr^(qr-cr-1) …(F)
これに対し、ここから君が自明に導かれると主張するのは
(*)
∀m pk
∃A ∃B
qk = v_pk(B)
ck = v_pk(A)
ck<qk-1 ⇒ ∃w 2m+1 = wpk^(qk-ck-1)
比較して書いてみれば、”自明に” (※)から(*)が導出されるなんて到底いえないとわかる。
これを自明といっているなら数学の論文ではない。
(※)から(*)を導く証明がつけられない限り論文が完成することはない。
199132人目の素数さん
2018/08/25(土) 12:37:05.37ID:ostKV3bB 他の数学者が証明できていないことと、あなた論文に何か関係が?
200132人目の素数さん
2018/08/25(土) 12:38:42.47ID:UMWGN7ci https://ja.wikipedia.org/wiki/自然演繹
もう少しわかりやすい解説は↓
http://web.sfc.keio.ac.jp/~mukai/modular/gentzen-NK.pdf
数学の推論規則は概ねここに書いてあるものになるが>>1の推論はこれらとは異なるようだ
もう少しわかりやすい解説は↓
http://web.sfc.keio.ac.jp/~mukai/modular/gentzen-NK.pdf
数学の推論規則は概ねここに書いてあるものになるが>>1の推論はこれらとは異なるようだ
201132人目の素数さん
2018/08/25(土) 12:51:55.42ID:dmZ2Flg5 >>171
些末じゃないので死ね
些末じゃないので死ね
202132人目の素数さん
2018/08/25(土) 12:52:11.18ID:PTd+mqMA 意地を張っているのではなく完全に誤解してるようだから面倒だけど解説。
(A)〜(E) ⇒ ∃w 2m+1 = wpr^(qr-cr-1)
が示されたとして普遍汎化の適用規定は
Γは数式の集合であり、φは数式であり、 Γ⇒φ(y)は導出されていると仮定する。汎化規則では、yがΓに言及されておらず、xがφに存在しない場合、 Γ⇒φ(x)が導かれる、とする。
で今回の場合。>>89の(A)〜(E)のなかにprについての仮定があるので結論のなかのcrを別の文字に置き換えられない。
普遍汎化と普遍例化で変数を置き換えるなら、その命題全体にでてくる変数全体を “一気に” おきかえないとダメ。
簡単な例では
たとえば
x>5 ⇒ x>3
のxをyにおきかえて
y>5 ⇒ y>3
にするのはゆるされるけど
x>5 ⇒ y>3
なんて許されない。
ある一つのkに対して成り立つものが、bが同じ形をしているから、他のck<qk-1となる
kに対して成り立つのは自明だと書いている。
というのは(A)〜(E)のなかにcrが入ってないなら許されるけど入ってるでしょ?
(A)〜(E) ⇒ ∃w 2m+1 = wpr^(qr-cr-1)
が示されたとして普遍汎化の適用規定は
Γは数式の集合であり、φは数式であり、 Γ⇒φ(y)は導出されていると仮定する。汎化規則では、yがΓに言及されておらず、xがφに存在しない場合、 Γ⇒φ(x)が導かれる、とする。
で今回の場合。>>89の(A)〜(E)のなかにprについての仮定があるので結論のなかのcrを別の文字に置き換えられない。
普遍汎化と普遍例化で変数を置き換えるなら、その命題全体にでてくる変数全体を “一気に” おきかえないとダメ。
簡単な例では
たとえば
x>5 ⇒ x>3
のxをyにおきかえて
y>5 ⇒ y>3
にするのはゆるされるけど
x>5 ⇒ y>3
なんて許されない。
ある一つのkに対して成り立つものが、bが同じ形をしているから、他のck<qk-1となる
kに対して成り立つのは自明だと書いている。
というのは(A)〜(E)のなかにcrが入ってないなら許されるけど入ってるでしょ?
203132人目の素数さん
2018/08/25(土) 13:06:35.02ID:PTd+mqMA wikiページ
普遍汎化:https://ja.wikipedia.org/wiki/%E6%99%AE%E9%81%8D%E6%B1%8E%E5%8C%96
普遍例化:https://ja.wikipedia.org/wiki/%E6%99%AE%E9%81%8D%E4%BE%8B%E5%8C%96
数学の推論則として合意されたものを適用規定を守って正しく使って下さい。
仮定にも結論にも入ってる文字の結論部の文字だけ変えるのは許されません。
普遍汎化:https://ja.wikipedia.org/wiki/%E6%99%AE%E9%81%8D%E6%B1%8E%E5%8C%96
普遍例化:https://ja.wikipedia.org/wiki/%E6%99%AE%E9%81%8D%E4%BE%8B%E5%8C%96
数学の推論則として合意されたものを適用規定を守って正しく使って下さい。
仮定にも結論にも入ってる文字の結論部の文字だけ変えるのは許されません。
204132人目の素数さん
2018/08/25(土) 13:13:58.30ID:PTd+mqMA >>202
訂正
✕:というのは(A)〜(E)のなかにcrが入ってないなら許されるけど入ってるでしょ?
○:というのは(A)〜(E)のなかにprが入ってないなら許されるけど入ってるでしょ?
prはこの段の証明で(A)〜(E)のなかで特定されているprでそのprについて得られた結論(F)のprを別のpkには変えられません。
普遍汎化の適用制限に反するからです。
wikiページにもそう書いてあるでしょ?
訂正
✕:というのは(A)〜(E)のなかにcrが入ってないなら許されるけど入ってるでしょ?
○:というのは(A)〜(E)のなかにprが入ってないなら許されるけど入ってるでしょ?
prはこの段の証明で(A)〜(E)のなかで特定されているprでそのprについて得られた結論(F)のprを別のpkには変えられません。
普遍汎化の適用制限に反するからです。
wikiページにもそう書いてあるでしょ?
205132人目の素数さん
2018/08/25(土) 13:30:50.40ID:PTd+mqMA ついでなのでp14中段
w の因数にp1からpr以外の素数psが含まれる場合は、式Iから、b に含まれるpsの
指数をqs、c に含まれる因数psの指数をcsとすると
ここアウトですよ。
psがp1〜prに入ってない場合そもそも
qs = ps の B におけるmultiplicity = 0
cs = ps の A におけるmultiplicity = 0
なんだから君のいう新しいIの適用条件
ck<qk-1
を満足してないんだからこれにIを適用できません。
要は百歩譲って
ck<qk-1⇒I
を認めたとしても、yの因子でないpsについてはqs = cs = 0になってしまうのでIは使えません。
こういう小手先の修正では直らないんですよ。
pr以外の2m+1についての multiplicity については全然ちがうなんかの道を見つけないかぎり現時点どうしようもありません。
w の因数にp1からpr以外の素数psが含まれる場合は、式Iから、b に含まれるpsの
指数をqs、c に含まれる因数psの指数をcsとすると
ここアウトですよ。
psがp1〜prに入ってない場合そもそも
qs = ps の B におけるmultiplicity = 0
cs = ps の A におけるmultiplicity = 0
なんだから君のいう新しいIの適用条件
ck<qk-1
を満足してないんだからこれにIを適用できません。
要は百歩譲って
ck<qk-1⇒I
を認めたとしても、yの因子でないpsについてはqs = cs = 0になってしまうのでIは使えません。
こういう小手先の修正では直らないんですよ。
pr以外の2m+1についての multiplicity については全然ちがうなんかの道を見つけないかぎり現時点どうしようもありません。
206132人目の素数さん
2018/08/25(土) 15:19:25.41ID:Zrn2Mgii 1の理屈だとこうだな
約数関数をσとしてσ(y)=2yとなる整数yを完全数という。
たとえばy=6のときσ(y)=12=2yであるからyは完全数である。
同様に、すべての奇数についてもσ(y)=2yとなる。なぜなら「式の形が同じだから」
よってすべての奇数は完全数である(QED)
約数関数をσとしてσ(y)=2yとなる整数yを完全数という。
たとえばy=6のときσ(y)=12=2yであるからyは完全数である。
同様に、すべての奇数についてもσ(y)=2yとなる。なぜなら「式の形が同じだから」
よってすべての奇数は完全数である(QED)
207132人目の素数さん
2018/08/25(土) 15:24:59.34ID:Zrn2Mgii >>206
補足
すべての奇数yについてもσ(y)=2yとなるのは自明です。
とにかく証明が必要ないほど自明だから証明の書きようがない。
なんでこんな簡単なことがわからないのですか
つまらん反論はやめていただきたい
補足
すべての奇数yについてもσ(y)=2yとなるのは自明です。
とにかく証明が必要ないほど自明だから証明の書きようがない。
なんでこんな簡単なことがわからないのですか
つまらん反論はやめていただきたい
208132人目の素数さん
2018/08/25(土) 15:35:45.70ID:zmtUye6c えっ?
全ての奇数で?
じゃあ全ての奇数が完全数だ
終了
全ての奇数で?
じゃあ全ての奇数が完全数だ
終了
209132人目の素数さん
2018/08/25(土) 15:57:10.34ID:dmZ2Flg5 釣られたと見るのか
釣られたと思ってる俺が釣られているのか…
釣られたと思ってる俺が釣られているのか…
>>205
何を言っているのかさっぱり分かりませんが、bの形から全てのkに対して対称になっています。
pr=(p+1)/2となるk=rはそれ以外にも複数ある可能性があります。そのうちck<qk-1となるもの
に関しては添え字のみが異なるだけですので、同じ議論が同等にできて
全てのck<qk-1を満たすkに対して
2m+1=wpk^(qk-ck-1)
が成立するというだけです。
>なんだから君のいう新しいIの適用条件
>ck<qk-1
ここは当然cs<qs-1ですけど
何を言っているのかさっぱり分かりませんが、bの形から全てのkに対して対称になっています。
pr=(p+1)/2となるk=rはそれ以外にも複数ある可能性があります。そのうちck<qk-1となるもの
に関しては添え字のみが異なるだけですので、同じ議論が同等にできて
全てのck<qk-1を満たすkに対して
2m+1=wpk^(qk-ck-1)
が成立するというだけです。
>なんだから君のいう新しいIの適用条件
>ck<qk-1
ここは当然cs<qs-1ですけど
211132人目の素数さん
2018/08/25(土) 16:44:15.11ID:dmZ2Flg5 さっぱり分からんのやったらリジェクトでございます
212132人目の素数さん
2018/08/25(土) 17:25:04.29ID:ostKV3bB yに対応するpに対して(p-1)/2=p_kとなるkは一つしかないので、式の形が対称的だからといって全てのkが論理的に等価ではありません。
適用できるはずがないでしょう。
適用できるはずがないでしょう。
213132人目の素数さん
2018/08/25(土) 17:37:21.15ID:ostKV3bB 「pを取り替えて議論すればよい」とお考えでしたらそれも筋違いです。
pを変えるということは、議論の大元である奇数の完全数yを別の奇数の完全数y'に取り替えるということになります。
そして取り替えたら素因数分解が異なるので、議論は最初からやり直しになります。
また、背理法を使うために、仮定は「奇数の完全数が存在する」ですから、そもそもy'が存在する保証がありません。
pを変えるということは、議論の大元である奇数の完全数yを別の奇数の完全数y'に取り替えるということになります。
そして取り替えたら素因数分解が異なるので、議論は最初からやり直しになります。
また、背理法を使うために、仮定は「奇数の完全数が存在する」ですから、そもそもy'が存在する保証がありません。
214学術
2018/08/25(土) 18:46:59.34ID:q2oz86/q コネ繰りサルまわし。
215132人目の素数さん
2018/08/25(土) 18:53:08.13ID:YtpOT3Ia 前スレかここだったか、忘れたけどこの人前にも誰かとqk、ckの値で議論してたな。
自分で定義したこの値の意味もしかして一番わかってないの>>1じゃないの?
自分で定義したこの値の意味もしかして一番わかってないの>>1じゃないの?
216132人目の素数さん
2018/08/25(土) 19:33:57.31ID:LGolSfhm >>210
なにをいってるかさっぱりわからないようなのでもう少しかいてみます。
>何を言っているのかさっぱり分かりませんが、bの形から全てのkに対して対称になっています。
>pr=(p+1)/2となるk=rはそれ以外にも複数ある可能性があります。そのうちck<qk-1となるものに関しては添え字のみが異なるだけですので、同じ議論が同等にできて
なってないでしょ?
もう素因子の数は4個に限定します。
であなたが、証明したのは
∃y A B p p1 p2 p3
yは奇数の完全数,pは素数でv_p(y) = 4m+1
p1≠p2、p2≠p3、p3≠p1、
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A
q1 = v_p1(B)、c1 = v_p1(A)、q2 = v_p2(B)、c2 = v_p2(A)、q3 = v_p3(B)、c3 = v_p3(A)、
p = 2p1 - 1
⇒∃w 2m+1 = wpr^(q1-c1-1)
でしょ?(この証明もダメダメだけど。)
これでp1とp2入れ替えたら(すこしでも整合するようにqr,crもかえて)
∃y A B p p2 p1 p3
yは奇数の完全数,pは素数でv_p(y) = 4m+1
p2≠p1、p1≠p3、p3≠p2、
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A
q2 = v_p2(B)、c2 = v_p2(A)、q1 = v_p1(B)、c1 = v_p1(A)、q3 = v_p3(B)、c3 = v_p3(A)、
p = 2p2 - 1
⇒∃w 2m+1 = wp2^(q2-c2-1)
になるでしょ?
この2つ合わせられると思う?合わせるのは勝手だけど合わせたら
∃y A B p p2 p1 p3
yは奇数の完全数,pは素数でv_p(y) = 4m+1
p1≠p2、p2≠p3、p3≠p1、
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A
q2 = v_p2(B)、c2 = v_p2(A)、q1 = v_p1(B)、c1 = v_p1(A)、q3 = v_p3(B)、c3 = v_p3(A)、
p = 2p1 - 1 = 2p2 -1
⇒∃w 2m+1 = wp1^(q1-c1-1) = wp2^(q2-c2-1)
になるでしょ?
これでいいの?
なにをいってるかさっぱりわからないようなのでもう少しかいてみます。
>何を言っているのかさっぱり分かりませんが、bの形から全てのkに対して対称になっています。
>pr=(p+1)/2となるk=rはそれ以外にも複数ある可能性があります。そのうちck<qk-1となるものに関しては添え字のみが異なるだけですので、同じ議論が同等にできて
なってないでしょ?
もう素因子の数は4個に限定します。
であなたが、証明したのは
∃y A B p p1 p2 p3
yは奇数の完全数,pは素数でv_p(y) = 4m+1
p1≠p2、p2≠p3、p3≠p1、
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A
q1 = v_p1(B)、c1 = v_p1(A)、q2 = v_p2(B)、c2 = v_p2(A)、q3 = v_p3(B)、c3 = v_p3(A)、
p = 2p1 - 1
⇒∃w 2m+1 = wpr^(q1-c1-1)
でしょ?(この証明もダメダメだけど。)
これでp1とp2入れ替えたら(すこしでも整合するようにqr,crもかえて)
∃y A B p p2 p1 p3
yは奇数の完全数,pは素数でv_p(y) = 4m+1
p2≠p1、p1≠p3、p3≠p2、
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A
q2 = v_p2(B)、c2 = v_p2(A)、q1 = v_p1(B)、c1 = v_p1(A)、q3 = v_p3(B)、c3 = v_p3(A)、
p = 2p2 - 1
⇒∃w 2m+1 = wp2^(q2-c2-1)
になるでしょ?
この2つ合わせられると思う?合わせるのは勝手だけど合わせたら
∃y A B p p2 p1 p3
yは奇数の完全数,pは素数でv_p(y) = 4m+1
p1≠p2、p2≠p3、p3≠p1、
2y = 2p^(4m+1)B = (1+p+…+p^(4m+1))A
q2 = v_p2(B)、c2 = v_p2(A)、q1 = v_p1(B)、c1 = v_p1(A)、q3 = v_p3(B)、c3 = v_p3(A)、
p = 2p1 - 1 = 2p2 -1
⇒∃w 2m+1 = wp1^(q1-c1-1) = wp2^(q2-c2-1)
になるでしょ?
これでいいの?
217132人目の素数さん
2018/08/25(土) 20:01:40.38ID:1qqT9j0c この前1の論法で、
偶数の完全数が存在しない!
なんて照明がされたと思ったら、今度は
全ての奇数は完全数である!
が証明されてしまった。
高木時空は正に異次元超超超空間!
偶数の完全数が存在しない!
なんて照明がされたと思ったら、今度は
全ての奇数は完全数である!
が証明されてしまった。
高木時空は正に異次元超超超空間!
218132人目の素数さん
2018/08/25(土) 20:25:55.17ID:0HaUtabE メタな説明とか理解できないんじゃね
219132人目の素数さん
2018/08/25(土) 20:43:06.76ID:LGolSfhm まさかとは思うが “論文ではp1とかじゃない!勝手にp1に限定してるからおかしくなるんだ!” とか言い出すのかなぁ?
220132人目の素数さん
2018/08/26(日) 09:37:10.43ID:oz9s1ydI 別板から失礼します
別板から失礼しました
別板から失礼しました
>>216
>⇒∃w 2m+1 = wpr^(q1-c1-1)
>でしょ?(この証明もダメダメだけど。)
これは合っている。問題なのは、(p+1)/2が他のpkに対して全て等しいと言えるか
という問題であって、それは証明できないが、複数のpが解を持つことが想定できる
から、それが成り立つものに関しては式Iを重ねて使うことができると考えられる。
なかなか、私の書いた内容を理解してもらえないので、正確に書けばp1とp2で
式Iが成り立つ場合には
2m+1=w1p1^(q1-c1-1), c1<q1-1
2m+1=w2p2^(q2-c2-1), c2<q2-1
であって、
2m+1=wΠ[k=1,2]wkpk^(qk-ck-1)
が成立するということ。
これらの問題が全て解決する方法が思いついた。
全てのkに対してck<qkを示せば(この証明は簡単)
p^n+…+1≡0 (mod pk)
が全てのkに対して成り立たなければならないことが判明した。
今朝、この先にこの問題が証明すべきことが一つの命題だと
理解したという声が外から聞こえてきている。
>⇒∃w 2m+1 = wpr^(q1-c1-1)
>でしょ?(この証明もダメダメだけど。)
これは合っている。問題なのは、(p+1)/2が他のpkに対して全て等しいと言えるか
という問題であって、それは証明できないが、複数のpが解を持つことが想定できる
から、それが成り立つものに関しては式Iを重ねて使うことができると考えられる。
なかなか、私の書いた内容を理解してもらえないので、正確に書けばp1とp2で
式Iが成り立つ場合には
2m+1=w1p1^(q1-c1-1), c1<q1-1
2m+1=w2p2^(q2-c2-1), c2<q2-1
であって、
2m+1=wΠ[k=1,2]wkpk^(qk-ck-1)
が成立するということ。
これらの問題が全て解決する方法が思いついた。
全てのkに対してck<qkを示せば(この証明は簡単)
p^n+…+1≡0 (mod pk)
が全てのkに対して成り立たなければならないことが判明した。
今朝、この先にこの問題が証明すべきことが一つの命題だと
理解したという声が外から聞こえてきている。
222132人目の素数さん
2018/08/26(日) 10:35:54.01ID:OLKUlX43 >それは証明できないが、複数のpが解を持つことが想定できる
異次元の高木空間の事はどうでもいい。
1のやってることは現実世界と関係なし。
異次元の高木空間の事はどうでもいい。
1のやってることは現実世界と関係なし。
>>216
pは複数あると考えられるということを理解すべき
2b=c(p^n+…+1)
であって、cとpはkによりp=2pk-1という関係によって変化するのでpはkに依存し
複数の値を取ることができると考えられる。
pは複数あると考えられるということを理解すべき
2b=c(p^n+…+1)
であって、cとpはkによりp=2pk-1という関係によって変化するのでpはkに依存し
複数の値を取ることができると考えられる。
225132人目の素数さん
2018/08/26(日) 10:50:50.58ID:yhO+TDnq 考えられるってのは証明できたってこと?できてないってこと?
226132人目の素数さん
2018/08/26(日) 11:07:45.22ID:WDbhbjNy >223
bもcもpもnも、そこに出てくる値はすべてひとつの奇数の完全数に依存した一意な値です。
勝手に取り替えると論理が破綻しますが、よろしいですか。
bもcもpもnも、そこに出てくる値はすべてひとつの奇数の完全数に依存した一意な値です。
勝手に取り替えると論理が破綻しますが、よろしいですか。
227132人目の素数さん
2018/08/26(日) 11:15:47.73ID:+bCwOCje 高木時空では以下が成立するらしい
完全数28は、その素因数p=2を使ってp^2×7となる。n=2,b=7とし、2b=c(p^n+…+1)の形式とすると、2×7=2×(p^2+p+1)の式を得る。
この式を解くとp=2,-3を得る。したがって、この2と-3はともに28の素因数でなければならない。
こんな簡単なこともわからないのですか?(わからない)
完全数28は、その素因数p=2を使ってp^2×7となる。n=2,b=7とし、2b=c(p^n+…+1)の形式とすると、2×7=2×(p^2+p+1)の式を得る。
この式を解くとp=2,-3を得る。したがって、この2と-3はともに28の素因数でなければならない。
こんな簡単なこともわからないのですか?(わからない)
228132人目の素数さん
2018/08/26(日) 11:21:12.97ID:wwZAduSp >>221
まだわかってないなぁ。
2m+1 のとこも書き換えようかと思ったけどめんどくさいからそのままコピペしたんだけど。わかるだろうと思って。
やっぱりわかってない。
致命的なのは
p=2p1-1=2p2-1、p1≠p2。
君は時々pが複数ある可能性があるから問題ないとか言う事言うけど、そこもポイントずれてる。
ポイントは君の証明を完成させるにはむしろ複数ないといけない。そして複数ある事を証明しなくてはいけない。
ま、ガンパって証明してみて下さい。
まだわかってないなぁ。
2m+1 のとこも書き換えようかと思ったけどめんどくさいからそのままコピペしたんだけど。わかるだろうと思って。
やっぱりわかってない。
致命的なのは
p=2p1-1=2p2-1、p1≠p2。
君は時々pが複数ある可能性があるから問題ないとか言う事言うけど、そこもポイントずれてる。
ポイントは君の証明を完成させるにはむしろ複数ないといけない。そして複数ある事を証明しなくてはいけない。
ま、ガンパって証明してみて下さい。
229132人目の素数さん
2018/08/26(日) 12:07:56.71ID:OLKUlX43 >ポイントは君の証明を完成させるにはむしろ複数ないといけない。
>そして複数ある事を証明しなくてはいけない。
無茶振りキター
>そして複数ある事を証明しなくてはいけない。
無茶振りキター
230132人目の素数さん
2018/08/26(日) 13:01:27.08ID:HMYuW1QG 「AならばB」を言っておいてこれを「BならばA」にすり替えるやり口は高木論文の基本的なテクニックの一つだ。
今回の場合は「pが完全数yの素因数」ならば「2b=c(p^n+…+1)を満たす」と言っておいて、
その逆を主張するやり口を使っている。つまり、
「2b=c(p^n+…+1)を満たす」ならば「pが完全数yの素因数」でなければならない。だからpは複数存在する。
としているのが1の主張であり、このテクニックを巧妙に使っている。
>>227に書かれているように、そんな主張は成立しないのは明らか。
こんな幼稚なペテンに乗っかって延々と議論するほどの問題も無かろうよ。
今回の場合は「pが完全数yの素因数」ならば「2b=c(p^n+…+1)を満たす」と言っておいて、
その逆を主張するやり口を使っている。つまり、
「2b=c(p^n+…+1)を満たす」ならば「pが完全数yの素因数」でなければならない。だからpは複数存在する。
としているのが1の主張であり、このテクニックを巧妙に使っている。
>>227に書かれているように、そんな主張は成立しないのは明らか。
こんな幼稚なペテンに乗っかって延々と議論するほどの問題も無かろうよ。
231132人目の素数さん
2018/08/26(日) 16:17:50.30ID:AZWNHV19 >>223 論文の最初の方で、
pは指数が奇数になるyの唯一の素因数であることが証明されてなかったっけ…?
pは指数が奇数になるyの唯一の素因数であることが証明されてなかったっけ…?
234132人目の素数さん
2018/08/26(日) 17:01:12.46ID:AZWNHV19235132人目の素数さん
2018/08/26(日) 17:02:58.38ID:wwZAduSp >>232
だから
p=2p1-1=2p2-1
の問題を君は文字を置き換えて対応できると主張してるんだから、当然各pkごとに異なる奇数の完全数ykが存在してその多重度奇数の素因子qkがam=2pk-1を満たすように取れる事を示さないといけない。
君が何度もprとpkは対称だから取り替えて議論すればpkについても同じ結論が得られると主張していただろ?
そのためには当然prについての仮定の部分もpkに取り替えないといけない。
現時点ではその証明が論文には入ってないので君の論文は完成していない。
君は過去にこの方針で証明できると主張してたんだから、どうぞ頑張ってくださいと励ましてるだけ。
頑張ってねぇ〜
だから
p=2p1-1=2p2-1
の問題を君は文字を置き換えて対応できると主張してるんだから、当然各pkごとに異なる奇数の完全数ykが存在してその多重度奇数の素因子qkがam=2pk-1を満たすように取れる事を示さないといけない。
君が何度もprとpkは対称だから取り替えて議論すればpkについても同じ結論が得られると主張していただろ?
そのためには当然prについての仮定の部分もpkに取り替えないといけない。
現時点ではその証明が論文には入ってないので君の論文は完成していない。
君は過去にこの方針で証明できると主張してたんだから、どうぞ頑張ってくださいと励ましてるだけ。
頑張ってねぇ〜
236132人目の素数さん
2018/08/26(日) 17:03:36.18ID:xBRFnbpB237132人目の素数さん
2018/08/26(日) 17:07:47.31ID:e5R6NQVv 「自明」以外では証明ができないんだから何言っても無駄
238132人目の素数さん
2018/08/26(日) 17:07:59.06ID:wwZAduSp239132人目の素数さん
2018/08/26(日) 17:09:12.85ID:CSiDAnHb やっぱり背理法の最初の仮定
「奇数の完全数があったとしてそれをyとする。すると、こういうpがある。」
という論法を全く理解できていない。
みんな文章の真ん中あたりの議論を指摘していたりするけど、
そもそも>>1は背理法を理解していない。
文章は日本語になっていないけど、それなりに背理法で証明を試みていると思っていたら、
>>1は背理法を理解していないから指摘が噛み合うわけがない。
そしてこれはすでに指摘されているけど、
いまだに「yが定まる」とか言っているので、時間が経ってもなんら進捗していない。
統合失調症の影響かどうか知らないけど、これは数学力の問題じゃなく、
>>1の精神状況の問題だと思う。
「奇数の完全数があったとしてそれをyとする。すると、こういうpがある。」
という論法を全く理解できていない。
みんな文章の真ん中あたりの議論を指摘していたりするけど、
そもそも>>1は背理法を理解していない。
文章は日本語になっていないけど、それなりに背理法で証明を試みていると思っていたら、
>>1は背理法を理解していないから指摘が噛み合うわけがない。
そしてこれはすでに指摘されているけど、
いまだに「yが定まる」とか言っているので、時間が経ってもなんら進捗していない。
統合失調症の影響かどうか知らないけど、これは数学力の問題じゃなく、
>>1の精神状況の問題だと思う。
240132人目の素数さん
2018/08/26(日) 17:13:39.73ID:5xtlFmUF 出た、鉄板の芸人ネタだ!!
241132人目の素数さん
2018/08/26(日) 17:36:25.15ID:+bCwOCje >>233
>c=2はどこからでてきたのですかw
p=2,n=2,b=7,2b=c(p^n+…+1)なんだから当然そうなる
自明すぎて説明するまでもないんだが、算数のできない高木くんには難しすぎたようだ。すまんな
>c=2はどこからでてきたのですかw
p=2,n=2,b=7,2b=c(p^n+…+1)なんだから当然そうなる
自明すぎて説明するまでもないんだが、算数のできない高木くんには難しすぎたようだ。すまんな
243132人目の素数さん
2018/08/26(日) 17:50:28.45ID:+bCwOCje なお、過去に同じ指摘があったと思うが、p^n+…+1はp≧0の範囲で単調増加だから、2b=c(p^n+…+1)の関係式を方程式としても、これを満たす素数pは高々1個しかない。つまり複数存在することはない。
245132人目の素数さん
2018/08/26(日) 17:53:42.17ID:R22qNuJD まーたお得意の幻聴か…
苦しくなったら病気が発動するんだから便利なもんだよね
苦しくなったら病気が発動するんだから便利なもんだよね
246132人目の素数さん
2018/08/26(日) 17:56:37.74ID:+bCwOCje248132人目の素数さん
2018/08/26(日) 17:59:17.54ID:+bCwOCje250132人目の素数さん
2018/08/26(日) 18:04:36.57ID:AZWNHV19252132人目の素数さん
2018/08/26(日) 18:19:39.45ID:xBRFnbpB >>244
ないだろ
ないだろ
253132人目の素数さん
2018/08/26(日) 18:21:21.02ID:DotWVtJX 高木時空では-3は28の因子
254132人目の素数さん
2018/08/26(日) 18:23:59.94ID:xBRFnbpB >>242
bが変数なら一意にさだまらないよねwwwはい論破
bが変数なら一意にさだまらないよねwwwはい論破
255132人目の素数さん
2018/08/26(日) 18:33:48.39ID:WDbhbjNy 背理法で「奇数の完全数が存在しない」を示すための仮定は
「奇数の完全数が少なくともひとつ存在する」
なんだけど、これをそもそも理解してないのでは。
そういえば論文に仮定が書いてないや。
「奇数の完全数が少なくともひとつ存在する」
なんだけど、これをそもそも理解してないのでは。
そういえば論文に仮定が書いてないや。
256132人目の素数さん
2018/08/26(日) 19:16:54.07ID:y49f/amO257132人目の素数さん
2018/08/26(日) 19:34:53.52ID:WDbhbjNy 「逆は(必ずしも)真ならず」って数学で証明やってりゃ当然のことだし、意図してやってるなら詭弁ですな。
258132人目の素数さん
2018/08/26(日) 19:49:25.39ID:GJ/QHdHU 【24マラソン、2000万】 障害者はタダ働き <世界教師マiトレーヤ「偽善暴く」> 芸能人はボロ儲け
http://rosie.5ch.net/test/read.cgi/liveplus/1535249407/l50
24時間TVのチャリティーはイカサマ! ハルマゲドンは福音派のデマ! マ@トレーヤはオウムと思ってるバカ!
http://rosie.5ch.net/test/read.cgi/liveplus/1535249407/l50
24時間TVのチャリティーはイカサマ! ハルマゲドンは福音派のデマ! マ@トレーヤはオウムと思ってるバカ!
259132人目の素数さん
2018/08/26(日) 20:04:17.74ID:/9xIb4LH 知ってるかい?
この1は嘘つきでもなければ、詭弁を使っているのでもない
テレビから聞こえてくる声も含めて、すべて自分では正しいことを言っているつもりなんだ
それが現実世界の出来事や、正しい数学と食い違っていても1はお構いなしだ
それはもうどうしようもないのさ
この1は嘘つきでもなければ、詭弁を使っているのでもない
テレビから聞こえてくる声も含めて、すべて自分では正しいことを言っているつもりなんだ
それが現実世界の出来事や、正しい数学と食い違っていても1はお構いなしだ
それはもうどうしようもないのさ
261132人目の素数さん
2018/08/26(日) 20:15:15.62ID:dtHS+HYh さらに言えばpは複数あっても構わないわけですから、論文で書いたような
条件が成立するkというのは一つでなければならないという理由はありません。
私が数学記号∀や∃を理解していないということはありません。ただの誤解だ。
条件が成立するkというのは一つでなければならないという理由はありません。
私が数学記号∀や∃を理解していないということはありません。ただの誤解だ。
264132人目の素数さん
2018/08/26(日) 20:22:16.73ID:OLKUlX43 >私が数学記号∀や∃を理解していないということはありません。
1の知らないのは記号とかそんなレベルじゃない。
数学的な考え方、式の表し方、証明の方法・・・・
1が全く勉強してこなかった中学のころに、健常者は勉強してきているの。
1の知らないのは記号とかそんなレベルじゃない。
数学的な考え方、式の表し方、証明の方法・・・・
1が全く勉強してこなかった中学のころに、健常者は勉強してきているの。
265132人目の素数さん
2018/08/26(日) 20:22:43.33ID:dtHS+HYh268132人目の素数さん
2018/08/26(日) 20:28:03.90ID:dtHS+HYh >>266
ただの妄想やろ
ただの妄想やろ
269132人目の素数さん
2018/08/26(日) 20:28:15.09ID:WDbhbjNy270132人目の素数さん
2018/08/26(日) 20:28:59.49ID:dtHS+HYh271132人目の素数さん
2018/08/26(日) 20:29:42.77ID:WDbhbjNy そして存在するとは限らんものを論拠にはできん。
272132人目の素数さん
2018/08/26(日) 20:30:00.64ID:OLKUlX43 1の言う数学的成果は、高木時空での妄想。
中学・高校の数学は、1のこれからの生活に役立つはずだから
今からでも勉強するだよ!
中学・高校の数学は、1のこれからの生活に役立つはずだから
今からでも勉強するだよ!
274132人目の素数さん
2018/08/26(日) 20:42:10.76ID:VxafK4bF >>273
任意に決定できると仮定してるのですか?
あなたの証明は任意にpkとqkを定めて作れる奇数の完全数は存在しないというだけで、根本的に奇数の完全数が存在しないことは証明できていないということになります。残念でした。
任意に決定できると仮定してるのですか?
あなたの証明は任意にpkとqkを定めて作れる奇数の完全数は存在しないというだけで、根本的に奇数の完全数が存在しないことは証明できていないということになります。残念でした。
275132人目の素数さん
2018/08/26(日) 20:42:34.27ID:WDbhbjNy276132人目の素数さん
2018/08/26(日) 21:21:53.27ID:CSiDAnHb 「少なくとも一つある」をちゃんと教えてあげないとだめなのか
277132人目の素数さん
2018/08/26(日) 21:52:32.49ID:qs6b1fFZ もう1は論文本体を公開せずに「自分は正しいから正しいのだ」とだけ言うスタイルなんですかね
278132人目の素数さん
2018/08/26(日) 21:58:32.16ID:86oxL3mm 「少なくとも1つ存在する」=「個数はわからないが、とにかく存在することが言える」
「ただ1つ存在する」場合も含まれる
「ただ1つ存在する」場合も含まれる
279132人目の素数さん
2018/08/26(日) 22:18:14.55ID:zXC0j/wA いつまで相手するの?
暇なの?
暇なの?
280132人目の素数さん
2018/08/26(日) 22:20:35.16ID:oGfNJM4V >>221
>p^n+…+1≡0 (mod pk) が全てのkに対して成り立たなければならないことが判明した。
>今朝、この先にこの問題が証明すべきことが一つの命題だと理解したという声が外から聞こえてきている。
∃と∀の区別がつかない1のことだ、
「p^n+…+1がb=Πpk^qkの約数であるから、
p^n+…+1はあるpkを約数に持つ。よって
p^n+…+1は全てのpkを約数に持つ。」
という論理展開をしてくるのはエスパーでなくとも予想がつく。
それにしても、これが言えたらどういう矛盾が起きるんですかね…。
>p^n+…+1≡0 (mod pk) が全てのkに対して成り立たなければならないことが判明した。
>今朝、この先にこの問題が証明すべきことが一つの命題だと理解したという声が外から聞こえてきている。
∃と∀の区別がつかない1のことだ、
「p^n+…+1がb=Πpk^qkの約数であるから、
p^n+…+1はあるpkを約数に持つ。よって
p^n+…+1は全てのpkを約数に持つ。」
という論理展開をしてくるのはエスパーでなくとも予想がつく。
それにしても、これが言えたらどういう矛盾が起きるんですかね…。
281132人目の素数さん
2018/08/26(日) 22:22:59.67ID:lplTdzDK282132人目の素数さん
2018/08/26(日) 22:27:13.70ID:zXC0j/wA 病院にも通ってるようだし
リアルな精神病患者だぞ
色々な意味で相手をしない方が良いかと
リアルな精神病患者だぞ
色々な意味で相手をしない方が良いかと
284132人目の素数さん
2018/08/26(日) 22:42:00.79ID:STso/qZH 高木時空の論理は健常者には理解できない
285132人目の素数さん
2018/08/26(日) 22:45:08.50ID:WDbhbjNy >>283
>そんなことは書いていません。馬鹿じゃないの。
>A=少なくとも一つ存在する
>B=複数存在する
>B⊂A
Bが真でないなら、pが複数存在することの根拠がない、ということです。
そのまま返しますね。馬鹿じゃないの。
>そんなことは書いていません。馬鹿じゃないの。
>A=少なくとも一つ存在する
>B=複数存在する
>B⊂A
Bが真でないなら、pが複数存在することの根拠がない、ということです。
そのまま返しますね。馬鹿じゃないの。
>>285
だからAが空集合でないことを仮定するのですけど、何故それが分からないのか?
だからAが空集合でないことを仮定するのですけど、何故それが分からないのか?
287132人目の素数さん
2018/08/26(日) 22:51:51.72ID:WDbhbjNy 背理法を使用するために仮定しているのはA。
A⇒Bは偽なので、Bを使うことはできません。
奇数の完全数について「複数存在する」は証明しない限り使うことはできず、
奇数の完全数に依存する奇素数pについても同様です。
A⇒Bは偽なので、Bを使うことはできません。
奇数の完全数について「複数存在する」は証明しない限り使うことはできず、
奇数の完全数に依存する奇素数pについても同様です。
288132人目の素数さん
2018/08/26(日) 22:58:14.85ID:CSiDAnHb289132人目の素数さん
2018/08/26(日) 23:15:04.63ID:86oxL3mm 存在するかどうか分からない上で複数存在すると仮定して矛盾を導いたときに証明できることは「存在するとしたら、ただ1つである」ということです
これだけでは「実際に存在するかどうか」は示せません
これだけでは「実際に存在するかどうか」は示せません
290132人目の素数さん
2018/08/26(日) 23:21:02.95ID:T0UhBmfF それだけ示せるだけでも大した功績
もちろん>>1には無理
もちろん>>1には無理
291132人目の素数さん
2018/08/26(日) 23:44:15.27ID:VxafK4bF >>283
尽くされていないいるという十分な説明がないので認められません
尽くされていないいるという十分な説明がないので認められません
292132人目の素数さん
2018/08/26(日) 23:54:42.89ID:ktskPPX/ >>283
つまり未完であると。
つまり未完であると。
293132人目の素数さん
2018/08/27(月) 00:06:55.15ID:eEJJ0dk2 >>286
複数のpがあると矛盾が起きるんならお前の証明Bを否定しにいってるじゃん
複数のpがあると矛盾が起きるんならお前の証明Bを否定しにいってるじゃん
294132人目の素数さん
2018/08/27(月) 07:50:37.11ID:3Siq5Oqo >>294
何様だ、もう書くな
何様だ、もう書くな
このスレの数学力のないアンチの特徴
・間違ったレスを私に否定された場合には反応しない
・質問に関して真面目に答えても反応しない
・質問に関して私が答えないと文句を言うくせにこちらが質問した場合には
確実に答えない
・曖昧な反論をし、具体的に書けと言っても反応しない
・書いてもいないことを書いたとして反論もどきをする
・書いてもいない内容を私の間違いとしてあげつらう
・芸人ではないのに芸人呼ばわりをする
面白い奴らばかりだなw
・間違ったレスを私に否定された場合には反応しない
・質問に関して真面目に答えても反応しない
・質問に関して私が答えないと文句を言うくせにこちらが質問した場合には
確実に答えない
・曖昧な反論をし、具体的に書けと言っても反応しない
・書いてもいないことを書いたとして反論もどきをする
・書いてもいない内容を私の間違いとしてあげつらう
・芸人ではないのに芸人呼ばわりをする
面白い奴らばかりだなw
298132人目の素数さん
2018/08/27(月) 10:29:01.78ID:kGtHvTbD 今日は攻撃的な日か
299132人目の素数さん
2018/08/27(月) 10:29:50.33ID:IsO1JMe/ 薬飲み忘れてるのではないですか?
300132人目の素数さん
2018/08/27(月) 10:38:30.30ID:73skfyCQ >>297は1の自己紹介か
301132人目の素数さん
2018/08/27(月) 10:40:34.08ID:eWZRBtdq 2時間放置されただけで>>297を書いちゃう構ってちゃん
302132人目の素数さん
2018/08/27(月) 11:02:23.77ID:Se/68kme 因果応報だな
これまで1が誠実に対応してこなかった結果がこの状況だ
以前は真剣にレスをくれてるご新規さんもいたのに、1は常に自分は正しいの一点張りで指摘を拒絶しつづけた
その結果、1が言うアンチしかスレに残っていない最悪の状態が作られた
誰のせいでもない、1自身がこの状況を自ら招いているのだ
ここ数日は、これまでの中でも類を見ないほど丁寧な指摘が多かったと思うが、1はそれでも拒絶しつづけるのか
少なくとも今の1の態度は「公式に認定してほしい」という立場の者の態度では、ない
少し落ち着いてみてはどうか。
これまで1が誠実に対応してこなかった結果がこの状況だ
以前は真剣にレスをくれてるご新規さんもいたのに、1は常に自分は正しいの一点張りで指摘を拒絶しつづけた
その結果、1が言うアンチしかスレに残っていない最悪の状態が作られた
誰のせいでもない、1自身がこの状況を自ら招いているのだ
ここ数日は、これまでの中でも類を見ないほど丁寧な指摘が多かったと思うが、1はそれでも拒絶しつづけるのか
少なくとも今の1の態度は「公式に認定してほしい」という立場の者の態度では、ない
少し落ち着いてみてはどうか。
303132人目の素数さん
2018/08/27(月) 11:45:02.49ID:EAYrhxvQ 暇つぶしにもう少しかく。
まず
>>210
>bの形から全てのkに対して対称になっています。
といっているけどそんなことはない。
ちょっと文字かえて
∃Y A B P
Yは奇数の完全数,pは素数でv_p(y) = 4m+1 …(A)
2Y = 2P^(4m+1)B = (1+P+…+P^(4m+1))A …(B)
qr = v_pr(B) …(C)
cr = v_pr(A) …(D)
P = 2pr -1 …(E)
⇒∃w 2m+1 = wpr^(qr-cr-1) …(F)
この仮設中にはprしかでてないので、pr以外のpsについて
∃w 2m+1 = wps^(qs-cs-1)
を利用しようとするなら、(F)のprをpsにおきかえるなら(A) 〜 (E)内のすべてのprも入れ替えないといけない。
しかしすると
p = 2pr-1 = 2ps-1
が矛盾してしまうのでpもpsごとに取り替えないとダメでついでなのでほかの文字も取り替えとくと
∃Ys Ak Bs Ps
Ysは奇数の完全数,Psは素数でv_Ps(Ys) = 4m+1 …(@s)
Ps = 2ps -1 …(As)
2Ys = 2Ps^(4m+1)Bs = (1+Ps+…+Ps^(4m+1))As …(Bs)
qr = v_ps(Bs) …(Cs)
cr = v_ps(As) …(Ds)
がいえないと
∃Ws 2m+1 = Ws ps^(qs-cs-1) …(Fs)
はいえないとわかる。
論文ではp14あたりで(Fs)をすべての素数psについて利用してるので結局最低限、すべての素数psについて@s、Asが全部成立しないとだめ。
このうち@r、Arは背理法の仮定、場合分けの仮定で仮定しているからよいが、残りは証明しないといけない。
つまり
@r、Ar ⇒ @s、As (∀s)
の証明をつけないと論文は完成しない。
ちなみに私自身は原理的には可能だろうとおもう。
やっぱり奇数の完全数は存在しないと予想するので、それを否定する@r下では1+2=34が証明出来ても不思議ではないし可能性はある。
しかし可能性があるだけで現時点論文にはその証明ないね。
どこさがしても。
まず
>>210
>bの形から全てのkに対して対称になっています。
といっているけどそんなことはない。
ちょっと文字かえて
∃Y A B P
Yは奇数の完全数,pは素数でv_p(y) = 4m+1 …(A)
2Y = 2P^(4m+1)B = (1+P+…+P^(4m+1))A …(B)
qr = v_pr(B) …(C)
cr = v_pr(A) …(D)
P = 2pr -1 …(E)
⇒∃w 2m+1 = wpr^(qr-cr-1) …(F)
この仮設中にはprしかでてないので、pr以外のpsについて
∃w 2m+1 = wps^(qs-cs-1)
を利用しようとするなら、(F)のprをpsにおきかえるなら(A) 〜 (E)内のすべてのprも入れ替えないといけない。
しかしすると
p = 2pr-1 = 2ps-1
が矛盾してしまうのでpもpsごとに取り替えないとダメでついでなのでほかの文字も取り替えとくと
∃Ys Ak Bs Ps
Ysは奇数の完全数,Psは素数でv_Ps(Ys) = 4m+1 …(@s)
Ps = 2ps -1 …(As)
2Ys = 2Ps^(4m+1)Bs = (1+Ps+…+Ps^(4m+1))As …(Bs)
qr = v_ps(Bs) …(Cs)
cr = v_ps(As) …(Ds)
がいえないと
∃Ws 2m+1 = Ws ps^(qs-cs-1) …(Fs)
はいえないとわかる。
論文ではp14あたりで(Fs)をすべての素数psについて利用してるので結局最低限、すべての素数psについて@s、Asが全部成立しないとだめ。
このうち@r、Arは背理法の仮定、場合分けの仮定で仮定しているからよいが、残りは証明しないといけない。
つまり
@r、Ar ⇒ @s、As (∀s)
の証明をつけないと論文は完成しない。
ちなみに私自身は原理的には可能だろうとおもう。
やっぱり奇数の完全数は存在しないと予想するので、それを否定する@r下では1+2=34が証明出来ても不思議ではないし可能性はある。
しかし可能性があるだけで現時点論文にはその証明ないね。
どこさがしても。
305132人目の素数さん
2018/08/27(月) 12:43:13.99ID:pq+AP7V+307132人目の素数さん
2018/08/27(月) 13:35:04.86ID:pq+AP7V+ >>306
なんでそんな言い方するの?君、人間的には完全におかしいよ。
なんでそんな言い方するの?君、人間的には完全におかしいよ。
>>307
本当だから仕方がない。最後の命題は、このことに関して私は盗聴されているこの部屋で述べていない
内容であるが、他者が家の外からその命題を確認したと聞こえてきたと書いた。だから、分かっている人には
分かっているということ。論文の内容から、その命題を導いた人が他にもいるということだと思われる。
最後の命題は今worfmanで計算したところ、qk=2〜18までの範囲で、求める整数解が高々一つしかなく
一つのみの場合にはn=1となるが、n=1の場合では不適だということは証明している。
コンピュータを使わないと私の数学力では困難だが、この問題が解決される可能性は高いと思われる。
本当だから仕方がない。最後の命題は、このことに関して私は盗聴されているこの部屋で述べていない
内容であるが、他者が家の外からその命題を確認したと聞こえてきたと書いた。だから、分かっている人には
分かっているということ。論文の内容から、その命題を導いた人が他にもいるということだと思われる。
最後の命題は今worfmanで計算したところ、qk=2〜18までの範囲で、求める整数解が高々一つしかなく
一つのみの場合にはn=1となるが、n=1の場合では不適だということは証明している。
コンピュータを使わないと私の数学力では困難だが、この問題が解決される可能性は高いと思われる。
>>308 訂正
n=1の証明は保存していなかったので、正しいものかどうか不確かだったので取り消します
n=1の証明は保存していなかったので、正しいものかどうか不確かだったので取り消します
310132人目の素数さん
2018/08/27(月) 14:04:01.54ID:Hym+np++ こりゃ今までとはまったく違う証明がまた飛び出しそうやね
けっきょく「ふりだしにもどる」か
けっきょく「ふりだしにもどる」か
312132人目の素数さん
2018/08/27(月) 14:17:39.23ID:ixJjBx0X @r、Ar ⇒ @s、As (∀s)を示すルートに戻るわけか‥‥
>>312
いいえ
いいえ
314132人目の素数さん
2018/08/27(月) 14:35:44.59ID:ixJjBx0X 完成版マダァ-?
☆ チン ハラヘッタ〜
ハラヘッタ〜
☆ チン 〃 ∧_∧
ヽ___\(\・∀・)
\_/ ⊂ ⊂_)
/ ̄ ̄ ̄ ̄ ̄ /|
| ̄ ̄ ̄ ̄ ̄ ̄| |
|淡路たまねぎ|/
 ̄ ̄ ̄ ̄ ̄ ̄
☆ チン ハラヘッタ〜
ハラヘッタ〜
☆ チン 〃 ∧_∧
ヽ___\(\・∀・)
\_/ ⊂ ⊂_)
/ ̄ ̄ ̄ ̄ ̄ /|
| ̄ ̄ ̄ ̄ ̄ ̄| |
|淡路たまねぎ|/
 ̄ ̄ ̄ ̄ ̄ ̄
315132人目の素数さん
2018/08/27(月) 15:37:05.88ID:jq4omzH+ 最後の命題は、このことに関して私は盗聴されているこの部屋で述べていない
内容であるが、他者が家の外からその命題を確認したと聞こえてきたと書いた。だから、分かっている人には
分かっているということ。論文の内容から、その命題を導いた人が他にもいるということだと思われる。
これ誰か解読してくれ
内容であるが、他者が家の外からその命題を確認したと聞こえてきたと書いた。だから、分かっている人には
分かっているということ。論文の内容から、その命題を導いた人が他にもいるということだと思われる。
これ誰か解読してくれ
316132人目の素数さん
2018/08/27(月) 16:11:45.23ID:IsO1JMe/ そういえば最新版どこ?
317132人目の素数さん
2018/08/27(月) 16:13:53.09ID:jz92TWRf318132人目の素数さん
2018/08/27(月) 21:00:20.77ID:N5zezPrs じゃあ盗作だ
>>318
何故そうなるのか説明してください
何故そうなるのか説明してください
320132人目の素数さん
2018/08/28(火) 00:39:02.97ID:UKZJi3yS >>316
読めなくなってるね?
読めなくなってるね?
321132人目の素数さん
2018/08/28(火) 00:50:49.48ID:rzg4Ogb4 lim[n→∞]n(n-1)log(1-1/n)/lognが-∞に発散することってどうすれば示せますか?
どうしても不定形が解消できないです……
どうしても不定形が解消できないです……
322132人目の素数さん
2018/08/28(火) 00:58:27.51ID:FfTOBxzO >>319
人から教わったものを単著で書くんでしょ
人から教わったものを単著で書くんでしょ
323132人目の素数さん
2018/08/28(火) 01:10:43.13ID:rzg4Ogb4 スレ違ったわ
>>321は取り下げます
>>321は取り下げます
324132人目の素数さん
2018/08/28(火) 01:14:23.48ID:UKZJi3yS でも>>321なら流石に早稲田の物理学科なら出来そうだけど。
326132人目の素数さん
2018/08/28(火) 09:30:55.55ID:zvQYgLng ちゃんと謝辞に書いとけよ
327132人目の素数さん
2018/08/28(火) 10:08:11.73ID:BaVdfi0M 謝辞というかもう100回近くネラーの助言で訂正してるんだから実質共著なのでは
328132人目の素数さん
2018/08/28(火) 10:17:25.75ID:SPphnHxf 論文が完成したらの条件下の話はあまりピンと来ないww
329132人目の素数さん
2018/08/28(火) 10:20:52.00ID:8Bqcrs0Z あんなバグ論文の共著にされても困るんだが
>>326
それは書いている。
>>328
間違いの75%ぐらいは自分で気づいて直していると考えられる。
チェックをしてもらっているだけなので、共著とは言えないと思う。
もう、最後の問題一つだから、それを解決できる人がいて私にそれを
教えて、それを私が論文に書けば当然共著ということになると思う。
しかし、それは止めた方がいいと思って最後の命題は書いていない。
ここでの書かれている内容は論文の間違いの指摘であって論文の
内容を書いてもらっているのではない。
>>329
恐らく未知の>>221の合同式と、定理を導出した。最新の論文には
その定理は書いていないが。その定理の証明が難しく完成が
困難になっている。
それは書いている。
>>328
間違いの75%ぐらいは自分で気づいて直していると考えられる。
チェックをしてもらっているだけなので、共著とは言えないと思う。
もう、最後の問題一つだから、それを解決できる人がいて私にそれを
教えて、それを私が論文に書けば当然共著ということになると思う。
しかし、それは止めた方がいいと思って最後の命題は書いていない。
ここでの書かれている内容は論文の間違いの指摘であって論文の
内容を書いてもらっているのではない。
>>329
恐らく未知の>>221の合同式と、定理を導出した。最新の論文には
その定理は書いていないが。その定理の証明が難しく完成が
困難になっている。
331132人目の素数さん
2018/08/28(火) 10:56:45.40ID:y6Lv4Iaw 1は、とっとと消えろ。
2度と出てくんな。
2度と出てくんな。
333132人目の素数さん
2018/08/28(火) 11:27:39.88ID:iM8aTLWI 共著とか無縁な単語出して餌を与えるお前ら
334132人目の素数さん
2018/08/28(火) 11:38:59.85ID:NcfhiGRZ335132人目の素数さん
2018/08/28(火) 11:40:19.47ID:B2NMw+XG ピン芸人高木
337132人目の素数さん
2018/08/28(火) 11:53:43.19ID:y6Lv4Iaw 誤りがあるだの、困難だのばかり書き込んで
あの超過疎スレの数独スレを再現するつもりか。
クズ1は。
あの超過疎スレの数独スレを再現するつもりか。
クズ1は。
338132人目の素数さん
2018/08/28(火) 12:00:07.88ID:VkSVkUAu まあ途中経過の報告は必要ないな
出されたPDFだけで評価するべきだし
出されたPDFだけで評価するべきだし
339132人目の素数さん
2018/08/28(火) 12:13:47.75ID:/FDEZ/Um 共著者にするなら、見てもいない命題を家の外から確認したとわざわざ声をかけてくれた人物こそ相応しいのではないか
彼だか彼女だか知らないが、間違いなく協力関係にある人物であろう
彼だか彼女だか知らないが、間違いなく協力関係にある人物であろう
340132人目の素数さん
2018/08/28(火) 12:16:34.24ID:NcfhiGRZ 「prとpkは対称だからprについて言えてることはpkについても言えてるハズだ。」
というスーパーロジックが使えなくなったら次はかなり苦しいだろ。
ようやく>>1にもこの問題の難しさがわかってきたんじゃない?
というスーパーロジックが使えなくなったら次はかなり苦しいだろ。
ようやく>>1にもこの問題の難しさがわかってきたんじゃない?
341132人目の素数さん
2018/08/28(火) 12:20:22.43ID:Bz8h+r0A 新しいスーパーロジックを生み出すから高木時空では関係ないぞ
342132人目の素数さん
2018/08/28(火) 12:55:45.10ID:XWAo3OYd343132人目の素数さん
2018/08/28(火) 13:00:56.93ID:PhiQFhFr 暇だから多項式Σp^k=1+…+p^n(nは奇数)の増減について調べてみた
まずこの多項式がp≧0でpについて単調増加するのは明らか
1+…+p^n=(p^{n+1}-1)/(p-1)と変形して導関数をとるとnp^n/(p-1)+(1-p^n)/(p-1)^2…@
p<0で@式の第1項、第2項とも正になるのでp<0でもpについて単調増加する
∴多項式Σp^k=1+…+p^n(nは奇数)は、pについて全域において単調増加する
この結果により、方程式C=1+…+p^n(nは奇数)をpで解いたとき、その実根は唯一であることが示される
まずこの多項式がp≧0でpについて単調増加するのは明らか
1+…+p^n=(p^{n+1}-1)/(p-1)と変形して導関数をとるとnp^n/(p-1)+(1-p^n)/(p-1)^2…@
p<0で@式の第1項、第2項とも正になるのでp<0でもpについて単調増加する
∴多項式Σp^k=1+…+p^n(nは奇数)は、pについて全域において単調増加する
この結果により、方程式C=1+…+p^n(nは奇数)をpで解いたとき、その実根は唯一であることが示される
344132人目の素数さん
2018/08/28(火) 13:26:32.95ID:B+5iJtwK >>342の自演臭よ
345132人目の素数さん
2018/08/28(火) 13:44:51.86ID:XWAo3OYd >>344 邪推よw
346132人目の素数さん
2018/08/28(火) 14:04:26.45ID:hH2YyzSE 27歳で年収8億円 女性ユーチューバー「リリー・シン」の生き方
https://headlines.yahoo.co.jp/article?a=20170802-00017174-forbes-bus_all
1年で何十億円も稼ぐ高収入ユーチューバー世界ランキングトップ10
https://gigazine.net/news/20151016-highest-paid-youtuber-2015/
おもちゃのレビューで年間12億円! 今、話題のYouTuberは6歳の男の子
https://www.businessinsider.jp/post-108355
彼女はいかにして750万人のファンがいるYouTubeスターとなったのか?
https://www.businessinsider.jp/post-242
1億円稼ぐ9歳のYouTuberがすごすぎる……アメリカで話題のEvanTubeHD
https://weekly.ascii.jp/elem/000/000/305/305548/
世界で最も稼ぐユーチューバー、2連覇の首位は年収17億円
https://forbesjapan.com/articles/detail/14474
https://headlines.yahoo.co.jp/article?a=20170802-00017174-forbes-bus_all
1年で何十億円も稼ぐ高収入ユーチューバー世界ランキングトップ10
https://gigazine.net/news/20151016-highest-paid-youtuber-2015/
おもちゃのレビューで年間12億円! 今、話題のYouTuberは6歳の男の子
https://www.businessinsider.jp/post-108355
彼女はいかにして750万人のファンがいるYouTubeスターとなったのか?
https://www.businessinsider.jp/post-242
1億円稼ぐ9歳のYouTuberがすごすぎる……アメリカで話題のEvanTubeHD
https://weekly.ascii.jp/elem/000/000/305/305548/
世界で最も稼ぐユーチューバー、2連覇の首位は年収17億円
https://forbesjapan.com/articles/detail/14474
348132人目の素数さん
2018/08/28(火) 16:04:53.39ID:eWhJjQ9d 1「という声が外から聞こえてきている。 」
349132人目の素数さん
2018/08/28(火) 16:18:10.89ID:eWhJjQ9d これまでの奇数芸人ネタ
・pは特定の値を持つはずだが0p=0であり不定になるから矛盾
・pは定数でありかつ変数である
・pが単調減少する(本当は単調減少しない)からpは素数になりえない
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか
・wは整数であり同時に整数でない
・2m+1は因数だが2m+1の倍数ではない
・a=b/3なら、aはbを因数に含む
・変数は数値に置き換えてはダメ
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然
・27/5 は 3 で割り切れる
・定義はしていますが、値は定めていません
・少なくとも一つはそうなる、ということで
全てに対して成り立たなければならない
・自明なことは証明できない
・この論理は正しさが証明することができません。(NEW!)
・証明を見つけましたので私的にはこの部分は、未解明ということにしたいと思います。(NEW!)
・未知の合同式と、定理を導出した。その定理の証明が難しく完成が困難になっている。(NEW!)
・最後の命題は、私は盗聴されているこの部屋で述べていないのに、
他者が家の外からその命題を確認したと聞こえてきた。
だから、分かっている人には分かっているということ。(NEW!)
・pは特定の値を持つはずだが0p=0であり不定になるから矛盾
・pは定数でありかつ変数である
・pが単調減少する(本当は単調減少しない)からpは素数になりえない
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか
・wは整数であり同時に整数でない
・2m+1は因数だが2m+1の倍数ではない
・a=b/3なら、aはbを因数に含む
・変数は数値に置き換えてはダメ
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然
・27/5 は 3 で割り切れる
・定義はしていますが、値は定めていません
・少なくとも一つはそうなる、ということで
全てに対して成り立たなければならない
・自明なことは証明できない
・この論理は正しさが証明することができません。(NEW!)
・証明を見つけましたので私的にはこの部分は、未解明ということにしたいと思います。(NEW!)
・未知の合同式と、定理を導出した。その定理の証明が難しく完成が困難になっている。(NEW!)
・最後の命題は、私は盗聴されているこの部屋で述べていないのに、
他者が家の外からその命題を確認したと聞こえてきた。
だから、分かっている人には分かっているということ。(NEW!)
350132人目の素数さん
2018/08/28(火) 16:38:22.39ID:eWhJjQ9d 今は>>102 のフェーズ1だな。
351132人目の素数さん
2018/08/28(火) 16:39:21.59ID:eWhJjQ9d これまでの奇数芸人ネタ
・pは定数でありかつ変数である。
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか。
・wは整数であり同時に整数でない。
・2m+1は因数だが2m+1の倍数ではない。
・a=b/3なら、aはbを因数に含む。
・変数は数値に置き換えてはダメ。
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然。
・27/5 は 3 で割り切れる。
・定義はしていますが、値は定めていません。
・少なくとも一つはそうなる、ということで
全てに対して成り立たなければならない。
・式の形から1つのkで成り立てば、全てのkでも成り立つ。
・自明なことを証明することは難しい。
・この論理は正しさが証明することができません。(NEW!)
・証明を見つけましたので、未解明ということにしたい。(NEW!)
・定理を導出した。その定理の証明が難しく完成が困難になっている。(NEW!)
・最後の命題は、他者が家の外からその命題を確認したと聞こえてきた。(NEW!)
・pは定数でありかつ変数である。
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか。
・wは整数であり同時に整数でない。
・2m+1は因数だが2m+1の倍数ではない。
・a=b/3なら、aはbを因数に含む。
・変数は数値に置き換えてはダメ。
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然。
・27/5 は 3 で割り切れる。
・定義はしていますが、値は定めていません。
・少なくとも一つはそうなる、ということで
全てに対して成り立たなければならない。
・式の形から1つのkで成り立てば、全てのkでも成り立つ。
・自明なことを証明することは難しい。
・この論理は正しさが証明することができません。(NEW!)
・証明を見つけましたので、未解明ということにしたい。(NEW!)
・定理を導出した。その定理の証明が難しく完成が困難になっている。(NEW!)
・最後の命題は、他者が家の外からその命題を確認したと聞こえてきた。(NEW!)
352132人目の素数さん
2018/08/28(火) 16:56:26.83ID:74eJRyWJ >定理を導出した。その定理の証明が難しく完成が困難になっている。
世界はそれを予想というんだぜ
実際奇数の完全数は無さそうって予想なら皆立ててるわけだが
世界はそれを予想というんだぜ
実際奇数の完全数は無さそうって予想なら皆立ててるわけだが
>>352
予想そのものではなく、奇数が存在すればという定理だったが、それには条件が必要だという
ことが分かった。つまり、全てのkに対して何々とならなければならないではなく
〜という条件のkではというのが付かなければ良くないということが分かった。
予想そのものではなく、奇数が存在すればという定理だったが、それには条件が必要だという
ことが分かった。つまり、全てのkに対して何々とならなければならないではなく
〜という条件のkではというのが付かなければ良くないということが分かった。
354132人目の素数さん
2018/08/28(火) 18:09:48.43ID:3vZ8S92c ぎぶ?
合同式を見つけからもういいような気がしてきた。合同式から導かれる整数解問題は
2つのパターンがあり、難しく解けない。
そのうち一つの方の特殊な場合であっても、qk=18までぐらいはwolfmanは解がないことを
計算するが、一般的なものではpr=4までしか計算しない。
私には解決できないと考えられる問題が残った。
2つのパターンがあり、難しく解けない。
そのうち一つの方の特殊な場合であっても、qk=18までぐらいはwolfmanは解がないことを
計算するが、一般的なものではpr=4までしか計算しない。
私には解決できないと考えられる問題が残った。
356132人目の素数さん
2018/08/28(火) 19:06:03.12ID:sI3HcjG9 はい、お疲れさま
この半年間無駄だったね
この半年間無駄だったね
359132人目の素数さん
2018/08/28(火) 19:39:13.84ID:sI3HcjG9 >>358
で、どこにその証明があるんだ?
で、どこにその証明があるんだ?
>>359
私のPC
私のPC
361132人目の素数さん
2018/08/28(火) 19:42:02.37ID:sI3HcjG9 >>361
承認が得られたら、労働対価を受けれますか?
承認が得られたら、労働対価を受けれますか?
363132人目の素数さん
2018/08/28(火) 19:48:30.93ID:9LPp4tfu 労働対価が受けたくて今までやってたのですか?
364132人目の素数さん
2018/08/28(火) 19:53:16.98ID:102/zM9D レビューへの対価もないのに!?
365132人目の素数さん
2018/08/28(火) 19:55:21.44ID:sI3HcjG9 誰から?俺は払わないけど
367132人目の素数さん
2018/08/28(火) 20:06:49.55ID:ITUOjKFA 数学は金を稼ぐ手段じゃないから
どうしても対価が欲しいならミレニアム懸賞問題でも解いたら?
どうしても対価が欲しいならミレニアム懸賞問題でも解いたら?
368132人目の素数さん
2018/08/28(火) 20:07:00.68ID:vDGj5wYa 1は、数学的成果どころかゴミ落書きPDFだけなので対価などない。
1による迷惑行為に賠償が発生するやもしれん。
1による迷惑行為に賠償が発生するやもしれん。
369132人目の素数さん
2018/08/28(火) 20:10:24.53ID:vDGj5wYa これまでのこの数学板での査定により、
1は証明とは遥かに遠くの高木時空での妄想に終始し
現在・将来ともに数学的成果と縁が無いことが明らかとなっている。
1は証明とは遥かに遠くの高木時空での妄想に終始し
現在・将来ともに数学的成果と縁が無いことが明らかとなっている。
370132人目の素数さん
2018/08/28(火) 20:12:01.25ID:ITUOjKFA あるいは研究機関に持ち込んで交渉すれば、もしかするかも知れないけど
>>370
面倒だから最新版を公開して、それで収入になったらいいと思う。
どうせ、この問題は何年も進捗がない問題だろうからという気がする。
はたの人間は、個人で研究しそれを公開すると一円も払わないくせに
学者ゆすりと言って徹底的に誹謗・中傷してくるから、もう4から5年はそれに
付き合わされているし、リーマンショックのリストラ以来10年ただ働き。
全くもって不当の極みだ。
面倒だから最新版を公開して、それで収入になったらいいと思う。
どうせ、この問題は何年も進捗がない問題だろうからという気がする。
はたの人間は、個人で研究しそれを公開すると一円も払わないくせに
学者ゆすりと言って徹底的に誹謗・中傷してくるから、もう4から5年はそれに
付き合わされているし、リーマンショックのリストラ以来10年ただ働き。
全くもって不当の極みだ。
はたの人間=外から誰だか分からにようにして、ものを言う人間や、私に何かをさせようとする人間。
この前も上司に渡せという命令が聞こえてきたが、私は10年無職なのに誰が上司なのでしょうか?
この前も上司に渡せという命令が聞こえてきたが、私は10年無職なのに誰が上司なのでしょうか?
373132人目の素数さん
2018/08/28(火) 21:26:14.90ID:9LPp4tfu 変更点
・7ページに0≦ck≦qk-1の証明を追加しました
・7ページにn=1の場合の証明を追加しました
・14ページの証明を修正しました
Pdf文書 日本語
http://fast-uploader.com/file/7091017394711/
・7ページに0≦ck≦qk-1の証明を追加しました
・7ページにn=1の場合の証明を追加しました
・14ページの証明を修正しました
Pdf文書 日本語
http://fast-uploader.com/file/7091017394711/
>>373
後2つの整数解問題の解の個数を調べることができれば解決のところまでいっているのに
も関わらずですか?
それから、数学的に正しければ未解決問題を解決した場合には学位は関係ないのではないのでしょうか。
後2つの整数解問題の解の個数を調べることができれば解決のところまでいっているのに
も関わらずですか?
それから、数学的に正しければ未解決問題を解決した場合には学位は関係ないのではないのでしょうか。
376132人目の素数さん
2018/08/28(火) 22:20:04.01ID:2cZG8Ilp なんにせよ、えらい進歩やん。永久にこのままやと思ってたのに。
377132人目の素数さん
2018/08/28(火) 22:34:24.72ID:W0aAul7K >>362
あなたにお金を払って何か良いことがありますか?
あなたにお金を払って何か良いことがありますか?
378132人目の素数さん
2018/08/28(火) 22:59:54.34ID:f4JKDrit また必殺「crで成り立つからckで成り立つ」論法つかってるんじゃね?
p13ど頭
>全ての k に対してck < qkとなることから、全ての k に対して
の「全ての k に対してck < qk」の証明見当たらんけど。
p13ど頭
>全ての k に対してck < qkとなることから、全ての k に対して
の「全ての k に対してck < qk」の証明見当たらんけど。
379132人目の素数さん
2018/08/28(火) 23:03:03.36ID:2Wx8NN6F 速攻で不備発見か
1のパターン完全に読み切られてるw
1のパターン完全に読み切られてるw
380132人目の素数さん
2018/08/28(火) 23:06:45.61ID:f4JKDrit まだ流し読みだからわからんけど。
p7あたりに
>k について対称になるので全ての k に対して c はpk^qkで割り切られない。よって、全ての k に対して、ckは
>0 ≦ ck ≦ qk − 1の値を取り得る。
これ必殺技の香りが………
p7あたりに
>k について対称になるので全ての k に対して c はpk^qkで割り切られない。よって、全ての k に対して、ckは
>0 ≦ ck ≦ qk − 1の値を取り得る。
これ必殺技の香りが………
381132人目の素数さん
2018/08/29(水) 00:09:14.95ID:FheP8WCH てか今版は奇数の完全数が存在しないことの証明までは至ってないんでしょ?
じゃタイトルも変えないと。
じゃタイトルも変えないと。
382132人目の素数さん
2018/08/29(水) 00:12:08.84ID:ceObIKuY >>375
お金もらいたければ博士まで取りなさい
お金もらいたければ博士まで取りなさい
383132人目の素数さん
2018/08/29(水) 00:13:47.54ID:a8QQvkl2 一気呵成思考の苦学者なの?
384132人目の素数さん
2018/08/29(水) 00:28:46.15ID:a8QQvkl2 前読んだときより断然読みやすくなってる!
概要もちゃんと書いてるし、式の運びも章立てて説明してる
やればできるじゃん!!
概要もちゃんと書いてるし、式の運びも章立てて説明してる
やればできるじゃん!!
385132人目の素数さん
2018/08/29(水) 00:49:40.99ID:2dnbykm+386132人目の素数さん
2018/08/29(水) 03:40:18.55ID:LWMzOVZ6 そもそも「奇数の完全数が存在すると仮定する」がないんですよね
388132人目の素数さん
2018/08/29(水) 07:10:57.16ID:pwgAv9O4 >>387
>>366に
>成果が出た場合には当然だと思いますが
>
>無職が数学的な成果を出した場合の労働対価を誰がいくら払うのかという問題が発生しています
と書いていて、ただのもしも論に過ぎないが、証明出来たらどうなるか成り行きを予測して説明する。
この未解決問題は、内容的には誰にでも理解出来るような古代からの未解決問題である。
証明の単著論文を英語で書いて、しっかりした査読付きのジャーナルに投稿して
論文が雑誌に掲載されて論文内容が認められれば、
世間の反応は一大フィーバーが起きて、英雄扱いされる可能性が大きいと思う。
博士云々の問題どころではなく、世間からは何かの金になるような仕事が依頼されるようになると思う。
もしかしたら、テレビから引っ張りだこになるも知れない。
単なるもしも論に過ぎないが、マジメに一人で英語で論文を書いて
しっかりした査読付きのジャーナルにその論文を投稿してそれが掲載される雑誌に載れば、
そのような何らかの対価は生じると思う。内容的にはそのような未解決問題だ。
対価を狙うなら、2チャンに書くのではなく、一人でしっかりしたジャ−ナルに論文を掲載した方がいい。
まあ、実情は、基礎的部分が大きく欠落しているとは思うが。
>>366に
>成果が出た場合には当然だと思いますが
>
>無職が数学的な成果を出した場合の労働対価を誰がいくら払うのかという問題が発生しています
と書いていて、ただのもしも論に過ぎないが、証明出来たらどうなるか成り行きを予測して説明する。
この未解決問題は、内容的には誰にでも理解出来るような古代からの未解決問題である。
証明の単著論文を英語で書いて、しっかりした査読付きのジャーナルに投稿して
論文が雑誌に掲載されて論文内容が認められれば、
世間の反応は一大フィーバーが起きて、英雄扱いされる可能性が大きいと思う。
博士云々の問題どころではなく、世間からは何かの金になるような仕事が依頼されるようになると思う。
もしかしたら、テレビから引っ張りだこになるも知れない。
単なるもしも論に過ぎないが、マジメに一人で英語で論文を書いて
しっかりした査読付きのジャーナルにその論文を投稿してそれが掲載される雑誌に載れば、
そのような何らかの対価は生じると思う。内容的にはそのような未解決問題だ。
対価を狙うなら、2チャンに書くのではなく、一人でしっかりしたジャ−ナルに論文を掲載した方がいい。
まあ、実情は、基礎的部分が大きく欠落しているとは思うが。
389132人目の素数さん
2018/08/29(水) 09:12:00.15ID:gK8zj4a5 p7だめやろ?やっぱり。
qk = y における pk の多重度。
ck = 2y / (1+p+…+p^n) (=c) における pk の多重度。
だから
qk > ck ⇔ 1+p+…+p^n が pk の倍数
で、
1+p+…+p^n = (1+p)(1-p^2+…) = 2pr(1-p^2+…)
だから
qr > cr
は正しいけど、からのp7
>ゆえに、c はpr^qrで割り切られない。k について対称になるので全ての k に対して c はpk^qkで割り切られない。
これは例の “prで成り立つから他のpkでも成り立つ論法” 使ってるやん。
qk = y における pk の多重度。
ck = 2y / (1+p+…+p^n) (=c) における pk の多重度。
だから
qk > ck ⇔ 1+p+…+p^n が pk の倍数
で、
1+p+…+p^n = (1+p)(1-p^2+…) = 2pr(1-p^2+…)
だから
qr > cr
は正しいけど、からのp7
>ゆえに、c はpr^qrで割り切られない。k について対称になるので全ての k に対して c はpk^qkで割り切られない。
これは例の “prで成り立つから他のpkでも成り立つ論法” 使ってるやん。
390132人目の素数さん
2018/08/29(水) 09:25:29.09ID:gK8zj4a5 >>388
証明は完成していませんが、数学的な成果は出ていると思います。
基礎的な部分で多く間違ってきたが、それはこの研究を私が個人で行っているもので
あり査読者がいかないから、ということとこの問題は背理法での証明なので、計算や
論理を間違えるとそれが答えだと誤認するからそうなってしまう。
今までも英語の論文も同時に公開してきたが、最後に整数解の難問を解かなければ
ならなくなり、完成した論文でなくなったので英語の方は公開しないことにした。
>>389
別に(p+1)/2=pkの関係を持ちていないので、どのkに対しても成り立つはずですけど。
全てのkに対してcがpk^qkで割り切れたら矛盾が発生しますから。
証明は完成していませんが、数学的な成果は出ていると思います。
基礎的な部分で多く間違ってきたが、それはこの研究を私が個人で行っているもので
あり査読者がいかないから、ということとこの問題は背理法での証明なので、計算や
論理を間違えるとそれが答えだと誤認するからそうなってしまう。
今までも英語の論文も同時に公開してきたが、最後に整数解の難問を解かなければ
ならなくなり、完成した論文でなくなったので英語の方は公開しないことにした。
>>389
別に(p+1)/2=pkの関係を持ちていないので、どのkに対しても成り立つはずですけど。
全てのkに対してcがpk^qkで割り切れたら矛盾が発生しますから。
392132人目の素数さん
2018/08/29(水) 10:28:49.40ID:/vx/CFX4393132人目の素数さん
2018/08/29(水) 10:34:13.55ID:mjRvhqt3 >>389
使ってる。そもそもf(pr)=(1+p+‥)/‥ がp=2pr-1 でないと成立しない。
仮にp=2pr-1という条件を使ってなかったとしてもそんな記述はゆるされないけど、今回は使い倒してる。
使ってる。そもそもf(pr)=(1+p+‥)/‥ がp=2pr-1 でないと成立しない。
仮にp=2pr-1という条件を使ってなかったとしてもそんな記述はゆるされないけど、今回は使い倒してる。
394132人目の素数さん
2018/08/29(水) 10:49:55.46ID:ExIdLqFl 論文投稿なんてヒキニートなのに金の掛かる趣味を・・・と思ってたら、
1は論文を投稿すれば投稿者に金が貰えると思ってたわけか。
1は論文を投稿すれば投稿者に金が貰えると思ってたわけか。
395132人目の素数さん
2018/08/29(水) 11:03:08.82ID:ThdMqrgL なんかすごい人の目に留まって、なんかすごい賞もらえると考えてたんじゃないの
396132人目の素数さん
2018/08/29(水) 11:28:59.80ID:zlXfUQz9 1に解けるくらいの問題なら世界中の誰かが解いてるはずでしょ
(あ、言っちゃった)
(あ、言っちゃった)
397132人目の素数さん
2018/08/29(水) 11:55:30.47ID:7MjvDqGy そうか、わかった。
v_pr(2m+1)の計算>>1の論文の計算が下手すぎて無視してたんだけど、そこをなんかいじくったのかな?
でもやっぱりおかしい。
そもそも
a = 2y/(1+p+…+p^n)
b = y/p^n
c = 2y/(1+p+…+p^n)/p^n
としたとき
p(2b-a) = 2b-c
は正しい。
問題はこのあとp7
b’ = b/pr^qr
c’ = c/pr^qr
とおいて
>b′に対応する a をa′とすると
>a’ = Π[k≠r](1+pk+…+pk^qk)
がなにとなにがどう対応づけた結果えられたa’なのか意味不明。
この論文のp7以前の部分でnとn’を対応づけるルールについての記述は一切なし。
よって上の式もどっから出てきたのか意味不明だし
>a′ = a/pr^qrとならなければならないので
とかかいてあるけどそもそも “対応” がなにとなにの対応か書いてないからこんな式が成立する根拠がない。
というわけでココだめですね。
v_pr(2m+1)の計算>>1の論文の計算が下手すぎて無視してたんだけど、そこをなんかいじくったのかな?
でもやっぱりおかしい。
そもそも
a = 2y/(1+p+…+p^n)
b = y/p^n
c = 2y/(1+p+…+p^n)/p^n
としたとき
p(2b-a) = 2b-c
は正しい。
問題はこのあとp7
b’ = b/pr^qr
c’ = c/pr^qr
とおいて
>b′に対応する a をa′とすると
>a’ = Π[k≠r](1+pk+…+pk^qk)
がなにとなにがどう対応づけた結果えられたa’なのか意味不明。
この論文のp7以前の部分でnとn’を対応づけるルールについての記述は一切なし。
よって上の式もどっから出てきたのか意味不明だし
>a′ = a/pr^qrとならなければならないので
とかかいてあるけどそもそも “対応” がなにとなにの対応か書いてないからこんな式が成立する根拠がない。
というわけでココだめですね。
398132人目の素数さん
2018/08/29(水) 12:37:27.99ID:pwgAv9O4399132人目の素数さん
2018/08/29(水) 13:01:47.17ID:ExIdLqFl 査読付きの数学雑誌は、1は出入り禁止食らいまくってるし
400132人目の素数さん
2018/08/29(水) 13:07:59.66ID:fF09sBzs p7ってk=7じゃなくて7ページのことか?
401132人目の素数さん
2018/08/29(水) 13:33:55.52ID:vucxJj8P 1は、arXivにすら出入り禁止に!
あまりにも投稿がひどいために!!!
世界に恥を晒しまくり。
あまりにも投稿がひどいために!!!
世界に恥を晒しまくり。
402132人目の素数さん
2018/08/29(水) 14:25:20.99ID:gAox8rS4 たとえ完成してもフィーバーなんてならないよ。ABC問題を解決した教授の名前、どれだけの人間が知ってる?
しかも、教授自ら言っているように、本当に価値のある成果は証明の過程でできた新しい理論体系だ(理解できているのは世界でも20人くらいらしいが)。
それにくらべ、1の論文はただの式変形。そこまで価値があるとは思えない。もちろん、初の証明者として名前は残るかもしれないが、そんなこと知ってるのはごく一部の数学オタクだけだ。
しかも、教授自ら言っているように、本当に価値のある成果は証明の過程でできた新しい理論体系だ(理解できているのは世界でも20人くらいらしいが)。
それにくらべ、1の論文はただの式変形。そこまで価値があるとは思えない。もちろん、初の証明者として名前は残るかもしれないが、そんなこと知ってるのはごく一部の数学オタクだけだ。
403132人目の素数さん
2018/08/29(水) 15:20:37.04ID:7MjvDqGy いや、唯の式変形だろうが、なんだろうが、解決したらスーパー大ニュースだよ。
恐らく生活は一変する。
恐らく生活は一変する。
404132人目の素数さん
2018/08/29(水) 15:27:22.57ID:7MjvDqGy >>400
そうです。
ともかくp7の時点でまで論文で “対応” と呼べるのは与えられた奇数の完全数yに対して
a = A(y) = 2y/(1+p+…+p^n)
b = B(y) = y//(1+p+…+p^n)
c = C(y) = 2y/(1+p+…+p^n)/p^n
ぐらいしかない。
仮にこれが p7 で書かれている
>b′ = b/pr^qr、
>b′に対応する a をa′とすると
の部分の対応であるとするとある奇数の完全数y’が存在して
b’ = B(y’)
を満たすy’が存在することを証明しておかなくてはいけない。
結局これも以前にしてきした問題に付随する問題で b のかわりに b’ にして同じ議論をしたいなら b を構成するために仮定していた事を b’ についても仮定しないといけない。
b についていえていた同じことが b’ = b/pr^qr についても成立すると主張したいなら b’ = B(y’) となる奇数の完全数 y’ の存在を保証しなければならない。
そうです。
ともかくp7の時点でまで論文で “対応” と呼べるのは与えられた奇数の完全数yに対して
a = A(y) = 2y/(1+p+…+p^n)
b = B(y) = y//(1+p+…+p^n)
c = C(y) = 2y/(1+p+…+p^n)/p^n
ぐらいしかない。
仮にこれが p7 で書かれている
>b′ = b/pr^qr、
>b′に対応する a をa′とすると
の部分の対応であるとするとある奇数の完全数y’が存在して
b’ = B(y’)
を満たすy’が存在することを証明しておかなくてはいけない。
結局これも以前にしてきした問題に付随する問題で b のかわりに b’ にして同じ議論をしたいなら b を構成するために仮定していた事を b’ についても仮定しないといけない。
b についていえていた同じことが b’ = b/pr^qr についても成立すると主張したいなら b’ = B(y’) となる奇数の完全数 y’ の存在を保証しなければならない。
406132人目の素数さん
2018/08/29(水) 15:48:10.96ID:pwgAv9O4 >>402
>ABC問題を解決した
まだ IUT の理解者が少ないため、ABC予想の証明は正しいかどうか分からないような状況が現状だろう。
そういうことが背景にあって、IUT のスレが盛り上がっているじゃん。
何故解決前の段階で朝日にニュースとして載ったのかは知らないが。
>しかも、教授自ら言っているように、本当に価値のある成果は
>証明の過程でできた新しい理論体系だ(理解できているのは世界でも20人くらいらしいが)。
例え解決者の言葉であったとしても、それを鵜呑みにしない方がいい。
あの500ページ近くの証明の論文は、専門的なテキスト1冊分に相当する。
どちらを読むかは自由だが。
>ABC問題を解決した
まだ IUT の理解者が少ないため、ABC予想の証明は正しいかどうか分からないような状況が現状だろう。
そういうことが背景にあって、IUT のスレが盛り上がっているじゃん。
何故解決前の段階で朝日にニュースとして載ったのかは知らないが。
>しかも、教授自ら言っているように、本当に価値のある成果は
>証明の過程でできた新しい理論体系だ(理解できているのは世界でも20人くらいらしいが)。
例え解決者の言葉であったとしても、それを鵜呑みにしない方がいい。
あの500ページ近くの証明の論文は、専門的なテキスト1冊分に相当する。
どちらを読むかは自由だが。
407132人目の素数さん
2018/08/29(水) 15:53:35.47ID:7MjvDqGy >>405
>だから(p+1)/2が素数の場合は、p1からprのうちどれかになり、それをprとしている
んなこたわかる。
問題は p7 の a’、b’、c’。
これについて a、b、c について成立してる式が同様に成立すると主張したいなら
∃y’ ∃p’ ∃n’
y’は奇数の完全数、p’はその multiplicity が奇数の素因子、n’はその multiplicity。
a’ = 2y’/(1+p’ +…+p’^n’)、
b’ = y’/p’^n’、
c’ = 2y’/(1+p’ +…+p’^n’)/p’^n’
を満たすものが存在することを証明しておかないとつかえない。
しかもp7の議論はそれだけじゃダメ。
中段あたりで使ってる
>a′ = a/pr^qrとならなければならないので
これは対応するp’、n’が p=p’、n=n’を満たしていないと成立しない。
その証明が論文中にはない。
>だから(p+1)/2が素数の場合は、p1からprのうちどれかになり、それをprとしている
んなこたわかる。
問題は p7 の a’、b’、c’。
これについて a、b、c について成立してる式が同様に成立すると主張したいなら
∃y’ ∃p’ ∃n’
y’は奇数の完全数、p’はその multiplicity が奇数の素因子、n’はその multiplicity。
a’ = 2y’/(1+p’ +…+p’^n’)、
b’ = y’/p’^n’、
c’ = 2y’/(1+p’ +…+p’^n’)/p’^n’
を満たすものが存在することを証明しておかないとつかえない。
しかもp7の議論はそれだけじゃダメ。
中段あたりで使ってる
>a′ = a/pr^qrとならなければならないので
これは対応するp’、n’が p=p’、n=n’を満たしていないと成立しない。
その証明が論文中にはない。
408132人目の素数さん
2018/08/29(水) 15:54:11.84ID:vucxJj8P そもそもセンター試験ができるような奴だったら
こんな全体的にミスだらけのゴミPDFは出ない。
学校の先生によって、通常の生徒並みの指導が必要だった。
現状の1は、0点答案を100連発
こんな全体的にミスだらけのゴミPDFは出ない。
学校の先生によって、通常の生徒並みの指導が必要だった。
現状の1は、0点答案を100連発
409132人目の素数さん
2018/08/29(水) 15:57:17.22ID:7MjvDqGy >>405
>bとaは一意に対応しているから、bを変えれば、それに対応したaに変わらなければならない
bとaの対応はもともとyから作られたものだからyがなかったら話にならない。
文字かえて同様の主張、式が成り立つといいたいなら、その主張、式を導出した仮定の部分ででてきてる文字も同じように入れかえた命題について、それを同じく仮定するか、証明するかしないといけない。
>bとaは一意に対応しているから、bを変えれば、それに対応したaに変わらなければならない
bとaの対応はもともとyから作られたものだからyがなかったら話にならない。
文字かえて同様の主張、式が成り立つといいたいなら、その主張、式を導出した仮定の部分ででてきてる文字も同じように入れかえた命題について、それを同じく仮定するか、証明するかしないといけない。
410132人目の素数さん
2018/08/29(水) 16:00:50.92ID:7MjvDqGy なんか
“文字入れ替えても同様の主張が成立する。”
系のミス連発してるね。
その式を導出したとき、その式が何を仮定して導出されてきたのかの意識が乏しい。
“文字入れ替えても同様の主張が成立する。”
系のミス連発してるね。
その式を導出したとき、その式が何を仮定して導出されてきたのかの意識が乏しい。
411132人目の素数さん
2018/08/29(水) 16:05:48.08ID:hwbx/z7h 数学だけでなく書き込まれた文章を見ていると
前後や因果関係がごっちゃになってることが多いように思う
前後や因果関係がごっちゃになってることが多いように思う
412132人目の素数さん
2018/08/29(水) 16:07:12.05ID:ThdMqrgL 解決したら〜なんて希望を持たせるようなこと言うのはある種罪だよ
414132人目の素数さん
2018/08/29(水) 16:09:27.48ID:ThdMqrgL フェイズ2ですね
416132人目の素数さん
2018/08/29(水) 16:14:13.34ID:ThdMqrgL 解決してないのに論文を更新し続ける狂気
417132人目の素数さん
2018/08/29(水) 16:18:33.20ID:7MjvDqGy >>415
ミスではないっていったって全然必要な議論が尽くされてないやん。
{ A(y) | yは奇数の完全数} と {B(y) | yは奇数の完全数}
の間の対応をつかってb’に対応するa’、c’をもってくるなら b’ = B(y’) となる y’ の存在を証明しておかないといけないけど、その証明ないよ。
ミスではないっていったって全然必要な議論が尽くされてないやん。
{ A(y) | yは奇数の完全数} と {B(y) | yは奇数の完全数}
の間の対応をつかってb’に対応するa’、c’をもってくるなら b’ = B(y’) となる y’ の存在を証明しておかないといけないけど、その証明ないよ。
418132人目の素数さん
2018/08/29(水) 16:18:33.26ID:vucxJj8P 解決してないのに論文を更新し続ける詐欺師1
420132人目の素数さん
2018/08/29(水) 16:36:41.71ID:ThdMqrgL 今度はpとnが不変だと言い出しましたね
以前は変数と言っていましたが
以前は変数と言っていましたが
>>420
b→b'とする変換をした場合にという意味ですが
b→b'とする変換をした場合にという意味ですが
422132人目の素数さん
2018/08/29(水) 17:00:00.97ID:HwcGG5s6 >>419
ちがうよ。p7 の時点で対応というのはあくまで奇数の完全数 y に対してしか定義されてないからそれ以外の意味で "対応" という言葉を使うならその意味を再定義しないと使えない。
再定義した?少なくとも論文には書いてないよね?
もし、
p→p、n→n、b→b/pr^qr、c→c/c/pr^qr、a→a/pr^qr
という式変換で
a' = Π[k≠r](1+pk + … + pk^qk)…(※)
が成立するといいたいなら君のいう置き換える前のしき
a = Π(1+pk + … + pk^qk)…(*)
「がyが完全数、pがmultiplicity奇数の素因子、a=2y/(1+p+…)」…(#)
を仮定して導出された式だから
(*)のaをa'に置き換えるならその前提条件である(#)のaやyもそれに応じて取り替えたものの成立を必要とする。
つまり(#)のa,yをとりかえた
「がy'が完全数、pがmultiplicity奇数の素因子、a'=2y/(1+p'+…)」…(#)
が証明されないと…(*)は使えない。
ちがうよ。p7 の時点で対応というのはあくまで奇数の完全数 y に対してしか定義されてないからそれ以外の意味で "対応" という言葉を使うならその意味を再定義しないと使えない。
再定義した?少なくとも論文には書いてないよね?
もし、
p→p、n→n、b→b/pr^qr、c→c/c/pr^qr、a→a/pr^qr
という式変換で
a' = Π[k≠r](1+pk + … + pk^qk)…(※)
が成立するといいたいなら君のいう置き換える前のしき
a = Π(1+pk + … + pk^qk)…(*)
「がyが完全数、pがmultiplicity奇数の素因子、a=2y/(1+p+…)」…(#)
を仮定して導出された式だから
(*)のaをa'に置き換えるならその前提条件である(#)のaやyもそれに応じて取り替えたものの成立を必要とする。
つまり(#)のa,yをとりかえた
「がy'が完全数、pがmultiplicity奇数の素因子、a'=2y/(1+p'+…)」…(#)
が証明されないと…(*)は使えない。
423132人目の素数さん
2018/08/29(水) 17:44:33.95ID:hUIoq6fk 証明が完結してない上に、例のイカサマを使ってるんだったら見る価値まるで無い
検証は真面目な人に任せた
本物の証明ができたら起こしてね。おやすみ(-_-)zzz
検証は真面目な人に任せた
本物の証明ができたら起こしてね。おやすみ(-_-)zzz
どこがイカサマなのか私に分かる内容で示されなければ、反応しようがない
私の考えでは、ほぼ自明の内容だと考えられるが。
私の考えでは、ほぼ自明の内容だと考えられるが。
425132人目の素数さん
2018/08/29(水) 17:56:16.95ID:mmSfzGog またこのパターン
y'=y/pk^qk
になるだけだし、y'が完全数であるかは不明でも問題ないんですけど。
何が言いたいのか分かりません。インチキな反論は要りません。
になるだけだし、y'が完全数であるかは不明でも問題ないんですけど。
何が言いたいのか分かりません。インチキな反論は要りません。
>>425
私ではない方が間違った反論をしてくるパターンもありました
私ではない方が間違った反論をしてくるパターンもありました
428132人目の素数さん
2018/08/29(水) 17:58:12.88ID:5mvrNBoN >>102 フェーズ3かよ
429132人目の素数さん
2018/08/29(水) 17:59:35.26ID:+Ju0D3QR 1の反応は求めてなかったが
何がイカサマかは皆知ってるし
聞けば真面目な人が教えてくれるだろう
1もがんばってイカサマでない証明完成させてね。おやすみ(-_-)zzz
何がイカサマかは皆知ってるし
聞けば真面目な人が教えてくれるだろう
1もがんばってイカサマでない証明完成させてね。おやすみ(-_-)zzz
430132人目の素数さん
2018/08/29(水) 18:07:25.65ID:7MjvDqGy とりあえず p7 で ck < qk を導出する際に利用した式
a′ = a/pr^qr、b′ = b/pr^qr、c′ = c/pr^qr…(A)
および
a′ = ∏ [k≠r](1 + pk + ⋯ + pk^qk)…(B)
がどこからやってきたのか書かないとダメやろ。
元々
a = ∏(1 + pk + ⋯ + pk^qk)…(C)
が成り立ってたんだからこれも置き換えただけというロジックが成立しないのは前に指摘したよね?
(C)はy, p, n, pk, qkについての幾ばくかの仮定のもとに導出された式なのだから、置き換えたa’、b’、c’で同様の式が成立するというならその幾ばくかの仮定のなかにあるa、b、cをa’、b’、c’に置き換えた条件が成立することを示さないと(B)は使えない。
その証明ないよ?
a′ = a/pr^qr、b′ = b/pr^qr、c′ = c/pr^qr…(A)
および
a′ = ∏ [k≠r](1 + pk + ⋯ + pk^qk)…(B)
がどこからやってきたのか書かないとダメやろ。
元々
a = ∏(1 + pk + ⋯ + pk^qk)…(C)
が成り立ってたんだからこれも置き換えただけというロジックが成立しないのは前に指摘したよね?
(C)はy, p, n, pk, qkについての幾ばくかの仮定のもとに導出された式なのだから、置き換えたa’、b’、c’で同様の式が成立するというならその幾ばくかの仮定のなかにあるa、b、cをa’、b’、c’に置き換えた条件が成立することを示さないと(B)は使えない。
その証明ないよ?
431132人目の素数さん
2018/08/29(水) 18:21:30.11ID:a8QQvkl2 >>424
わからない内容だったら分からないって反応してもらわないと説明する側は困っちゃうんじゃないか?
わからない内容だったら分からないって反応してもらわないと説明する側は困っちゃうんじゃないか?
432132人目の素数さん
2018/08/29(水) 18:36:30.15ID:5mvrNBoN >1もがんばってイカサマでない証明完成させてね。
1には無理
1は数学用語が出てくるだけでアウト
1には、証明も式の変形も難しすぎてさっぱり
1には無理
1は数学用語が出てくるだけでアウト
1には、証明も式の変形も難しすぎてさっぱり
435132人目の素数さん
2018/08/29(水) 19:46:21.33ID:I6pb8Pjk 逃げた
436132人目の素数さん
2018/08/29(水) 19:48:25.62ID:ikeKGGfI すごく丁寧に詳しく説明してくれいているのに
1は相変わらずのまま。
数学板に来たのなら、その数学音痴をいくらかでも解消しようとしなくちゃ。
1は相変わらずのまま。
数学板に来たのなら、その数学音痴をいくらかでも解消しようとしなくちゃ。
438132人目の素数さん
2018/08/29(水) 20:16:13.45ID:a8QQvkl2 >>437
普通に考えた結果は人それぞれだってことを理解した上で発言して欲しい
普通に考えた結果は人それぞれだってことを理解した上で発言して欲しい
440132人目の素数さん
2018/08/29(水) 20:23:34.93ID:a8QQvkl2441132人目の素数さん
2018/08/29(水) 20:24:00.76ID:i1Cwy+dK442132人目の素数さん
2018/08/29(水) 20:57:57.35ID:O5EfvOx2 この態度で対価が貰えると思えるのは凄い
443132人目の素数さん
2018/08/29(水) 22:17:24.12ID:f18oIYZI 誰にも評価されないってわかってるからここに書いてるってことぐらい察してやれよ
444132人目の素数さん
2018/08/29(水) 22:17:33.01ID:gAox8rS4 >>437
さんざん「こんな簡単なことも分からないのですか」とか言っといてこれ。
さんざん「こんな簡単なことも分からないのですか」とか言っといてこれ。
445132人目の素数さん
2018/08/29(水) 22:47:13.63ID:RyNiQgrc >>443
むしろそれを分かってるから助け船を出そうとしとるんやぞ
むしろそれを分かってるから助け船を出そうとしとるんやぞ
446132人目の素数さん
2018/08/29(水) 23:21:44.52ID:fVhIhnyy 論文に書いてある「kについて対称」ということをかみ砕いてみて、以下のような考えに至りました。
なお、ここ数日の慣例に従い、整数Nの素因数分解における素数pの次数をv_p(N)と表す。
[例えば 45=3^2×5 なので v_3(45)=2, v_5(45)=1, その他の素数pについて v_p(45)=0]
[前提]
1) 素数の完全数yの存在を仮定すると、v_p(y)≡1 (mod 4) となる素数pが一意に定まる。[yからpが定まる]
2) (1)で定まった素数pについて、pr=(p+1)/2 とすると、y は pr の倍数である。[pからprが定まる]
3) (1)と(2)で定まったp,prについて 2pr-1=p と言えるが、pr が素数ならば、pk≠pr となる y の素因数 pk について 2pk-1≠p である。
4) pk≠pr となる y の素因数 pk について 2pk-1=p′と置くと、[(3)より必ず p′≠p である]
v_p′(y′)≡1 (mod 4) となる別の完全数 y′ が存在するかもしれない [その場合必ず y′≠y である]
で、ここからが言いたいことなんだけれども、
[主張]
5) (1)よりv_p(y)≡1 (mod 4) だから v_p(y)=4m+1 と置くことができる。
同様に、v_p′(y′)≡1 (mod 4) だから v_p′(y′)=4m′+1 と置くことができるが、
yとy′、pとp′がそれぞれ別物なので、m=m′ であるとは言えない。[証明されていない]
6) v_p(y)=4m+1 から 2m+1 が pr の倍数と言えたとして、同様の論理で、
v_p′(y′)=4m′+1 から 2m′+1 が pk の倍数と言えたとしても
2m+1=2m′+1 とは言えない。
よって、これらを単純にひとまとめにして「2m+1 が Πpk の倍数である」とすることはできない。
いかがでしょう?
なお、ここ数日の慣例に従い、整数Nの素因数分解における素数pの次数をv_p(N)と表す。
[例えば 45=3^2×5 なので v_3(45)=2, v_5(45)=1, その他の素数pについて v_p(45)=0]
[前提]
1) 素数の完全数yの存在を仮定すると、v_p(y)≡1 (mod 4) となる素数pが一意に定まる。[yからpが定まる]
2) (1)で定まった素数pについて、pr=(p+1)/2 とすると、y は pr の倍数である。[pからprが定まる]
3) (1)と(2)で定まったp,prについて 2pr-1=p と言えるが、pr が素数ならば、pk≠pr となる y の素因数 pk について 2pk-1≠p である。
4) pk≠pr となる y の素因数 pk について 2pk-1=p′と置くと、[(3)より必ず p′≠p である]
v_p′(y′)≡1 (mod 4) となる別の完全数 y′ が存在するかもしれない [その場合必ず y′≠y である]
で、ここからが言いたいことなんだけれども、
[主張]
5) (1)よりv_p(y)≡1 (mod 4) だから v_p(y)=4m+1 と置くことができる。
同様に、v_p′(y′)≡1 (mod 4) だから v_p′(y′)=4m′+1 と置くことができるが、
yとy′、pとp′がそれぞれ別物なので、m=m′ であるとは言えない。[証明されていない]
6) v_p(y)=4m+1 から 2m+1 が pr の倍数と言えたとして、同様の論理で、
v_p′(y′)=4m′+1 から 2m′+1 が pk の倍数と言えたとしても
2m+1=2m′+1 とは言えない。
よって、これらを単純にひとまとめにして「2m+1 が Πpk の倍数である」とすることはできない。
いかがでしょう?
447132人目の素数さん
2018/08/30(木) 00:05:45.68ID:l0gKgD5R448132人目の素数さん
2018/08/30(木) 00:21:32.73ID:l0gKgD5R >b′に対応する a をa′とすると
といってるけど、何と何を対応づけてるか書いてないと言ってるだけなんだが?
もし素直にに
{(A(y)、B(y)、C(y)、p(y)、n(y)) | y:奇数の完全数}
によって得られる対応付けの意味なら
b/pr^qr = b’ = B(y’)
を満たす奇数の完全数y’の存在をしめさないとダメといってるだけなんだけど?
>b′に対応する a をa′とすると
のa’は何かを考えるには a’ = A(y’)、b’ = B(y’) と考えるしかないやん。
それ以外に “対応する” の定義ないんだから。 👀
Rock54: Caution(BBR-MD5:1341adc37120578f18dba9451e6c8c3b)
といってるけど、何と何を対応づけてるか書いてないと言ってるだけなんだが?
もし素直にに
{(A(y)、B(y)、C(y)、p(y)、n(y)) | y:奇数の完全数}
によって得られる対応付けの意味なら
b/pr^qr = b’ = B(y’)
を満たす奇数の完全数y’の存在をしめさないとダメといってるだけなんだけど?
>b′に対応する a をa′とすると
のa’は何かを考えるには a’ = A(y’)、b’ = B(y’) と考えるしかないやん。
それ以外に “対応する” の定義ないんだから。 👀
Rock54: Caution(BBR-MD5:1341adc37120578f18dba9451e6c8c3b)
449132人目の素数さん
2018/08/30(木) 04:19:46.28ID:suJHPDIh Rock54規制うっとおしい
同じ行が2つあるだけで出るんかよ
同じ行が2つあるだけで出るんかよ
>>450 訂正
成り立つと仮定している式
2b=c(p^n+…+1)
a=cp^n
が、その変数(p,n)の値を変えず定数(a,b,c)の部分を
ある変換によってかえても、式自体が不変にならなければ
ならないのは当然なのではないでしょうか?
成り立つと仮定している式
2b=c(p^n+…+1)
a=cp^n
が、その変数(p,n)の値を変えず定数(a,b,c)の部分を
ある変換によってかえても、式自体が不変にならなければ
ならないのは当然なのではないでしょうか?
452132人目の素数さん
2018/08/30(木) 06:43:02.80ID:RhFK/XgI >yの存在を示せないのにy'も示せるわけがないでしょう。
yの存在を仮定してそこから矛盾を示すのが背理法です。
yの存在を仮定してそれとは関係ないy'を持ち出して背理法にならない論理を展開したのは1しかいません。
それを誤りと指摘したらその言い草で反論するというのは
まったくもってふざけて書いているとしか思えませんが。
yの存在を仮定してそこから矛盾を示すのが背理法です。
yの存在を仮定してそれとは関係ないy'を持ち出して背理法にならない論理を展開したのは1しかいません。
それを誤りと指摘したらその言い草で反論するというのは
まったくもってふざけて書いているとしか思えませんが。
453132人目の素数さん
2018/08/30(木) 07:09:29.73ID:ZrevCixY >>451
>が、その変数(p,n)の値を変えず定数(a,b,c)の部分を
>ある変換によってかえても、式自体が不変にならなければ
>ならないのは当然なのではないでしょうか?
んなわけないでしょ?
ある仮定のもとに5つの文字a、b、cについて得られている式
a = 2bp^n/(1+p+…+p^n)…(1)
c = 2bp^n/(1+p+…+p^n)/p^n…(2)
と
a = Π[pk≠p](1+pk+…+pk^v_pk(a))…(3)、
b = Π[pk≠p]pk^v_pk(a)…(4)
c = Π[pk≠p](1+pk+…+pk^v_pk(a)) / p^n…(5)
はp7までにyから定義したa,b,c,p,nについては成立しているし、その証明も与えられている。
問題はb’ = b/pr^qr と置き換えて(1)、(2)を利用して “対応する” a,c を作ったとしても新しい5つ組(a’,b’,c’,p’,n’)が(3)〜(5)すべてを満たすとは限らない。
(1)、(2)を使えばyがなくてもa,cが計算はできるが、計算した結果が “y由来でつくった” (a,b,c) と同じ式を満たしているとは限らない。
受験数学レベルの例でいえば x,y,u,v を実数として
x^2 + y^2 = 2
を満たす変数から
u = x+y、v=xy…(AB)
という新しい変数を作ったときこのu,vは
v = (1/2)u^2-1…(12)
v ≦ (1/4)u^2…(345)
という関係式をみたすが、u=4のとき(12)を使えばこの u に “対応する” v=7ができるけど、この(u,v) = (4,7)は(345)を満たさない。
元の(A)、(B)を使わなくても u の値から v が計算できたとしても、その(u,v)は元の(A)、(B)から構成されたものでない限り、その(A),(B)から得られた式(345)を満たすとは限らない。
本文でいえば、
a = 2y/(1+p+…+p^n)…(A)
b = y/p^n…(B)
c = 2y/(1+p+…+p^n)/p^n…(C)
と定義したa,b,cを定義したとき、確かに b,p,n の値から “対応する” a,c の値を(1)、(2)を用いて計算することはできるが、その新しい (a’, b’, c’) については、(A),(B),(C)由来の(a,b,c)については成立することが確認されている(3),(4),(5)を満たすとは限らない。
さっきの例と同じ構造。
>が、その変数(p,n)の値を変えず定数(a,b,c)の部分を
>ある変換によってかえても、式自体が不変にならなければ
>ならないのは当然なのではないでしょうか?
んなわけないでしょ?
ある仮定のもとに5つの文字a、b、cについて得られている式
a = 2bp^n/(1+p+…+p^n)…(1)
c = 2bp^n/(1+p+…+p^n)/p^n…(2)
と
a = Π[pk≠p](1+pk+…+pk^v_pk(a))…(3)、
b = Π[pk≠p]pk^v_pk(a)…(4)
c = Π[pk≠p](1+pk+…+pk^v_pk(a)) / p^n…(5)
はp7までにyから定義したa,b,c,p,nについては成立しているし、その証明も与えられている。
問題はb’ = b/pr^qr と置き換えて(1)、(2)を利用して “対応する” a,c を作ったとしても新しい5つ組(a’,b’,c’,p’,n’)が(3)〜(5)すべてを満たすとは限らない。
(1)、(2)を使えばyがなくてもa,cが計算はできるが、計算した結果が “y由来でつくった” (a,b,c) と同じ式を満たしているとは限らない。
受験数学レベルの例でいえば x,y,u,v を実数として
x^2 + y^2 = 2
を満たす変数から
u = x+y、v=xy…(AB)
という新しい変数を作ったときこのu,vは
v = (1/2)u^2-1…(12)
v ≦ (1/4)u^2…(345)
という関係式をみたすが、u=4のとき(12)を使えばこの u に “対応する” v=7ができるけど、この(u,v) = (4,7)は(345)を満たさない。
元の(A)、(B)を使わなくても u の値から v が計算できたとしても、その(u,v)は元の(A)、(B)から構成されたものでない限り、その(A),(B)から得られた式(345)を満たすとは限らない。
本文でいえば、
a = 2y/(1+p+…+p^n)…(A)
b = y/p^n…(B)
c = 2y/(1+p+…+p^n)/p^n…(C)
と定義したa,b,cを定義したとき、確かに b,p,n の値から “対応する” a,c の値を(1)、(2)を用いて計算することはできるが、その新しい (a’, b’, c’) については、(A),(B),(C)由来の(a,b,c)については成立することが確認されている(3),(4),(5)を満たすとは限らない。
さっきの例と同じ構造。
454132人目の素数さん
2018/08/30(木) 07:26:09.10ID:EObwglNy 仮定「奇数の完全数が存在する」のもとで「奇数の完全数が複数存在する」は真偽不明だから、
「奇数の完全数が複数存在する」を前提とする議論はできない。
前提を取り違えて論理を展開してるようにしか見えないね、意図してか意図せずかはわからないけど。
仮定「奇数の完全数が存在する」
を置いた場合、
前提1「奇数の完全数をひとつとり、yとする」
前提2「奇数の完全数をひとつとり、y'とする」
は単独ではそれぞれOKだけど、
前提3「yとy'は異なる」
を合わせるとNGになる。
「奇数の完全数が複数存在する」を前提とする議論はできない。
前提を取り違えて論理を展開してるようにしか見えないね、意図してか意図せずかはわからないけど。
仮定「奇数の完全数が存在する」
を置いた場合、
前提1「奇数の完全数をひとつとり、yとする」
前提2「奇数の完全数をひとつとり、y'とする」
は単独ではそれぞれOKだけど、
前提3「yとy'は異なる」
を合わせるとNGになる。
455132人目の素数さん
2018/08/30(木) 07:59:50.55ID:suJHPDIh >>102 フェーズ3を暴走中
456132人目の素数さん
2018/08/30(木) 09:42:58.73ID:fVFZlc/e 神のように親切な人たちが、とてもとても詳しく教えてくれているのに
1は数学アレルギー・勉強アレルギーが強すぎてダメだな。
1は数学アレルギー・勉強アレルギーが強すぎてダメだな。
457132人目の素数さん
2018/08/30(木) 09:58:06.85ID:deI4yk2d 昔池袋のジュンク堂の数学書コーナーで
こういう異常者の出した同人誌だと思われる「フェルマーの最終定理の初等的証明」の小冊子が置いてあったんだけど
あれはどういう経緯であそこに陳列されるに至ったんだろう
こういう異常者の出した同人誌だと思われる「フェルマーの最終定理の初等的証明」の小冊子が置いてあったんだけど
あれはどういう経緯であそこに陳列されるに至ったんだろう
458132人目の素数さん
2018/08/30(木) 10:01:01.47ID:e/w76Ydr 異常者(直球)
459132人目の素数さん
2018/08/30(木) 10:15:48.62ID:fVFZlc/e こういう異常者の出した同人誌は、図書館でよく見かける。
中身はこのスレ同様にぶっ飛んだものになってる。
中身はこのスレ同様にぶっ飛んだものになってる。
460132人目の素数さん
2018/08/30(木) 10:25:43.97ID:XOoReTTx
461132人目の素数さん
2018/08/30(木) 10:31:41.56ID:fVFZlc/e 他にも、こういう異常者が特許出願をしていたりもする。
角の三等分作図方法とか、説明の図面が3等分になってないのに出願。
もうこんなのがいっぱい。
角の三等分作図方法とか、説明の図面が3等分になってないのに出願。
もうこんなのがいっぱい。
>>453
これで分からなければ、この問題は諦めた方がいい。
2b=c(p^n+…+1)
を両辺をpk^qkで割ると、cがpk^qkで割り切られる場合には
2b/pk^qk=c/pk^qk(p^n+…+1)
となり、p^n+…+1の値は変わらないから、pとnは不変になる。
b'=b/pk^qk=Π[k=1,r-1]pk^qk
c'=b/pk^qk
とすると
b'=c'(p^n+…+1)
となり、式の形は不変になる。
ap-2bp+2b=cの式の両辺をqk^qkで割り、a'=a/pk/qkとすると
a''-2b'p+2b'=c'
となり、pの値が不変であるからこの式は成り立たなければならない。
b'=Π[k=1,r-1]pk^qkであるから、b'に対応するa'は題意から
a'=Π[k=1,r-1](1+pk+…pk^qk)
となり、a'=a/pk^qkであるから
Π[k=1,r](1+pk+…pk^qk)/pk^qk=Π[k=1,r-1](1+pk+…pk^qk)
とならなければならないが、この式は成立しない。
それから、この論理はそれ程難しいものではないので間違ったものだと
するのには無理がある。何故その無理を押し通そうとするのか?
甚だ疑問だ。
これで分からなければ、この問題は諦めた方がいい。
2b=c(p^n+…+1)
を両辺をpk^qkで割ると、cがpk^qkで割り切られる場合には
2b/pk^qk=c/pk^qk(p^n+…+1)
となり、p^n+…+1の値は変わらないから、pとnは不変になる。
b'=b/pk^qk=Π[k=1,r-1]pk^qk
c'=b/pk^qk
とすると
b'=c'(p^n+…+1)
となり、式の形は不変になる。
ap-2bp+2b=cの式の両辺をqk^qkで割り、a'=a/pk/qkとすると
a''-2b'p+2b'=c'
となり、pの値が不変であるからこの式は成り立たなければならない。
b'=Π[k=1,r-1]pk^qkであるから、b'に対応するa'は題意から
a'=Π[k=1,r-1](1+pk+…pk^qk)
となり、a'=a/pk^qkであるから
Π[k=1,r](1+pk+…pk^qk)/pk^qk=Π[k=1,r-1](1+pk+…pk^qk)
とならなければならないが、この式は成立しない。
それから、この論理はそれ程難しいものではないので間違ったものだと
するのには無理がある。何故その無理を押し通そうとするのか?
甚だ疑問だ。
463132人目の素数さん
2018/08/30(木) 12:47:30.68ID:e/w76Ydr 居丈高で不愉快なんだよね、この人
>>462 訂正
>ap-2bp+2b=cの式の両辺をqk^qkで割り、a'=a/pk/qkとすると
>a''-2b'p+2b'=c'
ap-2bp+2b=cの式の両辺をqk^qkで割り、a'=a/pk^qkとすると
a'-2b'p+2b'=c'
>ap-2bp+2b=cの式の両辺をqk^qkで割り、a'=a/pk/qkとすると
>a''-2b'p+2b'=c'
ap-2bp+2b=cの式の両辺をqk^qkで割り、a'=a/pk^qkとすると
a'-2b'p+2b'=c'
>>463
だから?
だから?
466132人目の素数さん
2018/08/30(木) 12:52:35.50ID:e/w76Ydr467132人目の素数さん
2018/08/30(木) 13:01:51.05ID:hW1FItRq468132人目の素数さん
2018/08/30(木) 13:58:47.14ID:aQn2pq4h おいおい何言ってんの
469132人目の素数さん
2018/08/30(木) 13:59:23.42ID:Lxw636mk 1が間違ってるに決まってるじゃん
だって1だから
だって1だから
470132人目の素数さん
2018/08/30(木) 14:06:53.79ID:oaEZkqRk 文章を読む気にならないのでなんのやりとりしているかわからんが、指摘に対する反論が反論になっていない意味不明な感じの反論であることはなんとなか伝わる。
471132人目の素数さん
2018/08/30(木) 14:08:43.25ID:hW1FItRq どっちも「向こうが間違ってる」って言ってるんだもん
意味わかんない
意味わかんない
472132人目の素数さん
2018/08/30(木) 14:22:06.62ID:wrnsIhYA 論文よりa=Π[k=1,r](1+pk+…pk^qk)
この前提を踏まえてなお
>a'=Π[k=1,r-1](1+pk+…pk^qk)
>となり、a'=a/pk^qk
と言ってるのなら1は相当なお馬鹿さんだ
ここで誤りを認めるなら「お馬鹿さん」は撤回してもいいが。
この前提を踏まえてなお
>a'=Π[k=1,r-1](1+pk+…pk^qk)
>となり、a'=a/pk^qk
と言ってるのなら1は相当なお馬鹿さんだ
ここで誤りを認めるなら「お馬鹿さん」は撤回してもいいが。
473132人目の素数さん
2018/08/30(木) 14:45:24.41ID:VvlpfcOp >>462
a’ = a/pr^qr、b’ = b/pr^qr、c’ = c/pr^qr
がa,b,cに対応する “いくつかの式” を成立させるのは当たり前。
いくつか成り立つ例を例示して
“このようにいっぱい成り立つ式があるからいつでも成り立つよね?”
なんて論法は数学にはない。
本文で言えば君が主張しているもう一つの式
a ‘ = Π[k≠r](1+pr+…pr^qr)
が問題。
“対応してるんだから成立してるのは当たり前” なんて論理が数学にないことは説明したよね?
ある文字について成立することが別の文字についても成立するという主張は既に説明した “普遍凡化” と “普遍例化” の推論しかない。
なぜならこの2つだけが数学で認められている ”別の文字に置き換えても成り立つ” ことを認めてよいと数学の世界で合意のある推論だから。
なんとなく “対応してるんだから a’ b’ c’ でも成り立つ。成り立つ例もいっぱいあるし。” なんて論法は数学の世界では認められない。
実際対応はあるけどすべての式が成立してない例は>>453に書いたでしょ?
もし君が “対応してるんだからa’ b’ c’に文字を置き換えてもなりたつ。” という論法が “そんなに難しくない論法” であるなら、その論法をこの2つから導出できることをやってみせないとダメ。
しかも “a’ b’ c’ について考えうるすべての式がそのまま成り立つ” ことを証明する必要はない。
a ‘ = Π[k≠r](1+pr+…pr^qr)
だけです。
これを “普遍凡化” と “普遍例化” の推論を用いて
a = Π(1+pr+…pr^qr)
から導出して下さい。
a’ = a/pr^qr、b’ = b/pr^qr、c’ = c/pr^qr
がa,b,cに対応する “いくつかの式” を成立させるのは当たり前。
いくつか成り立つ例を例示して
“このようにいっぱい成り立つ式があるからいつでも成り立つよね?”
なんて論法は数学にはない。
本文で言えば君が主張しているもう一つの式
a ‘ = Π[k≠r](1+pr+…pr^qr)
が問題。
“対応してるんだから成立してるのは当たり前” なんて論理が数学にないことは説明したよね?
ある文字について成立することが別の文字についても成立するという主張は既に説明した “普遍凡化” と “普遍例化” の推論しかない。
なぜならこの2つだけが数学で認められている ”別の文字に置き換えても成り立つ” ことを認めてよいと数学の世界で合意のある推論だから。
なんとなく “対応してるんだから a’ b’ c’ でも成り立つ。成り立つ例もいっぱいあるし。” なんて論法は数学の世界では認められない。
実際対応はあるけどすべての式が成立してない例は>>453に書いたでしょ?
もし君が “対応してるんだからa’ b’ c’に文字を置き換えてもなりたつ。” という論法が “そんなに難しくない論法” であるなら、その論法をこの2つから導出できることをやってみせないとダメ。
しかも “a’ b’ c’ について考えうるすべての式がそのまま成り立つ” ことを証明する必要はない。
a ‘ = Π[k≠r](1+pr+…pr^qr)
だけです。
これを “普遍凡化” と “普遍例化” の推論を用いて
a = Π(1+pr+…pr^qr)
から導出して下さい。
474132人目の素数さん
2018/08/30(木) 14:57:57.15ID:vPYF0BHo すこし数学的になるだけで1は、
理解できないって逃げるからなぁ・・・・
理解できないって逃げるからなぁ・・・・
>>472
bでr番目がなくなるわけだからaでもそうなるのは当然だ
>>473
題意だから。b'に対応するa'がそうなるは。それを違うと言われたら
問題の仮定自体が間違っているということになる
>>474
r→r-1という変換を行っているだけだ。この変換自体が正しいことが
想定される。bとaには一対一の対応関係があるから、だからb'に対応するa'
は一意に定まる。しかしこれが成立しないということになると、この操作自体が
正しくないということになり、cがpr^qrで割り切られないという結果になる。
これでも分からないふりをするのは、この論文を真面目に読んでいなく
私の数学的な成果をないものとしたいのではないのでしょうか?
bでr番目がなくなるわけだからaでもそうなるのは当然だ
>>473
題意だから。b'に対応するa'がそうなるは。それを違うと言われたら
問題の仮定自体が間違っているということになる
>>474
r→r-1という変換を行っているだけだ。この変換自体が正しいことが
想定される。bとaには一対一の対応関係があるから、だからb'に対応するa'
は一意に定まる。しかしこれが成立しないということになると、この操作自体が
正しくないということになり、cがpr^qrで割り切られないという結果になる。
これでも分からないふりをするのは、この論文を真面目に読んでいなく
私の数学的な成果をないものとしたいのではないのでしょうか?
476132人目の素数さん
2018/08/30(木) 16:27:28.24ID:vPYF0BHo >私の数学的な成果をないものとしたいのではないのでしょうか?
5chのせいで成果がなくなるわけがない。
もし証明している可能性があったり、
証明が完成していなくても価値あるアイデアがあるのなら
PDF公開してすぐに世界中が注目するニュースとなっている。
他への投稿はすぐに出入り禁止だし
このスレの中で修正を延々と続けているだけって現状が
PDFの価値を明らかに示している。
5chのせいで成果がなくなるわけがない。
もし証明している可能性があったり、
証明が完成していなくても価値あるアイデアがあるのなら
PDF公開してすぐに世界中が注目するニュースとなっている。
他への投稿はすぐに出入り禁止だし
このスレの中で修正を延々と続けているだけって現状が
PDFの価値を明らかに示している。
477132人目の素数さん
2018/08/30(木) 16:27:31.90ID:hW1FItRq 分からないふりして本当は分かってるんでしょ?
478132人目の素数さん
2018/08/30(木) 16:35:45.84ID:VKTQzTzb ねえ
1以外に聞くけど
a=Π[k=1,r](1+pk+…pk^qk)
a'=Π[k=1,r-1](1+pk+…pk^qk)
ならa'=a/(1+pr+…pr^qr)なんじゃないの?
a'=a/pr^qrなんてどこから出てくるの?
1以外に聞くけど
a=Π[k=1,r](1+pk+…pk^qk)
a'=Π[k=1,r-1](1+pk+…pk^qk)
ならa'=a/(1+pr+…pr^qr)なんじゃないの?
a'=a/pr^qrなんてどこから出てくるの?
479132人目の素数さん
2018/08/30(木) 16:40:40.07ID:GzaOMu/G >>475
>題意だから。b'に対応するa'がそうなるは。それを違うと言われたら
>問題の仮定自体が間違っているということになる
こんな論法もありません。
だけです。
>a = Π(1+pr+…pr^qr)…(A)
から
>a ‘ = Π[k≠r](1+pr+…pr^qr)…(B)
が導出されないと問題自体がおかしいなどという論法をつかっていいってwikiのページに書いてあった?
ないでしょ?
君は自分の論文を公に認められたいんでしょ?
当然 Public な論文では Public に認められた推論のみを使った論文しか認めてもらえません。
現在の状態で論文誌に投稿しても同じ指摘を受けて書き直しの要求されるだけですよ。
“普遍凡化”、”普遍例化” の使い方自体はいたって簡単。
(A)を導出した証明の仮定と結論に出てくる同一の文字をいろいろと好きな文字に置き換えるだけです。
それを組み合わせて(B)を導出して下さい。
それが出来なければ永遠に Public に認められうる論文にはなりえませんよ?
Public には認められてない推論使ってるんだから。
それでいいの?
>題意だから。b'に対応するa'がそうなるは。それを違うと言われたら
>問題の仮定自体が間違っているということになる
こんな論法もありません。
だけです。
>a = Π(1+pr+…pr^qr)…(A)
から
>a ‘ = Π[k≠r](1+pr+…pr^qr)…(B)
が導出されないと問題自体がおかしいなどという論法をつかっていいってwikiのページに書いてあった?
ないでしょ?
君は自分の論文を公に認められたいんでしょ?
当然 Public な論文では Public に認められた推論のみを使った論文しか認めてもらえません。
現在の状態で論文誌に投稿しても同じ指摘を受けて書き直しの要求されるだけですよ。
“普遍凡化”、”普遍例化” の使い方自体はいたって簡単。
(A)を導出した証明の仮定と結論に出てくる同一の文字をいろいろと好きな文字に置き換えるだけです。
それを組み合わせて(B)を導出して下さい。
それが出来なければ永遠に Public に認められうる論文にはなりえませんよ?
Public には認められてない推論使ってるんだから。
それでいいの?
>>479
だから、一対一対応関係があると言っている。r→r-1の変換でこれは題意だ。
何故そこまで、間違った主張を繰り返すのか分からない。
b'でkが1からr-1までのpk^qkの積であればそれに対応するa'が1からr-1までの
1+pk+…+pk^qkの積になるのは当然ですが。
だから、一対一対応関係があると言っている。r→r-1の変換でこれは題意だ。
何故そこまで、間違った主張を繰り返すのか分からない。
b'でkが1からr-1までのpk^qkの積であればそれに対応するa'が1からr-1までの
1+pk+…+pk^qkの積になるのは当然ですが。
481132人目の素数さん
2018/08/30(木) 16:52:26.00ID:GzaOMu/G482132人目の素数さん
2018/08/30(木) 16:54:28.58ID:GzaOMu/G >>480
間違った主張といわれてもそんな論法数学にはないもん。
じゃあその論法を認めて紹介している文献なりwikiページなり上げて下さい。
もしホントにその論法が Public に認められてるなら紹介ページなりなんなり見つかるハズだよね?
間違った主張といわれてもそんな論法数学にはないもん。
じゃあその論法を認めて紹介している文献なりwikiページなり上げて下さい。
もしホントにその論法が Public に認められてるなら紹介ページなりなんなり見つかるハズだよね?
485132人目の素数さん
2018/08/30(木) 17:03:45.82ID:GzaOMu/G >>483
やっぱりわかってないね。
一応説明してみる。
先程書いたとおりa、b、c、p、rについて成立している関係式なんかアホほどある。
したがって “対応する a’、b’、c’ をどの式を利用して対応させるのか?” は本来論文中で明示しないとだめ。
しかし君の論文では
>b′に対応する a をa′とすると
から始まってどの式を利用してa’を定義するのか明示せずに議論を始めてる。
もうこの時点で数学の論文の体をなしていない。
もちろんその後で
a′ = ∏ [k≠r] (1 + pk + ⋯ + pk^qk)
も
a′ = a/pr^qr
も出てくるけど下の方が定義だとは君は一言も断ってないよね?
その文章ないでしょ?
だから私は下の方を定義として読んだだけ。
こんな推定を読み手にさせないと読めない文章なんかその時点で数学の論文ではない。
やっぱりわかってないね。
一応説明してみる。
先程書いたとおりa、b、c、p、rについて成立している関係式なんかアホほどある。
したがって “対応する a’、b’、c’ をどの式を利用して対応させるのか?” は本来論文中で明示しないとだめ。
しかし君の論文では
>b′に対応する a をa′とすると
から始まってどの式を利用してa’を定義するのか明示せずに議論を始めてる。
もうこの時点で数学の論文の体をなしていない。
もちろんその後で
a′ = ∏ [k≠r] (1 + pk + ⋯ + pk^qk)
も
a′ = a/pr^qr
も出てくるけど下の方が定義だとは君は一言も断ってないよね?
その文章ないでしょ?
だから私は下の方を定義として読んだだけ。
こんな推定を読み手にさせないと読めない文章なんかその時点で数学の論文ではない。
486132人目の素数さん
2018/08/30(木) 17:10:08.45ID:GzaOMu/G >>484
>だからaとbには何度も一対一対応があるからb'が定まれば一意にa'も決まる。ただそれだけ
だからその一対一対応を論文に書いてないでしょ?
ただし
{a = A(y)}、{b = B(y)}
には一対一対応に近いものはある。
が、君はその対応が適応できない範囲での議論をしてるんだよね?
つまりその一対一対応は使えない。
じゃあ、その一対一対応も本来定義しないといけない。
でも君できないでしょ?一対一対応なんて人生で定義した事ないよね?
だからその不備には目をつむったんだよ。
できるならやって見せて下さい。
キチンと数学の論文として通用するレベルの文章で。
>だからaとbには何度も一対一対応があるからb'が定まれば一意にa'も決まる。ただそれだけ
だからその一対一対応を論文に書いてないでしょ?
ただし
{a = A(y)}、{b = B(y)}
には一対一対応に近いものはある。
が、君はその対応が適応できない範囲での議論をしてるんだよね?
つまりその一対一対応は使えない。
じゃあ、その一対一対応も本来定義しないといけない。
でも君できないでしょ?一対一対応なんて人生で定義した事ないよね?
だからその不備には目をつむったんだよ。
できるならやって見せて下さい。
キチンと数学の論文として通用するレベルの文章で。
487132人目の素数さん
2018/08/30(木) 17:21:58.83ID:XOoReTTx 説明のためのキーワードは全部数学の言葉で言えないといけないのか。。。
分かりやすく日本語で説明しながら、その日本語と対応する数式をしっかり明示しないといけないなんて、大変だな
分かりやすく日本語で説明しながら、その日本語と対応する数式をしっかり明示しないといけないなんて、大変だな
489132人目の素数さん
2018/08/30(木) 17:25:01.48ID:XOoReTTx 一対一を数式として明示したら具体的にどんな式になるの?
それさえ分かれば別にいいじゃない
それさえ分かれば別にいいじゃない
490132人目の素数さん
2018/08/30(木) 17:30:10.72ID:0wdHkoKw 「難しくない」「当然」で逃げて、ちゃんとした証明は結局できないのか
491132人目の素数さん
2018/08/30(木) 17:33:24.68ID:GzaOMu/G >>488
一対一対応の定義はいいよ。
そもそもそこは元々目をつむっといてあげようと思ってたポイントだからね。
ー仮定ー
y は奇数の完全数。
p は multiplitity n が奇数の完全数。
pk (k=1〜r) は p と異なる multiplitcity qk > 0 の y の素因子。
a ‘ = 2y/(1+p+ … + p^n)/pr^qr
から
ー結論ー
a ‘ = Π[k ≠ r] (1+ pk + … + pk^qk)
を導出してください。
“対応してるから” というわけのわからん推論則ではなく。
数学の世界で認められた公理と推論則のみを用いて。
できるっていってたよね?
一対一対応の定義はいいよ。
そもそもそこは元々目をつむっといてあげようと思ってたポイントだからね。
ー仮定ー
y は奇数の完全数。
p は multiplitity n が奇数の完全数。
pk (k=1〜r) は p と異なる multiplitcity qk > 0 の y の素因子。
a ‘ = 2y/(1+p+ … + p^n)/pr^qr
から
ー結論ー
a ‘ = Π[k ≠ r] (1+ pk + … + pk^qk)
を導出してください。
“対応してるから” というわけのわからん推論則ではなく。
数学の世界で認められた公理と推論則のみを用いて。
できるっていってたよね?
492132人目の素数さん
2018/08/30(木) 17:34:49.78ID:CCHvgGa7 証明ってのは論理の道筋を明らかにするものを言う
「aに対応するa'」などとだけ書いて、読む人によって何通りもの別の解釈ができ、
かつ解釈の違いによって真偽が分かれるような状態にしておくことを「明らかにした」とは言えない
たとえば以下の3つの式は同時には成り立たないのだから、どれが正しいのか明示すべき
a=Π[k=1,r](1+pk+…pk^qk)
a'=Π[k=1,r-1](1+pk+…pk^qk)
a'=a/pr^qr
式を明示するだけなのになぜそれを端折るのか意味がわからない
「aに対応するa'」などとだけ書いて、読む人によって何通りもの別の解釈ができ、
かつ解釈の違いによって真偽が分かれるような状態にしておくことを「明らかにした」とは言えない
たとえば以下の3つの式は同時には成り立たないのだから、どれが正しいのか明示すべき
a=Π[k=1,r](1+pk+…pk^qk)
a'=Π[k=1,r-1](1+pk+…pk^qk)
a'=a/pr^qr
式を明示するだけなのになぜそれを端折るのか意味がわからない
493132人目の素数さん
2018/08/30(木) 17:35:46.20ID:GzaOMu/G >>491
訂正
✕:p は multiplitity n が奇数のyの完全数。
○:p は multiplitity n が奇数のyの素因子。
証明して見せて下さい。
数学の世界で Public に認められた推論則のみを用いて。
論文誌に載せたいなら当然要求されるよ?
訂正
✕:p は multiplitity n が奇数のyの完全数。
○:p は multiplitity n が奇数のyの素因子。
証明して見せて下さい。
数学の世界で Public に認められた推論則のみを用いて。
論文誌に載せたいなら当然要求されるよ?
494132人目の素数さん
2018/08/30(木) 17:42:43.32ID:wrnsIhYA 2+2=2×2=2^2は成立する
1の論法によると、2を3に変えても問題なく成立するはずだから、
3+3=3×3=3^3はもちろん成立する
こんな簡単な(以下略)
1の論法によると、2を3に変えても問題なく成立するはずだから、
3+3=3×3=3^3はもちろん成立する
こんな簡単な(以下略)
>>489
何度もさr→r-1の変換だって言っている。
このような簡単な内容に証明もへったくれもないでしょ。いかに文句を付けている人間達がふざけている
かを端的に表している。
b=Π[k=1,r]pk^qk→b'=Π[k=1,-1r]pk^qk
a=Π[k=1,r](1+pk+…+pk^qk)→a'=Π[k=1,-1r](1+pk+…+pk^qk)
ただこれだけ。たいしたことない内容に問題を理解していないし理解しようともしない人間が、変なナンクセ
つけすぎ。
もう飽きたのでこの件は終了。説明できないでも証明できないでも笑えるレスを何時までもしてろよ。
何度もさr→r-1の変換だって言っている。
このような簡単な内容に証明もへったくれもないでしょ。いかに文句を付けている人間達がふざけている
かを端的に表している。
b=Π[k=1,r]pk^qk→b'=Π[k=1,-1r]pk^qk
a=Π[k=1,r](1+pk+…+pk^qk)→a'=Π[k=1,-1r](1+pk+…+pk^qk)
ただこれだけ。たいしたことない内容に問題を理解していないし理解しようともしない人間が、変なナンクセ
つけすぎ。
もう飽きたのでこの件は終了。説明できないでも証明できないでも笑えるレスを何時までもしてろよ。
496132人目の素数さん
2018/08/30(木) 17:52:19.05ID:ZYgDwf+s これだから1は、このスレ以外ではどこにも相手をしてもらえない。
高木時空の理論は捨てなくちゃいけないのに。
高木時空の理論は捨てなくちゃいけないのに。
497132人目の素数さん
2018/08/30(木) 17:53:13.44ID:XOoReTTx >>495
変な難癖に一々対応するのも大変だろうから無視すればいいのに
変な難癖に一々対応するのも大変だろうから無視すればいいのに
498132人目の素数さん
2018/08/30(木) 17:54:32.66ID:6HG9uY0b >>495
a'=a/pr^qrはどう導くんじゃい?
a'=a/pr^qrはどう導くんじゃい?
499132人目の素数さん
2018/08/30(木) 18:06:29.15ID:XOoReTTx ってこと?
500132人目の素数さん
2018/08/30(木) 18:10:16.35ID:GzaOMu/G まぁ最後はこうなるとちょっと予想してたからやっぱり感しかないけどね。
間違ってるとこ直す気があるならわかるまで教えてあげようかとも思ったけど、本人が直す気ないならしゃぁないね。
間違ってるとこ直す気があるならわかるまで教えてあげようかとも思ったけど、本人が直す気ないならしゃぁないね。
501132人目の素数さん
2018/08/30(木) 18:10:16.52ID:ZYgDwf+s 絵で描かない方がいいんじゃね?
>>498
式Dの両辺をpr^qrで割る
式Dの両辺をpr^qrで割る
503132人目の素数さん
2018/08/30(木) 18:40:41.11ID:6HG9uY0b >>502
式Dって「ap-2bp+2b=c」のことでしょ。
これをpr^qrで割っても、a'=a/pr^qrを導くことにはならんぞい。
単に、a'=a/pr^qrという一種の定義式を利用して、
a'が式の中に出てくるような形に式Dを変形するってだけじゃないの。
問題にされてるのは「a'=a/pr^qr」という定義式が、
「a'=Π[k=1,-1r](1+pk+…+pk^qk)」をどう正当化するのかという話でしょ。
式Dって「ap-2bp+2b=c」のことでしょ。
これをpr^qrで割っても、a'=a/pr^qrを導くことにはならんぞい。
単に、a'=a/pr^qrという一種の定義式を利用して、
a'が式の中に出てくるような形に式Dを変形するってだけじゃないの。
問題にされてるのは「a'=a/pr^qr」という定義式が、
「a'=Π[k=1,-1r](1+pk+…+pk^qk)」をどう正当化するのかという話でしょ。
504132人目の素数さん
2018/08/30(木) 18:52:54.86ID:PoW5j6hT505132人目の素数さん
2018/08/30(木) 19:04:52.41ID:Bm1VCJbE >>504
aの定義のrをr-1に置き換えたものがa'なんじゃないのか?
aの定義のrをr-1に置き換えたものがa'なんじゃないのか?
506132人目の素数さん
2018/08/30(木) 19:08:25.41ID:6HG9uY0b507132人目の素数さん
2018/08/30(木) 19:12:36.71ID:oaEZkqRk >>1の数学は自明なことは証明できないという世界の数学だから
508132人目の素数さん
2018/08/30(木) 19:17:44.69ID:EObwglNy とりあえず(pr^qr)で割って、わかるのは
a'=(Π[k=1,r](1+pk+…+pk^qk))/(pr^qr)
ここまで。
a'=(Π[k=1,r-1](1+pk+…+pk^qk))
にどうやってたどり着くのかな。
a'=(Π[k=1,r](1+pk+…+pk^qk))/(pr^qr)
ここまで。
a'=(Π[k=1,r-1](1+pk+…+pk^qk))
にどうやってたどり着くのかな。
509132人目の素数さん
2018/08/30(木) 19:22:32.24ID:6HG9uY0b >>508
「a'=(Π[k=1,r](1+pk+…+pk^qk))/(pr^qr)」が自明なのはわかるけど、
「a'=(Π[k=1,r-1](1+pk+…+pk^qk))」が自明ってのは、普通はわからんわな。
「a'=(Π[k=1,r](1+pk+…+pk^qk))/(pr^qr)」が自明なのはわかるけど、
「a'=(Π[k=1,r-1](1+pk+…+pk^qk))」が自明ってのは、普通はわからんわな。
510132人目の素数さん
2018/08/31(金) 01:17:11.12ID:UfhWo0OL とりあえずなんでpの値が同じだから自明といってるかの理由はわかった気がする。
前回の指摘で p = 2pr -1 で言えたことを別の pk でいうには p’ = 2pk -1 に取り替えないとだめと言われたのを p さえ変わんなきゃいいと思いこんでるのかもしれない。
そもそも a = 2y/(1+p+…+p^n)とおいたとき a = Π(1+pk+…+pk^qk) を導出するのに y が完全数をつかってたんだから
y を y’ = y/pr^qr に取替て p はそのままにしたところで結局 y’ が完全数でなければいくら p がそのままでも a’ = Π[pk≠pr](1+pk+…+pk^qk) なんて導出できるはずないのに。
なんで 「p が変わるからダメ」という言葉が「pさえ変わらなければ良い」に変換されてしまうのかは以前謎だけど。
前回の指摘で p = 2pr -1 で言えたことを別の pk でいうには p’ = 2pk -1 に取り替えないとだめと言われたのを p さえ変わんなきゃいいと思いこんでるのかもしれない。
そもそも a = 2y/(1+p+…+p^n)とおいたとき a = Π(1+pk+…+pk^qk) を導出するのに y が完全数をつかってたんだから
y を y’ = y/pr^qr に取替て p はそのままにしたところで結局 y’ が完全数でなければいくら p がそのままでも a’ = Π[pk≠pr](1+pk+…+pk^qk) なんて導出できるはずないのに。
なんで 「p が変わるからダメ」という言葉が「pさえ変わらなければ良い」に変換されてしまうのかは以前謎だけど。
511132人目の素数さん
2018/08/31(金) 02:54:03.71ID:bW2cuetU ともかくさ、ちゃんとした代数をやろうぜ
奇素数pkについて
(Π[k=1,r](1+pk+…+pk^qk))/(pr^qr)と
(Π[k=1,r-1](1+pk+…+pk^qk))が等しいのが自明などと
総乗記号もろくに理解しない論理を1が展開するなら、まともな評価はできない
この点を1が改めないなら、もう相手するだけ無駄すぎる
奇素数pkについて
(Π[k=1,r](1+pk+…+pk^qk))/(pr^qr)と
(Π[k=1,r-1](1+pk+…+pk^qk))が等しいのが自明などと
総乗記号もろくに理解しない論理を1が展開するなら、まともな評価はできない
この点を1が改めないなら、もう相手するだけ無駄すぎる
512132人目の素数さん
2018/08/31(金) 05:31:45.22ID:Xw3EuLV1 1は中学の時全然勉強しなかったからね。
それで入学試験のある高校は全部不合格になっちゃったし。
それで入学試験のある高校は全部不合格になっちゃったし。
513132人目の素数さん
2018/08/31(金) 08:31:08.71ID:JM/zdFU4 よくよく考えたら
a’ = Π[k≠r](1+pk+…+pk^qk)、b’ = Π[k≠r]pk^qk
が成り立つなら元の
(1+p+…+p^n)Π(1+pk+…+pk^qk) = 2p^nΠpk^qk
と合わせたらy’ = y/pr^qrも完全数になるやん。
しかもこれが任意のrで成り立つと言ってるからから>>1のp7の主張は
「yが奇数の完全数、pkをmultiplicity qkが偶数の任意の素因子とするとy/pk^qkも奇数の完全数。」
といってるに等しい。
で、その理由が
「pが変わらないので題意より明らか。」
だそうな。
最強のロジックですな。
a’ = Π[k≠r](1+pk+…+pk^qk)、b’ = Π[k≠r]pk^qk
が成り立つなら元の
(1+p+…+p^n)Π(1+pk+…+pk^qk) = 2p^nΠpk^qk
と合わせたらy’ = y/pr^qrも完全数になるやん。
しかもこれが任意のrで成り立つと言ってるからから>>1のp7の主張は
「yが奇数の完全数、pkをmultiplicity qkが偶数の任意の素因子とするとy/pk^qkも奇数の完全数。」
といってるに等しい。
で、その理由が
「pが変わらないので題意より明らか。」
だそうな。
最強のロジックですな。
514132人目の素数さん
2018/08/31(金) 09:52:24.11ID:9bgKG8tA 先生「高木君の証明は、ここで間違ってます。先生の説明が分かりますか?」
高木くん(いかん!さっぱり分からない!必殺技で逃げ切るぞ!)
高木くん「このような簡単な内容に証明もへったくれもないでしょ!自明です!」
高木くん(いかん!さっぱり分からない!必殺技で逃げ切るぞ!)
高木くん「このような簡単な内容に証明もへったくれもないでしょ!自明です!」
515132人目の素数さん
2018/08/31(金) 11:00:54.46ID:SF3nRQyV >>513
最強ロジックを使うとこうなるか
b=1^1に対して、a=1+1^1とすると、a=2bである
a'=2b'となる任意のa',b'と、任意のpk,qkについて、
a'=a/pr^qr, b'=b/pr^qrとするとa=2bである
以上より、
a=Π[k=1,r](1+pk+…+pk^qk)、b=Π[k=1,r]pk^qkとなる任意のa,bについて、
a=2bであることが示された。
このaは明らかにbの約数和である。また、全ての整数はΠ[k=1,r]pk^qkの形に書けることから、
すべての自然数は完全数である。
これが最強ロジックの帰結か。まさに最強
最強ロジックを使うとこうなるか
b=1^1に対して、a=1+1^1とすると、a=2bである
a'=2b'となる任意のa',b'と、任意のpk,qkについて、
a'=a/pr^qr, b'=b/pr^qrとするとa=2bである
以上より、
a=Π[k=1,r](1+pk+…+pk^qk)、b=Π[k=1,r]pk^qkとなる任意のa,bについて、
a=2bであることが示された。
このaは明らかにbの約数和である。また、全ての整数はΠ[k=1,r]pk^qkの形に書けることから、
すべての自然数は完全数である。
これが最強ロジックの帰結か。まさに最強
516132人目の素数さん
2018/08/31(金) 13:49:31.44ID:DTNXO3+z 高木くん「俺様最強だな。」
517学術
2018/08/31(金) 14:11:53.97ID:oNPUVpgQ 完全に数だと思うと感動しただろうな。
519132人目の素数さん
2018/08/31(金) 16:36:57.38ID:qB6pPk6g 質問です。
yが奇数の完全数、pが multiplicity 奇数の y の素因子、n をその multiplicity、pk 8(k:1〜r)を他の素因子の全体、qrをその multiplicity とします。(論文と同じ設定。)
a=2y/(1+p+…+p^n)、b=y/p^n、c=2y/(1+p+…+p^n)/p^n
とおきます。(論文と同じ設定。)
kを任意にとり
a’=a/pk^qk、b’=b/pl^qk、c’=c/pk^qk
とおきます。(論文と同じ設定。)
Q1) (p+1)/2 = pr のとき A’ = Π[k≠r](1+p+…+pk)は成立しますか?論文では成立すると読めます。
Q2) (p+1)/2 = pr のとき r 以外の s でも A’ = Π[k≠s](1+p+…+pk)は成立しますか?論文では成立すると読めます。
Q3) (p+1)/2 = pr となる pr がないとき、(論文の II のケース) A’ = Π[k≠s](1+p+…+pk)は成立しますか?成立しないとするとなぜですか?
yが奇数の完全数、pが multiplicity 奇数の y の素因子、n をその multiplicity、pk 8(k:1〜r)を他の素因子の全体、qrをその multiplicity とします。(論文と同じ設定。)
a=2y/(1+p+…+p^n)、b=y/p^n、c=2y/(1+p+…+p^n)/p^n
とおきます。(論文と同じ設定。)
kを任意にとり
a’=a/pk^qk、b’=b/pl^qk、c’=c/pk^qk
とおきます。(論文と同じ設定。)
Q1) (p+1)/2 = pr のとき A’ = Π[k≠r](1+p+…+pk)は成立しますか?論文では成立すると読めます。
Q2) (p+1)/2 = pr のとき r 以外の s でも A’ = Π[k≠s](1+p+…+pk)は成立しますか?論文では成立すると読めます。
Q3) (p+1)/2 = pr となる pr がないとき、(論文の II のケース) A’ = Π[k≠s](1+p+…+pk)は成立しますか?成立しないとするとなぜですか?
520132人目の素数さん
2018/08/31(金) 16:42:15.82ID:qB6pPk6g すいません。まちがえました。
Q1) (p+1)/2 = pr のとき A’ = Π[k≠r](1+p+…+pk^qk)は成立しますか?論文では成立すると読めます。
Q2) (p+1)/2 = pr のとき r 以外の s でも A’ = Π[k≠s](1+p+…+pk^qk)は成立しますか?論文では成立すると読めます。
Q3) (p+1)/2 = pr となる pr がないとき、(論文の II のケース) A’ = Π[k≠s](1+p+…+pk^qk)は成立しますか?成立しないとするとなぜですか?
Q1) (p+1)/2 = pr のとき A’ = Π[k≠r](1+p+…+pk^qk)は成立しますか?論文では成立すると読めます。
Q2) (p+1)/2 = pr のとき r 以外の s でも A’ = Π[k≠s](1+p+…+pk^qk)は成立しますか?論文では成立すると読めます。
Q3) (p+1)/2 = pr となる pr がないとき、(論文の II のケース) A’ = Π[k≠s](1+p+…+pk^qk)は成立しますか?成立しないとするとなぜですか?
521学術
2018/08/31(金) 17:10:11.43ID:oNPUVpgQ 無理やり成立するか、成立しないっで崩れるかというのは、当方
が決めることだろうが、確率統計なんかは何度も答えが違っていて
かなり進んだものだとも印象を持った。
が決めることだろうが、確率統計なんかは何度も答えが違っていて
かなり進んだものだとも印象を持った。
522学術
2018/08/31(金) 17:11:04.48ID:oNPUVpgQ 演算をこなせばめでたいかというと、人間以外なら是が非でも、人間なら
順番を待ってということを意識していることもよいだろう。
順番を待ってということを意識していることもよいだろう。
523学術
2018/08/31(金) 17:12:30.83ID:oNPUVpgQ 系が違うものは論評しながら思考しながらこなすしかないけど、掲示板に乗せるものが
人の手に渡っていく怖さや至福なんていうものを意識したなあ。
人の手に渡っていく怖さや至福なんていうものを意識したなあ。
524132人目の素数さん
2018/08/31(金) 17:33:41.79ID:qB6pPk6g >>520
すいません。またまちがえました。
やはり論文とまったく同じ文字設定にします。素因子の数だけRにします。
yが奇数の完全数、pが multiplicity 奇数の y の素因子、n をその multiplicity、pr (r:1〜R)を他の素因子の全体、qrをその multiplicity とします。(論文と同じ設定。)
a=2y/(1+p+…+p^n)、b=y/p^n、c=2y/(1+p+…+p^n)/p^n
とおきます。(論文と同じ設定。)
kを任意にとり
a’=a/pk^qk、b’=b/pk^qk、c’=c/pk^qk
とおきます。(論文と同じ設定。)
Q1) (p+1)/2 = pr、k=r のとき A’ = Π[l≠k](1+pl+…+pl^ql)は成立しますか?論文では成立すると読めます。
Q2) (p+1)/2 = pr、k≠r (∃r) のとき A’ = Π[l≠k](1+pl+…+pl^ql)は成立しますか?論文では成立すると読めます。
Q3) (p+1)/2 = pr となる pr がないとき、(論文の II のケース) A’ = Π[l≠k](1+pl+…+pl^ql)は成立しますか?成立しないとするとなぜですか?
すいません。またまちがえました。
やはり論文とまったく同じ文字設定にします。素因子の数だけRにします。
yが奇数の完全数、pが multiplicity 奇数の y の素因子、n をその multiplicity、pr (r:1〜R)を他の素因子の全体、qrをその multiplicity とします。(論文と同じ設定。)
a=2y/(1+p+…+p^n)、b=y/p^n、c=2y/(1+p+…+p^n)/p^n
とおきます。(論文と同じ設定。)
kを任意にとり
a’=a/pk^qk、b’=b/pk^qk、c’=c/pk^qk
とおきます。(論文と同じ設定。)
Q1) (p+1)/2 = pr、k=r のとき A’ = Π[l≠k](1+pl+…+pl^ql)は成立しますか?論文では成立すると読めます。
Q2) (p+1)/2 = pr、k≠r (∃r) のとき A’ = Π[l≠k](1+pl+…+pl^ql)は成立しますか?論文では成立すると読めます。
Q3) (p+1)/2 = pr となる pr がないとき、(論文の II のケース) A’ = Π[l≠k](1+pl+…+pl^ql)は成立しますか?成立しないとするとなぜですか?
525132人目の素数さん
2018/08/31(金) 17:41:41.14ID:DTNXO3+z フェーズ1になったか
526132人目の素数さん
2018/09/01(土) 01:30:09.83ID:ddp4cBBS527132人目の素数さん
2018/09/01(土) 06:37:53.45ID:1OMQq8vy いつも指摘された点は無視なんだよね
>>16 132人目の素数さん2018/08/22(水) 12:41:18.93ID:q5K+5KiU
いつもの流れ
1.「間違いが見つかりました、撤回します」
↓
2.「(今論点じゃないところ)を修正しました。完成です」
↓
3.(論点について聞かれても)「もうすでに直しました(←直ってない)。読んでから言ってください」
>>16 132人目の素数さん2018/08/22(水) 12:41:18.93ID:q5K+5KiU
いつもの流れ
1.「間違いが見つかりました、撤回します」
↓
2.「(今論点じゃないところ)を修正しました。完成です」
↓
3.(論点について聞かれても)「もうすでに直しました(←直ってない)。読んでから言ってください」
529132人目の素数さん
2018/09/01(土) 07:14:14.07ID:uSSvu/fA おはようぐらい言えや
530132人目の素数さん
2018/09/01(土) 07:19:57.57ID:9Kyy5eqw 一対一対応って、全単射ってこと?
531132人目の素数さん
2018/09/01(土) 07:50:36.80ID:ZOWvWk49 >>528
これまで何度も指摘されているのは、以下の2つが矛盾するということ。
>>462
>b'=b/pr^qr=Π[k=1,r-1]pk^qk
>ap-2bp+2b=cの式の両辺をpr^qrで割り、a'=a/pr^qrとすると
>a'-2b'p+2b'=c'
よりb'=b/pr^qr, a'=a/pr^qr
>>495
>b=Π[k=1,r]pk^qk→b'=Π[k=1,-1r]pk^qk
>a=Π[k=1,r](1+pk+…+pk^qk)→a'=Π[k=1,r-1](1+pk+…+pk^qk)
よりb'=b/pr^qr, a'=a/(1+pr+…+pr^qr)
a'の定義はどっちが言いたいことに近いんだい?
これまで何度も指摘されているのは、以下の2つが矛盾するということ。
>>462
>b'=b/pr^qr=Π[k=1,r-1]pk^qk
>ap-2bp+2b=cの式の両辺をpr^qrで割り、a'=a/pr^qrとすると
>a'-2b'p+2b'=c'
よりb'=b/pr^qr, a'=a/pr^qr
>>495
>b=Π[k=1,r]pk^qk→b'=Π[k=1,-1r]pk^qk
>a=Π[k=1,r](1+pk+…+pk^qk)→a'=Π[k=1,r-1](1+pk+…+pk^qk)
よりb'=b/pr^qr, a'=a/(1+pr+…+pr^qr)
a'の定義はどっちが言いたいことに近いんだい?
532132人目の素数さん
2018/09/01(土) 07:51:25.79ID:C1GVJGgX533132人目の素数さん
2018/09/01(土) 09:23:09.54ID:RO47B9M9 r→r-1 によって対応させるとして、
bの約数の和=a
b'の約数の和=a'
という関係は保たれる。
しかし「y'=b'×p^n は完全数である」とは言えない。
「a' − 2b′p + 2b′ = c′」も完全数由来の式なので成り立つとは言えない。
bの約数の和=a
b'の約数の和=a'
という関係は保たれる。
しかし「y'=b'×p^n は完全数である」とは言えない。
「a' − 2b′p + 2b′ = c′」も完全数由来の式なので成り立つとは言えない。
535132人目の素数さん
2018/09/01(土) 09:43:11.17ID:eJQbZbwg >>535
Uのことは考慮していません
Uのことは考慮していません
537132人目の素数さん
2018/09/01(土) 10:51:07.29ID:jZ1Ng0Dt >>536
考慮にいれた場合どうなりますか?
>yが奇数の完全数、pが multiplicity 奇数の y の素因子、n をその multiplicity、pr (r:1〜R)を他の素因子の全体、qrをその multiplicity とします。(論文と同じ設定。)
>
>a=2y/(1+p+…+p^n)、b=y/p^n、c=2y/(1+p+…+p^n)/p^n
>
>とおきます。(論文と同じ設定。)
>kを任意にとり
>
>a’=a/pk^qk、b’=b/pk^qk、c’=c/pk^qk
>
>とおきます。(論文と同じ設定。)
ここまでは (p+1)/2 が素数でなくても通用しますが、この場合でも A’ = Π[l≠k](1+pl+…+pl^ql) は成立しますか?
考慮にいれた場合どうなりますか?
>yが奇数の完全数、pが multiplicity 奇数の y の素因子、n をその multiplicity、pr (r:1〜R)を他の素因子の全体、qrをその multiplicity とします。(論文と同じ設定。)
>
>a=2y/(1+p+…+p^n)、b=y/p^n、c=2y/(1+p+…+p^n)/p^n
>
>とおきます。(論文と同じ設定。)
>kを任意にとり
>
>a’=a/pk^qk、b’=b/pk^qk、c’=c/pk^qk
>
>とおきます。(論文と同じ設定。)
ここまでは (p+1)/2 が素数でなくても通用しますが、この場合でも A’ = Π[l≠k](1+pl+…+pl^ql) は成立しますか?
538132人目の素数さん
2018/09/01(土) 13:35:29.21ID:1OMQq8vy 全単射って言葉すら、1には理解の範囲外であったか
539132人目の素数さん
2018/09/01(土) 21:22:54.60ID:SXfIUPDz 早稲田は何を教えてるんや
540132人目の素数さん
2018/09/01(土) 21:26:23.74ID:/cqCDTyr オボッ?
541132人目の素数さん
2018/09/01(土) 21:47:41.36ID:hhCbkJ0F なんかよく分からんが、高木メソッドのいう「対応してるから同じ式が成り立つ」というのは
0+1=1は成り立つ。
f:Z→Z,f(n)=n+1は全単射で、0と1,それぞれ1と2は一対一に対応してるから1+2=2も成り立つ。
こういうこと?
0+1=1は成り立つ。
f:Z→Z,f(n)=n+1は全単射で、0と1,それぞれ1と2は一対一に対応してるから1+2=2も成り立つ。
こういうこと?
542132人目の素数さん
2018/09/01(土) 21:51:11.08ID:hhCbkJ0F >0と1,それぞれ1と2は一対一に対応してるから
なんか変なとこに日本語が入った
0と1、1と2はそれぞれ一対一に対応してるから1+2=2も成り立つ、ということを言ってるの?
と書き込んでから気づいたけど、確か変数を数字に置き換えたら(代入したら)ダメなんだっけ……?
なんか変なとこに日本語が入った
0と1、1と2はそれぞれ一対一に対応してるから1+2=2も成り立つ、ということを言ってるの?
と書き込んでから気づいたけど、確か変数を数字に置き換えたら(代入したら)ダメなんだっけ……?
543132人目の素数さん
2018/09/01(土) 22:01:10.76ID:1OMQq8vy >変数を数字に置き換えたら(代入したら)ダメなんだっけ……?
もう現実世界の数学じゃないし
もう現実世界の数学じゃないし
544132人目の素数さん
2018/09/01(土) 23:45:32.91ID:hInltfSY 新版まだー?
☆ チン ☆
チン マチクタビレタ〜 チン♪
♪
♪ ☆チン ☆ジャーン
☆チン 〃 ∧∧ ___
__\(∀・#)/\_/
チン\_/⊂ つ |
`/ ̄ ̄ ̄ ̄ /| |
| ̄ ̄ ̄ ̄ ̄| |/|\
|愛媛みかん|/
☆ チン ☆
チン マチクタビレタ〜 チン♪
♪
♪ ☆チン ☆ジャーン
☆チン 〃 ∧∧ ___
__\(∀・#)/\_/
チン\_/⊂ つ |
`/ ̄ ̄ ̄ ̄ /| |
| ̄ ̄ ̄ ̄ ̄| |/|\
|愛媛みかん|/
546132人目の素数さん
2018/09/02(日) 23:39:53.12ID:Q97CGeRw 証明を断念したので検討する内容がなくなった
以後、永遠にフェイズ1のまま
以後、永遠にフェイズ1のまま
547132人目の素数さん
2018/09/02(日) 23:46:58.15ID:Q97CGeRw めでたし めでたし
そひこのげえな
そひこのげえな
548132人目の素数さん
2018/09/02(日) 23:50:20.12ID:hq4ZUq55 その意味が分からん限りまぁ読む必要ないな
549132人目の素数さん
2018/09/03(月) 00:10:57.58ID:K0JyG9yu >>545
なぜ (p+1)/2 が素数の場合には一対一対応があるのに (p+1)/2 が素数でない場合には一対一対応がないのですか?
答えあぐねてるということはそう解釈していいんですよね?
その時点で話が符号してないじゃないですか?
なぜ (p+1)/2 が素数の場合には一対一対応があるのに (p+1)/2 が素数でない場合には一対一対応がないのですか?
答えあぐねてるということはそう解釈していいんですよね?
その時点で話が符号してないじゃないですか?
550132人目の素数さん
2018/09/03(月) 00:47:59.65ID:QfkLCLld _∧_∧_∧_∧_∧_∧_∧_∧_∧_∧__
デケデケ | |
ドコドコ < 新版まだーーーーーー!!? >
☆ ドムドム |_ _ _ _ _ _ _ _ _ _|
☆ ダダダダ! ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
ドシャーン! ヽ オラオラッ!! ♪
=≡= ∧_∧ ☆
♪ / 〃(・∀・ #) / シャンシャン
♪ 〆 ┌\と\と.ヾ∈≡∋ゞ
|| γ ⌒ヽヽコ ノ ||
|| ΣΣ .|:::|∪〓 || ♪
./|\人 _.ノノ _||_. /|\
ドチドチ!
デケデケ | |
ドコドコ < 新版まだーーーーーー!!? >
☆ ドムドム |_ _ _ _ _ _ _ _ _ _|
☆ ダダダダ! ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
ドシャーン! ヽ オラオラッ!! ♪
=≡= ∧_∧ ☆
♪ / 〃(・∀・ #) / シャンシャン
♪ 〆 ┌\と\と.ヾ∈≡∋ゞ
|| γ ⌒ヽヽコ ノ ||
|| ΣΣ .|:::|∪〓 || ♪
./|\人 _.ノノ _||_. /|\
ドチドチ!
552132人目の素数さん
2018/09/03(月) 15:58:56.63ID:rn4fGwrw 諦めた方がいいと思うけどなぁ
553132人目の素数さん
2018/09/03(月) 17:02:10.28ID:zo/+bedc 数学科入るのが一番の近道だぞ
554132人目の素数さん
2018/09/03(月) 20:19:46.18ID:ACAltoZ2 勉強してこなかった中学レベルの数学を
しっかりと勉強するのが一番の近道
しっかりと勉強するのが一番の近道
555132人目の素数さん
2018/09/03(月) 23:27:44.02ID:rGrwFIrb >>551
>一対一対応のことは題意なので、問題の検討からの場合分けには依存しません
ということは (p+1)/2 が素数であろうが、なかろうが、この場合分けには依らず、(筆者の ”題意” にまかせて)一対一対応は作れて
a’=a/pk^qk
とおくとき
a’ = Π[l≠k](1+pl+…+pl^ql)
は成立するでOK?
>一対一対応のことは題意なので、問題の検討からの場合分けには依存しません
ということは (p+1)/2 が素数であろうが、なかろうが、この場合分けには依らず、(筆者の ”題意” にまかせて)一対一対応は作れて
a’=a/pk^qk
とおくとき
a’ = Π[l≠k](1+pl+…+pl^ql)
は成立するでOK?
p^n+…+1≡0 (mod q^r), q>p
のとき、mをm>0の整数として
n+1=m×q^(r-1)(q-1)
のとき、mをm>0の整数として
n+1=m×q^(r-1)(q-1)
「嘘を書いたから〜」
と言う男の声が聞こえてきました。〜の部分は聞こえませんでした。
何故私に文句を言ったり、こき下ろす人間は外から声だけ聞かせるのでしょうか?
自分が誰だか分からないようにしないとものが言えない人間は黙っていれば
結構。言ったら言いっぱなしで逃げやがって女々しい限りだ。
女々しい人間は男も女も口を開くな
と言う男の声が聞こえてきました。〜の部分は聞こえませんでした。
何故私に文句を言ったり、こき下ろす人間は外から声だけ聞かせるのでしょうか?
自分が誰だか分からないようにしないとものが言えない人間は黙っていれば
結構。言ったら言いっぱなしで逃げやがって女々しい限りだ。
女々しい人間は男も女も口を開くな
558132人目の素数さん
2018/09/04(火) 06:58:30.35ID:tkIvLhx7559132人目の素数さん
2018/09/04(火) 07:22:44.76ID:DGQaYchi 糖質芸始まった
560132人目の素数さん
2018/09/04(火) 09:01:37.46ID:W+wFhPqZ どっちにしろおかしいけど^はどこにかかってんだ?
561132人目の素数さん
2018/09/04(火) 09:33:25.06ID:diXKRUIE >>555 お願いします。
563132人目の素数さん
2018/09/04(火) 10:16:20.06ID:diXKRUIE >>562
では纏めると
y が奇数の完全数、pが multiplicity が奇数の素因子、y=p^nΠ[k:1〜r]pr^qrを素因数分解とするとき1〜r任意のkに対し
2y/(1+p+…+p^n)/pk^nk = Π[l≠k] pk^qk
が((p+1)/2が素数であろうがなかろうが)成立する。
ということですか?
では纏めると
y が奇数の完全数、pが multiplicity が奇数の素因子、y=p^nΠ[k:1〜r]pr^qrを素因数分解とするとき1〜r任意のkに対し
2y/(1+p+…+p^n)/pk^nk = Π[l≠k] pk^qk
が((p+1)/2が素数であろうがなかろうが)成立する。
ということですか?
>>563
2y/(1+p+…+p^n)/pk^qk = Π[l≠k] pk^q
これは割っただけだから、成立します
>a’ = Π[l≠k](1+pl+…+pl^ql)
は成り立つことが仮定されます
2y/(1+p+…+p^n)/pk^qk = Π[l≠k] pk^q
これは割っただけだから、成立します
>a’ = Π[l≠k](1+pl+…+pl^ql)
は成り立つことが仮定されます
565132人目の素数さん
2018/09/04(火) 10:44:26.44ID:diXKRUIE >>564
すいません。纏めそこねました。
y が奇数の完全数、pが multiplicity が奇数の素因子、y=p^nΠ[k:1〜r]pr^qrを素因数分解とするとき1〜r任意のkに対し
2y/(1+p+…+p^n)/pk^nk = Π[l≠k] (1+pl+…+pl^ql)
が((p+1)/2が素数であろうがなかろうが)成立する。
です。
すいません。纏めそこねました。
y が奇数の完全数、pが multiplicity が奇数の素因子、y=p^nΠ[k:1〜r]pr^qrを素因数分解とするとき1〜r任意のkに対し
2y/(1+p+…+p^n)/pk^nk = Π[l≠k] (1+pl+…+pl^ql)
が((p+1)/2が素数であろうがなかろうが)成立する。
です。
567132人目の素数さん
2018/09/04(火) 11:30:55.25ID:diXKRUIE >>566
わかりました。では
y が奇数の完全数、pが multiplicity が奇数の素因子、y=p^nΠ[k:1〜r]pk^qkを素因数分解とするとき1〜r任意のkに対し
2y/pk^nk = (1+p+…+p^n)Π[l≠k] (1+pl+…+pl^ql)
が((p+1)/2が素数であろうがなかろうが)成立する。
ですね。
では、このとき y/pk^nk=p^nΠ[k:1〜r、l≠k]pl^ql は素因数分解、かつ
2y/pk^qk = (1+p+…+p^n)Π[l≠k] (1+pl+…+pl^ql)
なので y/pk^qk は完全数ですね?
わかりました。では
y が奇数の完全数、pが multiplicity が奇数の素因子、y=p^nΠ[k:1〜r]pk^qkを素因数分解とするとき1〜r任意のkに対し
2y/pk^nk = (1+p+…+p^n)Π[l≠k] (1+pl+…+pl^ql)
が((p+1)/2が素数であろうがなかろうが)成立する。
ですね。
では、このとき y/pk^nk=p^nΠ[k:1〜r、l≠k]pl^ql は素因数分解、かつ
2y/pk^qk = (1+p+…+p^n)Π[l≠k] (1+pl+…+pl^ql)
なので y/pk^qk は完全数ですね?
568132人目の素数さん
2018/09/04(火) 11:45:10.97ID:MpTMY5M6569132人目の素数さん
2018/09/04(火) 12:08:09.20ID:vZ9FrO7z 単純にA→BとB→Aの区別ができてないだけでは?
狙ってるとかではなく。
狙ってるとかではなく。
570132人目の素数さん
2018/09/04(火) 14:09:13.79ID:8Hx1L//R ・A→BとB→Aの区別ができないのは、芸ではなかった
・∀∃の区別ができないのは、芸ではなかった
狙ってるとかではなく。
・∀∃の区別ができないのは、芸ではなかった
狙ってるとかではなく。
571132人目の素数さん
2018/09/04(火) 16:48:46.39ID:vUAYjwJF572132人目の素数さん
2018/09/04(火) 16:56:42.98ID:yj+6CZXV573132人目の素数さん
2018/09/04(火) 17:02:23.96ID:xinAd8Lm 頑張って数学っぽい言葉使いをしようと精一杯背伸びしてるのがなんか痛々しい。
575132人目の素数さん
2018/09/04(火) 17:22:27.72ID:VVJeZn+A どーでもいいけど、仮定されるってなんだよ。
576132人目の素数さん
2018/09/04(火) 21:32:02.02ID:T7IEs2v7 >>574
いや、べつに。唯
―――――――――――――――――――――
補題
y が奇数の完全数、pk が multiplicity qk が偶数の素因子のとき y/pk^qk も完全数。
―――――――――――――――――――――
が言えるなら次が言えるんですよ。
―――――――――――――――――――――
奇数の完全数が存在するとする。
yを奇数の完全数で最小であるものとする。
補題よりそれは multiplicity が偶数の素因子を持たない。
一方Eulerの定理よりyはちょうど一個の multiplicity が奇数の素因子を持つ。
以上により y = p^n とかける。
しかしこのとき
1+ p + … + p^(n-1) = p^n
であるが左辺はmodulo p で1、右辺は 0 に合同ゆえ矛盾。
以上により奇数の完全数は存在しない。
―――――――――――――――――――――
論文がだいぶスッキリになりますよ。
良かったですね。
いや、べつに。唯
―――――――――――――――――――――
補題
y が奇数の完全数、pk が multiplicity qk が偶数の素因子のとき y/pk^qk も完全数。
―――――――――――――――――――――
が言えるなら次が言えるんですよ。
―――――――――――――――――――――
奇数の完全数が存在するとする。
yを奇数の完全数で最小であるものとする。
補題よりそれは multiplicity が偶数の素因子を持たない。
一方Eulerの定理よりyはちょうど一個の multiplicity が奇数の素因子を持つ。
以上により y = p^n とかける。
しかしこのとき
1+ p + … + p^(n-1) = p^n
であるが左辺はmodulo p で1、右辺は 0 に合同ゆえ矛盾。
以上により奇数の完全数は存在しない。
―――――――――――――――――――――
論文がだいぶスッキリになりますよ。
良かったですね。
>>576
正しいということが仮定されるだけで
a'=Π[k=1,r-1](1+pk+…+pk^qk)≠Π[k=1,r](1+pk…+pk^qk)/pr^qr
となり、その仮定が正しくないということになると思います。
つまり、kの最大値がrのときだけ成り立ち、その値がr-1になっても
r+1になっても成り立たないということを示しているだけだと思います。
正しいということが仮定されるだけで
a'=Π[k=1,r-1](1+pk+…+pk^qk)≠Π[k=1,r](1+pk…+pk^qk)/pr^qr
となり、その仮定が正しくないということになると思います。
つまり、kの最大値がrのときだけ成り立ち、その値がr-1になっても
r+1になっても成り立たないということを示しているだけだと思います。
578132人目の素数さん
2018/09/04(火) 21:55:15.51ID:ISiP6Smo579132人目の素数さん
2018/09/04(火) 22:44:41.17ID:xinAd8Lm >>579
正しいことが仮定されるだけです。
何度も書いていますが、この仮定は正しくありません。それはk=r-1のときに成り立たないと
いうだけであり、k=rのときに成り立つか成り立たないかに関しては何の情報も与えず
不明であるということです。
正しいことが仮定されるだけです。
何度も書いていますが、この仮定は正しくありません。それはk=r-1のときに成り立たないと
いうだけであり、k=rのときに成り立つか成り立たないかに関しては何の情報も与えず
不明であるということです。
581132人目の素数さん
2018/09/04(火) 23:30:12.54ID:DGQaYchi 正しくないなら使えませんね
582132人目の素数さん
2018/09/04(火) 23:39:08.91ID:xinAd8Lm つまり偽なんですね。
じゃあ論文で使ってはダメです。
じゃあ論文で使ってはダメです。
583132人目の素数さん
2018/09/04(火) 23:45:28.48ID:ISiP6Smo 背理法のために最初に正しいとする命題とは違うの?
584132人目の素数さん
2018/09/05(水) 00:16:03.40ID:RT3Tco7O >>583
むしろ正しいとされる仮定がわらわら出てきて、助けてください
むしろ正しいとされる仮定がわらわら出てきて、助けてください
585132人目の素数さん
2018/09/05(水) 00:23:24.65ID:Fa23FyH2 背理法もわかってない。
もう諦めるべきなのでは?
背理法の勉強からやり直すのではあまりにも‥‥
もう諦めるべきなのでは?
背理法の勉強からやり直すのではあまりにも‥‥
586132人目の素数さん
2018/09/05(水) 00:47:15.26ID:0AlpXlkH >>584
もしこの命題が真であるとすると矛盾が生じる。よってこの命題は偽である。みたいにしないと証明できない命題がいっぱいできちゃうのは確かにめんどくさいね
もしこの命題が真であるとすると矛盾が生じる。よってこの命題は偽である。みたいにしないと証明できない命題がいっぱいできちゃうのは確かにめんどくさいね
587132人目の素数さん
2018/09/05(水) 02:27:39.28ID:G5vTUjav ホントに正しいのか?正しいのなら証明を与えて下さいと言われたときには、
「題意から自明。そんな簡単なこともわからないのですか。」
といい、それを使ったあっけない証明が出てきたら
「正しいと仮定されてるだけで正しいわけではない。」
という。メチャクチャ。
「題意から自明。そんな簡単なこともわからないのですか。」
といい、それを使ったあっけない証明が出てきたら
「正しいと仮定されてるだけで正しいわけではない。」
という。メチャクチャ。
588132人目の素数さん
2018/09/05(水) 02:38:09.59ID:4tSl8eka 簡単な話、1にとって正しいのは自分のみで、
他人の言うことはすべて間違い
そう考えるとすべてに説明がつく
他人の言うことはすべて間違い
そう考えるとすべてに説明がつく
589132人目の素数さん
2018/09/05(水) 03:34:22.06ID:PvGQmJxF 自分以外全員バカ理論ですな。
590132人目の素数さん
2018/09/05(水) 07:00:00.36ID:KOTk5Qvu 結局「a'=Π[k=1,r-1](1+pk+…+pk^qk)」は正しくないということで決着したわけ?
591132人目の素数さん
2018/09/05(水) 08:11:54.71ID:svJk1x5K 登場以来、1は全て正しくないということで継続中
592132人目の素数さん
2018/09/05(水) 12:43:24.76ID:wXzPAdu0 すごすぎる
数学板にこんな傑出した人材がいたなんてな
個人的に100万円ぐらい与えたいほどだ
数学板にこんな傑出した人材がいたなんてな
個人的に100万円ぐらい与えたいほどだ
594132人目の素数さん
2018/09/05(水) 13:03:20.32ID:8OL+IejM じゃあ論文p7
>b′に対応する a をa′とすると
>a′ = ∏ [k:1〜r-1](1 + pk + ⋯ + pk^qk)
は正しくないですね。
>b′に対応する a をa′とすると
>a′ = ∏ [k:1〜r-1](1 + pk + ⋯ + pk^qk)
は正しくないですね。
595132人目の素数さん
2018/09/05(水) 13:09:02.72ID:Q0Y1fw1a >>593
題意だから成立するって何度もかいてるやん。
題意だから成立するって何度もかいてるやん。
596132人目の素数さん
2018/09/05(水) 13:37:39.42ID:Uuf/nYN0597132人目の素数さん
2018/09/05(水) 14:05:48.66ID:L2Mar6ZO 本人も完成は無理って認めてるんやから、もうええんちゃうん?
598132人目の素数さん
2018/09/05(水) 14:24:43.06ID:kUEnfVK1 心配しなくても、また上げるさ
599132人目の素数さん
2018/09/05(水) 14:30:48.66ID:AZht4kQW __∧_∧_∧_∧_∧_∧_∧_∧_∧_∧__
デケデケ | |
ドコドコ < 新版まだーーーーーー!!? >
☆ ドムドム |_ _ _ _ _ _ _ _ _ _|
☆ ダダダダ! ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
ドシャーン! ヽ オラオラッ!! ♪
=≡= ∧_∧ ☆
♪ / 〃(・∀・ #) / シャンシャン
♪ 〆 ┌\と\と.ヾ ∈≡∋ゞ
|| γ ⌒ヽヽコ ノ ||
|| ΣΣ .|:::|∪〓 || ♪
./|\人 _.ノノ _||_./|\
ドチドチ!
デケデケ | |
ドコドコ < 新版まだーーーーーー!!? >
☆ ドムドム |_ _ _ _ _ _ _ _ _ _|
☆ ダダダダ! ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
ドシャーン! ヽ オラオラッ!! ♪
=≡= ∧_∧ ☆
♪ / 〃(・∀・ #) / シャンシャン
♪ 〆 ┌\と\と.ヾ ∈≡∋ゞ
|| γ ⌒ヽヽコ ノ ||
|| ΣΣ .|:::|∪〓 || ♪
./|\人 _.ノノ _||_./|\
ドチドチ!
601132人目の素数さん
2018/09/05(水) 16:18:49.61ID:Uuf/nYN0 新版を要求なんてしてたら、1に聞こえるTVからの悪口がひどくなっちゃう。
602132人目の素数さん
2018/09/05(水) 16:57:15.03ID:zXdsJ3SU 今日は日本語もかなりおかしいな
603132人目の素数さん
2018/09/05(水) 17:45:28.54ID:Fa23FyH2 結局p7は成立してない事を仮定しての議論なわけだから何の意味もない。
という事を理解すんのに何日かかるんですかねぇ?
という事を理解すんのに何日かかるんですかねぇ?
605132人目の素数さん
2018/09/05(水) 19:16:31.11ID:CuoQKPqL 1の反論は反論になってないんだから、
何度繰り返されても正しくはならない
わざわざ投稿しないというなら、それは賢明だな
何度繰り返されても正しくはならない
わざわざ投稿しないというなら、それは賢明だな
>>605
a=Π[k=1,r](1+pk+…+pk^qk)
b=Π[k=1,r]pk^qk
であり
a=cp^n
2b=c(p^n+…+1)
が成立すると仮定する。
r→sのときを考えると
2b×ps^qs=c×ps^qs(p^n+…+1)
p^n+…+1の値は変更されないから、pとnは変わらなく
b'=b×ps^qs
c'=c×ps^qs
となる。
a'=c'p^nであるから、a'=a×ps^qsとなる。
しかし、題意から、a'=a×(1+ps+…+ps^qs)にならなければならないから
不適になる。よって、k=sのときに成り立つという仮定が偽ということになる。
a=Π[k=1,r](1+pk+…+pk^qk)
b=Π[k=1,r]pk^qk
であり
a=cp^n
2b=c(p^n+…+1)
が成立すると仮定する。
r→sのときを考えると
2b×ps^qs=c×ps^qs(p^n+…+1)
p^n+…+1の値は変更されないから、pとnは変わらなく
b'=b×ps^qs
c'=c×ps^qs
となる。
a'=c'p^nであるから、a'=a×ps^qsとなる。
しかし、題意から、a'=a×(1+ps+…+ps^qs)にならなければならないから
不適になる。よって、k=sのときに成り立つという仮定が偽ということになる。
608132人目の素数さん
2018/09/05(水) 19:24:12.32ID:TUi+D2hg ガイドラインキタ――♪ o(゚∀゚o) (o゚∀゚o) (o゚∀゚)o キタ――♪
609132人目の素数さん
2018/09/05(水) 19:29:53.84ID:TUi+D2hg >>607 ププッ(*´艸)ププッ
610132人目の素数さん
2018/09/05(水) 20:08:50.40ID:svJk1x5K ・1の書いたものが、あまりにも汚い。
・明らかな間違いだらけなのに、1は正しいと言い張る。
・親切なスレ住人たちを1が罵倒する。
・明らかな間違いを指摘しても1が理解しない。
・書き込みが少し数学的なだけで1は、理解できないと言って逃げる。
・A→BとB→Aの区別ができない。
・∀∃の区別ができない。
・背理法もわかってない。
・頑張って数学っぽい言葉使いをしようと精一杯背伸びしてるのが痛々しい
・テレビから自分の悪口が聞こえると発言する。
・明らかな間違いだらけなのに、1は正しいと言い張る。
・親切なスレ住人たちを1が罵倒する。
・明らかな間違いを指摘しても1が理解しない。
・書き込みが少し数学的なだけで1は、理解できないと言って逃げる。
・A→BとB→Aの区別ができない。
・∀∃の区別ができない。
・背理法もわかってない。
・頑張って数学っぽい言葉使いをしようと精一杯背伸びしてるのが痛々しい
・テレビから自分の悪口が聞こえると発言する。
611132人目の素数さん
2018/09/05(水) 21:25:01.86ID:0AlpXlkH 高木さんは、素数に憑かれた人たちっていう本を読んだことある?
613132人目の素数さん
2018/09/05(水) 22:09:33.05ID:0AlpXlkH >>612
読んでみると面白いよ
読んでみると面白いよ
614132人目の素数さん
2018/09/05(水) 23:22:45.84ID:5PVy3ZsY 諦めないその姿勢はどうなんだろうねぇ?
616132人目の素数さん
2018/09/06(木) 05:37:30.62ID:TASued5O 論文読みたいからアップローダーに上げ直して下さい
お願いします
お願いします
617132人目の素数さん
2018/09/06(木) 05:42:27.11ID:mjUpsnF9 間違いを1自身が認識している恥ずかしいPDFは見せられないだろ。
618132人目の素数さん
2018/09/06(木) 06:46:07.83ID:sKa+itOs >>607 なんか、方向性があんま変わってない気がする…
619132人目の素数さん
2018/09/06(木) 08:21:28.18ID:8HvITGlu620132人目の素数さん
2018/09/06(木) 08:50:32.99ID:jkAFX+0e ちゃんと自分で見直せるようになったのは進歩だ
621132人目の素数さん
2018/09/06(木) 10:03:17.36ID:TLU0vwyl フェイズ1では、いつもこんなもの
そして100回も>>16 繰り返す
そして100回も>>16 繰り返す
変更点
・今までと完全に違う方法による証明を追加しました。
・以前までの論文で正しい部分は7ページ以降の補足に移動しました
Pdf文書 日本語
http://fast-uploader.com/file/7091776613010/
Pdf文書 英語
http://fast-uploader.com/file/7091776724060/
・今までと完全に違う方法による証明を追加しました。
・以前までの論文で正しい部分は7ページ以降の補足に移動しました
Pdf文書 日本語
http://fast-uploader.com/file/7091776613010/
Pdf文書 英語
http://fast-uploader.com/file/7091776724060/
623132人目の素数さん
2018/09/06(木) 17:10:28.92ID:7qOGnRof ゴミPDFで、フェイズ2に。
出てこなくていいのに。
出てこなくていいのに。
>>1 訂正
2018年08月22→2018年09月06日
2018年08月22→2018年09月06日
625132人目の素数さん
2018/09/06(木) 17:25:41.93ID:dMEcbdn7 > 式Eから
> p = 1 + (a − c)/(2b − a)
> 2b − a ≡ 0 (mod p)
ダウト
> p = 1 + (a − c)/(2b − a)
> 2b − a ≡ 0 (mod p)
ダウト
626132人目の素数さん
2018/09/06(木) 18:00:22.41ID:7qOGnRof フェイズ3
はじまるかな????
はじまるかな????
627132人目の素数さん
2018/09/06(木) 20:23:41.67ID:pGQmsjFV なんですぐにファイル消すんですか?
また落としそびれました
悲しい
また落としそびれました
悲しい
628132人目の素数さん
2018/09/06(木) 20:56:00.33ID:FfuIcM4r そんな心にもないことを
629132人目の素数さん
2018/09/06(木) 21:17:44.97ID:LdKnr+Sk 修正点は必ずあると信じてる
630132人目の素数さん
2018/09/06(木) 21:23:22.72ID:mjUpsnF9 いきなりフェイズ1に戻ったか。
631132人目の素数さん
2018/09/06(木) 23:22:08.70ID:RMQWbarm これだけの人間を惹き付けるエンターテナーとしての才能をこれからも伸ばしていってほしい
632132人目の素数さん
2018/09/07(金) 01:07:05.58ID:vmhHCBo+ とりあえず次回からは間違え見つけても1日は寝かすべし。
633132人目の素数さん
2018/09/07(金) 01:19:37.43ID:gNtdHM+o 駒沢大学の服部幸之介と丸本拓永は犬猿の仲?!2人ともかっこいいのは間違いないが方向性の違いからすれ違いがあったとのこと。一部では穴兄弟だという噂も流れている。
634132人目の素数さん
2018/09/07(金) 02:27:17.61ID:JVCxObQ+ 俺は既に奇数の完全数が存在しないことを証明した
635132人目の素数さん
2018/09/07(金) 07:31:42.69ID:fhdyCk6P >>632
間違えが指摘されても直すような1ではないぞ。
間違えが指摘されても直すような1ではないぞ。
637132人目の素数さん
2018/09/07(金) 09:45:19.48ID:kt/XkYQJ 結局ダメだったんだね
変更点
・5ページの証明を変更しました
Pdf文書 日本語
http://fast-uploader.com/file/7091846480637/
Pdf文書 英語
http://fast-uploader.com/file/7091846549122/
・5ページの証明を変更しました
Pdf文書 日本語
http://fast-uploader.com/file/7091846480637/
Pdf文書 英語
http://fast-uploader.com/file/7091846549122/
>>1 訂正
2018年08月22→2018年09月07日
2018年08月22→2018年09月07日
640132人目の素数さん
2018/09/07(金) 12:47:16.99ID:kt/XkYQJ 結局証明はできてるの?
641132人目の素数さん
2018/09/07(金) 12:54:37.34ID:x0bfFLzz 13ページの「無限に約分可能」って言葉はつまり、どういうこと?公約数が無限にあるってこと?
642132人目の素数さん
2018/09/07(金) 13:27:38.71ID:NGHIDE3u >>638
5ページ
k≧2で(n+1 k)・(-1)^{n+1-k}・(2pr)^k≡0 (mod 8)であるかのように思っているのかもしれないが、それが成立するのはk≧3のみ。
k=2では成立しない。
だいたい、8の倍数である式を変形したら8の倍数でなくなるなんておかしいだろ
5ページ
k≧2で(n+1 k)・(-1)^{n+1-k}・(2pr)^k≡0 (mod 8)であるかのように思っているのかもしれないが、それが成立するのはk≧3のみ。
k=2では成立しない。
だいたい、8の倍数である式を変形したら8の倍数でなくなるなんておかしいだろ
643132人目の素数さん
2018/09/07(金) 13:34:46.73ID:Akli3se1 やっと論文読めたがすごすぎる
これは世界的な快挙だと思う
数学オタクのアメリカ人に教えたら興奮してたよ
これは世界的な快挙だと思う
数学オタクのアメリカ人に教えたら興奮してたよ
変更点
・5ページの証明にn=1の場合分けを追加しました
Pdf文書 日本語
http://fast-uploader.com/file/7091854427984/
Pdf文書 英語
http://fast-uploader.com/file/7091854566009/
・5ページの証明にn=1の場合分けを追加しました
Pdf文書 日本語
http://fast-uploader.com/file/7091854427984/
Pdf文書 英語
http://fast-uploader.com/file/7091854566009/
646132人目の素数さん
2018/09/07(金) 15:13:28.10ID:nW/QiXb6 場合分けとか要らないぜ?
2ページあれば証明できる
2ページあれば証明できる
647132人目の素数さん
2018/09/07(金) 15:49:11.67ID:mbd0IjUn https://twitter.com/mas20285
https://m.facebook.com/masaoki.iwasaki.9
https://i.imgur.com/FCVzFKp.jpg
https://i.imgur.com/5my5F5k.jpg
https://i.imgur.com/P8Q6uHP.jpg
https://i.imgur.com/48t3NAB.jpg
https://i.imgur.com/ftD9n0U.jpg
https://i.imgur.com/fqLVdd3.jpg
https://twitter.com/5chan_nel (5ch newer account)
https://m.facebook.com/masaoki.iwasaki.9
https://i.imgur.com/FCVzFKp.jpg
https://i.imgur.com/5my5F5k.jpg
https://i.imgur.com/P8Q6uHP.jpg
https://i.imgur.com/48t3NAB.jpg
https://i.imgur.com/ftD9n0U.jpg
https://i.imgur.com/fqLVdd3.jpg
https://twitter.com/5chan_nel (5ch newer account)
648132人目の素数さん
2018/09/07(金) 19:55:23.84ID:fhdyCk6P これまでの奇数芸人ネタ
・pは定数でありかつ変数である。
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか。
・wは整数であり同時に整数でない。
・2m+1は因数だが2m+1の倍数ではない。
・a=b/3なら、aはbを因数に含む。
・変数は数値に置き換えてはダメ。
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然。
・27/5 は 3 で割り切れる。
・定義はしていますが、値は定めていません。
・少なくとも一つはそうなる、ということで
全てに対して成り立たなければならない。
・式の形から1つのkで成り立てば、全てのkでも成り立つ。
・自明なことを証明することは難しい。
・この論理は正しさが証明することができません。
・証明を見つけましたので、未解明ということにしたい。
・定理を導出した。その定理の証明が難しく完成が困難になっている。
・最後の命題は、他者が家の外からその命題を確認したと聞こえてきた。
・無限に約分可能。つまり、公約数が無限にある。(NEW!)
・pは定数でありかつ変数である。
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか。
・wは整数であり同時に整数でない。
・2m+1は因数だが2m+1の倍数ではない。
・a=b/3なら、aはbを因数に含む。
・変数は数値に置き換えてはダメ。
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然。
・27/5 は 3 で割り切れる。
・定義はしていますが、値は定めていません。
・少なくとも一つはそうなる、ということで
全てに対して成り立たなければならない。
・式の形から1つのkで成り立てば、全てのkでも成り立つ。
・自明なことを証明することは難しい。
・この論理は正しさが証明することができません。
・証明を見つけましたので、未解明ということにしたい。
・定理を導出した。その定理の証明が難しく完成が困難になっている。
・最後の命題は、他者が家の外からその命題を確認したと聞こえてきた。
・無限に約分可能。つまり、公約数が無限にある。(NEW!)
649132人目の素数さん
2018/09/07(金) 20:00:18.71ID:YA7pwD8J >4b′ × pr^qr(pr − 1) = c(( k=2,n+1](−1)^(n+1−k)(2pr)^k) − 2(n + 1)pr)
>4b′ × pr^qr(pr − 1) ≡ 0 (mod 8)
>n + 1 ≢ 0 (mod 4)であるから
>2(n + 1)pr ≢ 0 (mod 8)
>となるから、上記の合同式は成り立たない。
ダウト
>4b′ × pr^qr(pr − 1) ≡ 0 (mod 8)
>n + 1 ≢ 0 (mod 4)であるから
>2(n + 1)pr ≢ 0 (mod 8)
>となるから、上記の合同式は成り立たない。
ダウト
650132人目の素数さん
2018/09/07(金) 20:20:06.18ID:NGHIDE3u651132人目の素数さん
2018/09/07(金) 21:57:39.97ID:YA7pwD8J 変更点
・5ページの証明を修正しました
Pdf文書 日本語
http://fast-uploader.com/file/7091885256421/
Pdf文書 英語
http://fast-uploader.com/file/7091885341585/
・5ページの証明を修正しました
Pdf文書 日本語
http://fast-uploader.com/file/7091885256421/
Pdf文書 英語
http://fast-uploader.com/file/7091885341585/
>>651
n=1のときだけかと思いました
n=1のときだけかと思いました
654132人目の素数さん
2018/09/07(金) 23:37:30.96ID:NGHIDE3u >>652
>b=c pr(p^{n-1}+p^{n-3}+…+1)
>a=c p^n
>fを有理数として
>f=b/(a(p^{n-1}+p^{n-3}+…+1))
なら、このfは
f=b/(a(p^{n-1}+p^{n-3}+…+1))
=(c pr(p^{n-1}+p^{n-3}+…+1))/(a(p^{n-1}+p^{n-3}+…+1))
=(c pr)/a
=(c pr)/(c p^n)
=pr/p^n
になるだけだから
>fにp^nを掛けると分母に(p^{n-1}+p^{n-3}+…+1)が残る
とはならない。
なんかまたループし始めた感じがするけど大丈夫?
>b=c pr(p^{n-1}+p^{n-3}+…+1)
>a=c p^n
>fを有理数として
>f=b/(a(p^{n-1}+p^{n-3}+…+1))
なら、このfは
f=b/(a(p^{n-1}+p^{n-3}+…+1))
=(c pr(p^{n-1}+p^{n-3}+…+1))/(a(p^{n-1}+p^{n-3}+…+1))
=(c pr)/a
=(c pr)/(c p^n)
=pr/p^n
になるだけだから
>fにp^nを掛けると分母に(p^{n-1}+p^{n-3}+…+1)が残る
とはならない。
なんかまたループし始めた感じがするけど大丈夫?
655132人目の素数さん
2018/09/07(金) 23:38:38.56ID:x0bfFLzz すぐに見つけちゃうなんてすごいな
656132人目の素数さん
2018/09/07(金) 23:48:41.01ID:CQb9JfUE あかん。
f = b/(a(p^(n−1) + p^(n−3) + ⋯ + 1))
が整数ではないがp^(n−1) + p^(n−3) + ⋯ + 1のいずれの因子も消えている可能性がある。
f = b/(a(p^(n−1) + p^(n−3) + ⋯ + 1))
が整数ではないがp^(n−1) + p^(n−3) + ⋯ + 1のいずれの因子も消えている可能性がある。
657132人目の素数さん
2018/09/08(土) 00:10:31.05ID:uHPEhlQL 他の学問もそうだが、学会や研究機関に属していない一般市民は、属さないまま論文って発表できないの?
非公認のものは引用回数で稼ぐしかないのかな
非公認のものは引用回数で稼ぐしかないのかな
658132人目の素数さん
2018/09/08(土) 00:20:43.83ID:jjlT+UyO 某月刊誌にそういう場がある
659132人目の素数さん
2018/09/08(土) 00:52:25.52ID:f2HWzdLl >>657
出来るよ
出来るよ
660132人目の素数さん
2018/09/08(土) 07:29:30.75ID:GcbcaRV0 >>657 非公認のものは、引用回数を数えられないんじゃ…
そもそも引用されない可能性が高いし。
そもそも引用されない可能性が高いし。
661132人目の素数さん
2018/09/08(土) 08:05:19.34ID:z+7YzyeO >>16132人目の素数さん2018/08/22(水) 12:41:18.93ID:q5K+5KiU
いつもの流れ
1.「間違いが見つかりました、撤回します」
↓
2.「(今論点じゃないところ)を修正しました。完成です」
↓
3.(論点について聞かれても)「もうすでに直しました(←直ってない)。読んでから言ってください」
いつもの流れ
1.「間違いが見つかりました、撤回します」
↓
2.「(今論点じゃないところ)を修正しました。完成です」
↓
3.(論点について聞かれても)「もうすでに直しました(←直ってない)。読んでから言ってください」
663132人目の素数さん
2018/09/08(土) 09:35:50.27ID:oy9IEf9x >>662
岡潔の論文を見ると、どこにも所属先や連絡先は書いてないから、
所属先や連絡先はジャーナル(数学雑誌)での論文発表に当たり、大きな要素ではないようだ。
その他にも、論文を発表した後に所属先や連絡先が変わる可能性も十分に考えられる。
そういうことを踏まえると、やはり、内容に数学的価値や新知見があれば、
ジャーナル(数学雑誌)にも論文発表出来ると考えられる。
岡潔の論文を見ると、どこにも所属先や連絡先は書いてないから、
所属先や連絡先はジャーナル(数学雑誌)での論文発表に当たり、大きな要素ではないようだ。
その他にも、論文を発表した後に所属先や連絡先が変わる可能性も十分に考えられる。
そういうことを踏まえると、やはり、内容に数学的価値や新知見があれば、
ジャーナル(数学雑誌)にも論文発表出来ると考えられる。
664132人目の素数さん
2018/09/08(土) 09:54:57.79ID:GcbcaRV0 >>663 岡潔とか、例が古い…
665132人目の素数さん
2018/09/08(土) 10:44:12.25ID:oy9IEf9x >>664
現在の海外のジャーナル(紙媒体の数学雑誌)の投稿要領を読んでも、
必ずしも所属先や連絡先(所属する研究機関とその連絡先)を書く必要があるとは限らないようだ。
この点から判断すると、内容に数学的価値や新知見があれば、ジャーナル(紙媒体の数学雑誌)にも論文発表出来る。
論文掲載後に所属先や連絡先(所属する研究機関とその連絡先)が変わることは
日本でなければ、十分あり得るから、それらは論文掲載において余り重要な要素ではない。
日本人の場合は、山林が多く住める国土面積は少ないから、所属先や連絡先を書くなら、
家の住所でも書いた方がそれが変わる可能性も少なくまだ意味がある。
例えそうでなくても、自然災害などで音信不通になって連絡が取れなくなる可能性は世界中どこにでもある。
現在の海外のジャーナル(紙媒体の数学雑誌)の投稿要領を読んでも、
必ずしも所属先や連絡先(所属する研究機関とその連絡先)を書く必要があるとは限らないようだ。
この点から判断すると、内容に数学的価値や新知見があれば、ジャーナル(紙媒体の数学雑誌)にも論文発表出来る。
論文掲載後に所属先や連絡先(所属する研究機関とその連絡先)が変わることは
日本でなければ、十分あり得るから、それらは論文掲載において余り重要な要素ではない。
日本人の場合は、山林が多く住める国土面積は少ないから、所属先や連絡先を書くなら、
家の住所でも書いた方がそれが変わる可能性も少なくまだ意味がある。
例えそうでなくても、自然災害などで音信不通になって連絡が取れなくなる可能性は世界中どこにでもある。
666132人目の素数さん
2018/09/08(土) 11:13:17.55ID:Ma4qC+vh >>665
あなたおっちゃんと呼ばれてる人ですよね?
あなたおっちゃんと呼ばれてる人ですよね?
667132人目の素数さん
2018/09/08(土) 12:11:58.18ID:4Fx9hJhi 海外のジャーナルを例に挙げていたが、やはり日本の雑誌に日本語で提出するようなモノは、海外では見てもらえない胡散臭い雑誌ばかりなんだろうな
668132人目の素数さん
2018/09/08(土) 13:09:20.22ID:oy9IEf9x >>667
現在、(自分が知る限りでは)日本語で論文を書けるジャーナル(数学雑誌)はないといっていい。
日本語が読める人の大半は日本人といってよい。だから、日本の雑誌に日本語で書いたら、
その内容を英訳して海外の人に理解されないと世界には広まりにくい。
そのように世界に広めることは、数学的価値とはまた別の話になる。
一概に、日本の雑誌が海外では見てもらえない胡散臭いモノばかりとはいえない。
現在、(自分が知る限りでは)日本語で論文を書けるジャーナル(数学雑誌)はないといっていい。
日本語が読める人の大半は日本人といってよい。だから、日本の雑誌に日本語で書いたら、
その内容を英訳して海外の人に理解されないと世界には広まりにくい。
そのように世界に広めることは、数学的価値とはまた別の話になる。
一概に、日本の雑誌が海外では見てもらえない胡散臭いモノばかりとはいえない。
669132人目の素数さん
2018/09/08(土) 16:10:21.32ID:N4UF+kJ4 論文書くのめんどいから、要旨書いておく
p=“”; q=p-1;
x=“”; y=x-1
メルセンヌ数:M(p)=2^x-1
拡張されたメルセンヌ数:M’(p)=p^x-q^x;
主人公N=p^y*M’(p)
p,xが素数、かつ、M’(p)も素数の下では
約数の総和σ(N)について、次の式が成り立つ。
q(σ(N)-N)-N-M(p)-q^x+2^x=0
また、p,x,M’(p)のいずれ1つでも素数でない
こうした条件下では
q(σ(N)-N)-N-M(p)-q^x+2^x>0となる。
ちなみに
q(σ(N)-N)-N-M(p)-q^x+2^x<0は存在しない。
ところで、完全数はσ(N)=2Nである。
x=2の時、pに応じてM’(p)は全ての奇素数を網羅できる
そこで、@式を移項
σ(N)-N=N+M(p)+q^x-2^x
N=N+q^2-1
このようなNは存在しない。
したがって、奇数の完全数は存在しない。Q.E.D
p=“”; q=p-1;
x=“”; y=x-1
メルセンヌ数:M(p)=2^x-1
拡張されたメルセンヌ数:M’(p)=p^x-q^x;
主人公N=p^y*M’(p)
p,xが素数、かつ、M’(p)も素数の下では
約数の総和σ(N)について、次の式が成り立つ。
q(σ(N)-N)-N-M(p)-q^x+2^x=0
また、p,x,M’(p)のいずれ1つでも素数でない
こうした条件下では
q(σ(N)-N)-N-M(p)-q^x+2^x>0となる。
ちなみに
q(σ(N)-N)-N-M(p)-q^x+2^x<0は存在しない。
ところで、完全数はσ(N)=2Nである。
x=2の時、pに応じてM’(p)は全ての奇素数を網羅できる
そこで、@式を移項
σ(N)-N=N+M(p)+q^x-2^x
N=N+q^2-1
このようなNは存在しない。
したがって、奇数の完全数は存在しない。Q.E.D
670132人目の素数さん
2018/09/08(土) 16:23:09.82ID:VHlQxVrF あーあ、証明されちゃったね
671132人目の素数さん
2018/09/08(土) 16:25:55.63ID:4yqv06N+ お、できたやん
672132人目の素数さん
2018/09/08(土) 16:49:27.96ID:7vbYuAvM M’(p)のところは平方数でなければならないと思いますが
673132人目の素数さん
2018/09/08(土) 17:56:21.33ID:WKlkldB7 すべての奇素数のくだりは誤りでした
M’(p)が素数でもpが素数でなければ式には当てはまらないですね
不等号式にすればよかった
M’(p)が素数でもpが素数でなければ式には当てはまらないですね
不等号式にすればよかった
674132人目の素数さん
2018/09/08(土) 18:30:32.46ID:NFJ399UI 素因数が2種類の奇数に限れば完全数が存在しないというのは既知
それを証明したところで奇数の完全数が存在しない証明にはならんだろ
それを証明したところで奇数の完全数が存在しない証明にはならんだろ
675132人目の素数さん
2018/09/08(土) 19:28:14.72ID:WKlkldB7 メルセンヌ素数はいわば2^n-1^nの型
3^101-2^101でも47^17-46^17でも
いくらでも素数は見いだせるなあ
3^101-2^101でも47^17-46^17でも
いくらでも素数は見いだせるなあ
676132人目の素数さん
2018/09/08(土) 21:04:00.89ID:y6B+s78/ 素数に片足突っ込んだらもう終わりだ
677669
2018/09/09(日) 10:44:58.98ID:YBIcJdkB >>672
どういうこと?
669です。
この式は、別の用途で見つけたものでしたが
方向性としては、幾らか直せば行けそうです。
また、スレ違いになるので
今回xについて便宜的にxと表現しましたが
pと深い相関性があり、M’(p)を導出する為のxをpを用いた形でも表現できるかと思います。
汎用性があるので色々試みてください。
もし関心を持っていただいた方、論文などを作製してくださる方は個人的にご相談ください。
https://m.facebook.com/katsuyoshi.takahashi.1
どういうこと?
669です。
この式は、別の用途で見つけたものでしたが
方向性としては、幾らか直せば行けそうです。
また、スレ違いになるので
今回xについて便宜的にxと表現しましたが
pと深い相関性があり、M’(p)を導出する為のxをpを用いた形でも表現できるかと思います。
汎用性があるので色々試みてください。
もし関心を持っていただいた方、論文などを作製してくださる方は個人的にご相談ください。
https://m.facebook.com/katsuyoshi.takahashi.1
678132人目の素数さん
2018/09/09(日) 11:04:57.62ID:GEK+7SXH679132人目の素数さん
2018/09/09(日) 11:08:24.75ID:p+giZO8u ウキウキ♪o(^-^ o )(o ^-^)oワクワク♪
680132人目の素数さん
2018/09/09(日) 11:52:57.19ID:RjxBIEdK >論文などを作製してくださる方は
あれ?1の同類さんでしたか。
あれ?1の同類さんでしたか。
681132人目の素数さん
2018/09/09(日) 13:29:12.08ID:56JMVQ/i さっそくWikipediaに加筆しといた
682132人目の素数さん
2018/09/09(日) 14:25:30.10ID:RjxBIEdK 奇数芸人の項目に???
683132人目の素数さん
2018/09/09(日) 15:40:43.91ID:O3k6lc0R やっぱり実績出すと凡人に嫉妬されるようだな
684132人目の素数さん
2018/09/09(日) 19:03:02.63ID:BVSPFEne ⌒Yヾ(´Д`*)ノ⌒Y⌒Y⌒ ヾ(o´∀`)ノャッホー♪
685132人目の素数さん
2018/09/09(日) 20:03:19.81ID:UnS5lVgQ686132人目の素数さん
2018/09/09(日) 20:23:58.11ID:pvl3eTy/ 単発ID
ID:UnS5lVgQ
ID:UnS5lVgQ
687132人目の素数さん
2018/09/10(月) 00:13:14.99ID:FbUHsbGg688132人目の素数さん
2018/09/10(月) 00:15:13.18ID:g/z0YQb3 >>1いなくなっちゃったね
689132人目の素数さん
2018/09/10(月) 01:26:15.18ID:GA8rqAam おらっ!出てこい>>1!!
ドッカン ゴガギーン
_ ドッカン ☆
===( ) /
`∧∧_||___ ∧∧
( )||| |(Д`)
f ⌒~ || || \
| / ̄ | |/| / /
| | | ヘ/\|_/ /
| | ロ|ロ\/\(_ノ)
( (_ \ | | Y /
| ||\ ヽ| | ||
| || / / | | ||
| ||/ /_|___| ||
(_(_) (__)
ドッカン ゴガギーン
_ ドッカン ☆
===( ) /
`∧∧_||___ ∧∧
( )||| |(Д`)
f ⌒~ || || \
| / ̄ | |/| / /
| | | ヘ/\|_/ /
| | ロ|ロ\/\(_ノ)
( (_ \ | | Y /
| ||\ ヽ| | ||
| || / / | | ||
| ||/ /_|___| ||
(_(_) (__)
690132人目の素数さん
2018/09/11(火) 20:20:03.89ID:wKHn9EsE 変更点
・n≧5のときの証明を修正しました
・p=8s+5となる証明を追加しました
Pdf文書 日本語
http://fast-uploader.com/file/7092236901884/
Pdf文書 英語
http://fast-uploader.com/file/7092236976086/
・n≧5のときの証明を修正しました
・p=8s+5となる証明を追加しました
Pdf文書 日本語
http://fast-uploader.com/file/7092236901884/
Pdf文書 英語
http://fast-uploader.com/file/7092236976086/
>>1 訂正
2018年8月22日→2018年9月12日
2018年8月22日→2018年9月12日
693132人目の素数さん
2018/09/12(水) 02:17:37.08ID:pJvSAofP gp^2 + (g + 2c)p = 0
p ≠ 0だから
gp = g + 2c
p ≠ 0だから
gp = g + 2c
694132人目の素数さん
2018/09/12(水) 05:51:59.45ID:2kZzTDUR もうゴミPDFやめろ
695132人目の素数さん
2018/09/12(水) 05:55:57.26ID:THt4vpWn 行数だいぶ減ったし
もうPDFである意味ないんじゃない?
もうPDFである意味ないんじゃない?
696132人目の素数さん
2018/09/12(水) 08:26:11.68ID:EavOG0bu もう見れないんだけど
変更点
・cがpr^(qr-1)で割り切られないことの証明を追加しました
Pdf文書 日本語
http://fast-uploader.com/file/7092267324116/
Pdf文書 英語
http://fast-uploader.com/file/7092267386982/
・cがpr^(qr-1)で割り切られないことの証明を追加しました
Pdf文書 日本語
http://fast-uploader.com/file/7092267324116/
Pdf文書 英語
http://fast-uploader.com/file/7092267386982/
698132人目の素数さん
2018/09/12(水) 09:51:44.52ID:VSnQRq0b こんな理性のない基地外による落書きの
ゴミPDFとっととやめろ
ゴミPDFとっととやめろ
699132人目の素数さん
2018/09/12(水) 12:40:01.06ID:fs6vDAMm 俺のダウンロードフォルダが喬木さんのPDFでいっぱい
700132人目の素数さん
2018/09/12(水) 13:23:47.71ID:/NAZ8qoe 待て待て
>4b′ × pr^qr(pr − 1) ≢ 0 (mod 16) …H
これは何故成り立つのか?
Hより前に書かれた結論のみを使って述べよ
>4b′ × pr^qr(pr − 1) ≢ 0 (mod 16) …H
これは何故成り立つのか?
Hより前に書かれた結論のみを使って述べよ
701132人目の素数さん
2018/09/12(水) 13:36:07.88ID:M0oAD/XI >a′ = a/pr^{qr−1}、b′ = b/pr^{qr−1}、c′ = c/pr^{qr−1}となる奇数とすると、式Eから
>2pr − 1 = (2b′pr − c′)/(2b′pr − a′)
ダウト
>2pr − 1 = (2b′pr − c′)/(2b′pr − a′)
ダウト
>>700
その部分は間違いでした
その部分は間違いでした
703132人目の素数さん
2018/09/12(水) 14:31:29.05ID:WukLzqOv >>700
おれもそこ詰まった。
2b′ × pr^qr = c(p^(n+1) − 1)/(p − 1) = c((2pr − 1)^(n+1) − 1)/(2pr − 2)
4b′ × pr^qr(pr − 1) = c(p^(n+1) − 1)
4b′ × pr^qr(pr − 1) ≢ 0 (mod 16) …H
Hが導出できる式は少なくとも数行以内には見当たらない。
おれもそこ詰まった。
2b′ × pr^qr = c(p^(n+1) − 1)/(p − 1) = c((2pr − 1)^(n+1) − 1)/(2pr − 2)
4b′ × pr^qr(pr − 1) = c(p^(n+1) − 1)
4b′ × pr^qr(pr − 1) ≢ 0 (mod 16) …H
Hが導出できる式は少なくとも数行以内には見当たらない。
変更点
・p=8s+5となることの証明を削除しました
・式番号を修正しました
Pdf文書 日本語
http://fast-uploader.com/file/7092287778087/
Pdf文書 英語
http://fast-uploader.com/file/7092287896599/
・p=8s+5となることの証明を削除しました
・式番号を修正しました
Pdf文書 日本語
http://fast-uploader.com/file/7092287778087/
Pdf文書 英語
http://fast-uploader.com/file/7092287896599/
705132人目の素数さん
2018/09/12(水) 15:11:36.38ID:VSnQRq0b ダメダメ
指摘されてる点は全無視だろ
指摘されてる点は全無視だろ
707132人目の素数さん
2018/09/12(水) 15:20:39.86ID:OZYyDdC8 >>707
p=2pr-1、b=b'×pr^qrだから
p=2pr-1、b=b'×pr^qrだから
>>708 訂正
正しくありませんでした...
正しくありませんでした...
710132人目の素数さん
2018/09/12(水) 15:56:07.66ID:EavOG0bu 即落ち二コマ
711132人目の素数さん
2018/09/12(水) 16:15:20.10ID:Rf5hWR82 1が正しい証明にたどり着く可能性は
0どころかマイナス
0どころかマイナス
変更点
・n≧5のときの証明を修正しました
Pdf文書 日本語
http://fast-uploader.com/file/7092352843051/
Pdf文書 英語
http://fast-uploader.com/file/7092352906618/
・n≧5のときの証明を修正しました
Pdf文書 日本語
http://fast-uploader.com/file/7092352843051/
Pdf文書 英語
http://fast-uploader.com/file/7092352906618/
>>1 訂正
2018年8月22日→2018年9月13日
2018年8月22日→2018年9月13日
714132人目の素数さん
2018/09/13(木) 09:33:18.36ID:oDQkArml 4b(pr − 1)/c + 1 ≡ (4b + c)/c (mod 2pr − 1)
これはなぜ?
これはなぜ?
715132人目の素数さん
2018/09/13(木) 09:36:19.05ID:5WEZ5txO 題意から成り立つに決まってんだろ
716132人目の素数さん
2018/09/13(木) 09:51:33.57ID:bfdAt7wV 1じゃあ、どうにもならないってさんざん指摘されてるのに〜。
さっさと中学数学ぐらいから十分に勉強するのが
1が数学を理解するための唯一の道。
妄想の数学は数学板では不可
さっさと中学数学ぐらいから十分に勉強するのが
1が数学を理解するための唯一の道。
妄想の数学は数学板では不可
718132人目の素数さん
2018/09/13(木) 10:44:01.19ID:amO/EZXR 1には無理なのかどうかは置いておくとしても、
これまでの1のミスで、その「ただの計算間違い」があまりにも多すぎるのは問題だと思うよ
ある関係式があって、その式を変形したら元の関係式と違う結果が出たから矛盾する。QED
と書かれたものが、その間の変形にミスが見つかって撤回したケースが非常に多い。
論文を提出する前によく見直しなさいと何度も言われているが、
あえて言うと、何度でも見直して怪しいものは出さないようにしたほうがいい。
簡単な間違いを何度も繰り返すので信頼感が無くなっていく面があると思うんだ。
なので、何度も言うけど、よーーっく見直してから出したほうが良いよ。
これまでの1のミスで、その「ただの計算間違い」があまりにも多すぎるのは問題だと思うよ
ある関係式があって、その式を変形したら元の関係式と違う結果が出たから矛盾する。QED
と書かれたものが、その間の変形にミスが見つかって撤回したケースが非常に多い。
論文を提出する前によく見直しなさいと何度も言われているが、
あえて言うと、何度でも見直して怪しいものは出さないようにしたほうがいい。
簡単な間違いを何度も繰り返すので信頼感が無くなっていく面があると思うんだ。
なので、何度も言うけど、よーーっく見直してから出したほうが良いよ。
719132人目の素数さん
2018/09/13(木) 10:47:52.28ID:bfdAt7wV 最近PDFはすぐ削除するようになったが・・・
「ただの計算間違い」がてんこ盛りのPDFが改善される可能性が全く無い。
「ただの計算間違い」がてんこ盛りのPDFが改善される可能性が全く無い。
720132人目の素数さん
2018/09/13(木) 12:49:04.65ID:4TAIYqIY まず詐欺スレタイを変えろ
721132人目の素数さん
2018/09/13(木) 13:14:29.57ID:6uYZkQBQ >>715
とはいわれても
>4b(pr − 1)/c + 1 ≡ (4b + c)/c (mod 2pr − 1)
の両辺とmodの定義から得られる式変形では 2pr ≡ 1 (mod 2pr -1) を利用して
4b(pr − 1)/c + 1
≡ (4bpr -4b)/c +1 (mod 2pr -1)
≡ (2b -4b)/c +1 (mod 2pr -1)
≡ (-2b+c)/c (mod 2pr -1)
にしかならんと思うけど。
とはいわれても
>4b(pr − 1)/c + 1 ≡ (4b + c)/c (mod 2pr − 1)
の両辺とmodの定義から得られる式変形では 2pr ≡ 1 (mod 2pr -1) を利用して
4b(pr − 1)/c + 1
≡ (4bpr -4b)/c +1 (mod 2pr -1)
≡ (2b -4b)/c +1 (mod 2pr -1)
≡ (-2b+c)/c (mod 2pr -1)
にしかならんと思うけど。
722132人目の素数さん
2018/09/13(木) 13:25:51.19ID:6uYZkQBQ723132人目の素数さん
2018/09/13(木) 13:41:19.11ID:3YkkLjYC >>718
確か風邪引いててかつキーボードの調子が悪かったんじゃなかったっけ
確か風邪引いててかつキーボードの調子が悪かったんじゃなかったっけ
>>721
分子にある4や2を分母にあるとした計算間違いです。
この問題を研究すると、基本的に計算間違いをしないと証明終了になりません。
そのため、できたと思って公開すると、その後、計算間違いをしているということになります。
分子にある4や2を分母にあるとした計算間違いです。
この問題を研究すると、基本的に計算間違いをしないと証明終了になりません。
そのため、できたと思って公開すると、その後、計算間違いをしているということになります。
725132人目の素数さん
2018/09/13(木) 16:56:45.40ID:50rcywMi >計算間違いをしないと証明終了になりません。
限界を認めたのなら、この問題から手を引く時期
限界を認めたのなら、この問題から手を引く時期
726132人目の素数さん
2018/09/13(木) 17:16:34.80ID:KRaxSxXR これまでの奇数芸人ネタ
・pは定数でありかつ変数である。
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか。
・wは整数であり同時に整数でない。
・2m+1は因数だが2m+1の倍数ではない。
・a=b/3なら、aはbを因数に含む。
・変数は数値に置き換えてはダメ。
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然。
・27/5 は 3 で割り切れる。
・定義はしていますが、値は定めていません。
・少なくとも一つはそうなる、ということで
全てに対して成り立たなければならない。
・式の形から1つのkで成り立てば、全てのkでも成り立つ。
・自明なことを証明することは難しい。
・この論理は正しさが証明することができません。
・証明を見つけましたので、未解明ということにしたい。
・定理を導出した。その定理の証明が難しく完成が困難になっている。
・最後の命題は、他者が家の外からその命題を確認したと聞こえてきた。
・無限に約分可能。つまり、公約数が無限にある。
・計算間違いをしないと証明終了にならない。(NEW!)
・pは定数でありかつ変数である。
・奇数÷奇数は整数かつ奇数に決まってる。そんな簡単なこともわからないのですか。
・wは整数であり同時に整数でない。
・2m+1は因数だが2m+1の倍数ではない。
・a=b/3なら、aはbを因数に含む。
・変数は数値に置き換えてはダメ。
・(A×B)/C:整数かつ B/C:非整数 ⇒ A/C:整数は当然。
・27/5 は 3 で割り切れる。
・定義はしていますが、値は定めていません。
・少なくとも一つはそうなる、ということで
全てに対して成り立たなければならない。
・式の形から1つのkで成り立てば、全てのkでも成り立つ。
・自明なことを証明することは難しい。
・この論理は正しさが証明することができません。
・証明を見つけましたので、未解明ということにしたい。
・定理を導出した。その定理の証明が難しく完成が困難になっている。
・最後の命題は、他者が家の外からその命題を確認したと聞こえてきた。
・無限に約分可能。つまり、公約数が無限にある。
・計算間違いをしないと証明終了にならない。(NEW!)
727132人目の素数さん
2018/09/13(木) 18:01:52.47ID:50rcywMi 以前だったら奇数芸人ネタが出たら、皆で突っ込みまくってたのに
今では1が健常者でないことを皆が知るようになって放置状態。
>無限に約分可能。つまり、公約数が無限にある。
こりゃ1には、完全数自体がまるで理解できそうにない。
今では1が健常者でないことを皆が知るようになって放置状態。
>無限に約分可能。つまり、公約数が無限にある。
こりゃ1には、完全数自体がまるで理解できそうにない。
728132人目の素数さん
2018/09/13(木) 18:43:15.15ID:2CGnJSNJ 間違いがあるとわかっていて、それでも証明できたと言って公開するんだからこれほど罪深いことは無い
ひと言でいって捏造。ふた言でいえば大ウソつき。
ひと言でいって捏造。ふた言でいえば大ウソつき。
729132人目の素数さん
2018/09/13(木) 19:11:32.93ID:9FFoivBG 成立学園1-F担任の岩崎柾典先生がヤバイ。
成立学園に勤めるのは3年目。
担当科目は数学。
部活は女子テニス部。
何がヤバイというと、2013年4月から2015年3月まで宮前平中に働いていたけど、女子中学生とsexしたことがバレて、飛ばされたから。
今でも教師を続けているのがすごく不思議な感じだよ。
岩崎先生って、ツイッターとFacebookをやってるみたいだから、覗いてみては?
https://m.facebook.com/masaoki.iwasaki.9
https://twitter.com/mas20285
https://twitter.com/keepmathtop
https://twitter.com/kyuuchan_
https://twitter.com/xPuGPq8Tn9GWCJb
https://twitter.com/K46_N700_hikari
https://i.imgur.com/XXY6Rfk.jpg
https://i.imgur.com/BrrFXSr.jpg
https://i.imgur.com/i1WRQyw.jpg
https://i.imgur.com/Pa5DL6H.png
https://i.imgur.com/9lOaj7U.jpg
https://i.imgur.com/jIgo5Z3.jpg
https://i.imgur.com/VdRcoPQ.png
https://i.imgur.com/18LTARK.png
https://twitter.com/5chan_nel (5ch newer account)
成立学園に勤めるのは3年目。
担当科目は数学。
部活は女子テニス部。
何がヤバイというと、2013年4月から2015年3月まで宮前平中に働いていたけど、女子中学生とsexしたことがバレて、飛ばされたから。
今でも教師を続けているのがすごく不思議な感じだよ。
岩崎先生って、ツイッターとFacebookをやってるみたいだから、覗いてみては?
https://m.facebook.com/masaoki.iwasaki.9
https://twitter.com/mas20285
https://twitter.com/keepmathtop
https://twitter.com/kyuuchan_
https://twitter.com/xPuGPq8Tn9GWCJb
https://twitter.com/K46_N700_hikari
https://i.imgur.com/XXY6Rfk.jpg
https://i.imgur.com/BrrFXSr.jpg
https://i.imgur.com/i1WRQyw.jpg
https://i.imgur.com/Pa5DL6H.png
https://i.imgur.com/9lOaj7U.jpg
https://i.imgur.com/jIgo5Z3.jpg
https://i.imgur.com/VdRcoPQ.png
https://i.imgur.com/18LTARK.png
https://twitter.com/5chan_nel (5ch newer account)
731132人目の素数さん
2018/09/13(木) 21:11:43.64ID:1FbVNb1W 論文書くより査読のほうが大変なんじゃないのか
732132人目の素数さん
2018/09/13(木) 21:48:47.34ID:WAJHAfoK 無限に約分可能だなんて思いつくだけでも常軌を逸してる。
労力がどうのこうのとは次元が違う。
労力がどうのこうのとは次元が違う。
733132人目の素数さん
2018/09/13(木) 21:53:31.60ID:LUuqRwR9 どうせ嘘だとバレる偽証明をでっち上げるだけのためにそんなに労力使ってどうすんの
734132人目の素数さん
2018/09/14(金) 02:21:58.58ID:o4HsTSI6735132人目の素数さん
2018/09/14(金) 09:23:16.42ID:tMy3g3nw >>730
>間違いを指摘するのは簡単。証明を書く方がずっと労力が掛かる。
何年もかけた証明なら、労力がかかるとは言えるだろうけど、
貴方の証明は数日ごとに改訂されるようなものだから、
他人から見ると、労力がかかっているように見えない。
>間違いを指摘するのは簡単。証明を書く方がずっと労力が掛かる。
何年もかけた証明なら、労力がかかるとは言えるだろうけど、
貴方の証明は数日ごとに改訂されるようなものだから、
他人から見ると、労力がかかっているように見えない。
736132人目の素数さん
2018/09/14(金) 09:24:49.71ID:tMy3g3nw >>732 普通なら思いつかないが故に、ある意味で面白かったけどね。
737132人目の素数さん
2018/09/14(金) 09:38:28.89ID:tMy3g3nw >>731 高木さんは本物の研究者じゃないから、
他人の研究を理解することの大変さがわからないんだよ。
他人の研究を理解することの大変さがわからないんだよ。
738132人目の素数さん
2018/09/14(金) 10:03:59.21ID:MSNvUASt ・1の書いたものが、あまりにも汚い。
・明らかな間違いだらけなのに、1は正しいと言い張る。
・親切なスレ住人たちを1が罵倒する。
・明らかな間違いを指摘しても1が理解しない。
・書き込みが少し数学的なだけで1は、理解できないと言って逃げる。
・A→BとB→Aの区別ができない。
・∀∃の区別ができない。
・背理法もわかってない。
・頑張って数学っぽい言葉使いをしようと精一杯背伸びしてるのが痛々しい
・テレビから自分の悪口が聞こえると発言する。
・常軌を逸した奇数芸人ネタが1から出ても、スレ住人に相手にされなくなってきた。
・明らかな間違いだらけなのに、1は正しいと言い張る。
・親切なスレ住人たちを1が罵倒する。
・明らかな間違いを指摘しても1が理解しない。
・書き込みが少し数学的なだけで1は、理解できないと言って逃げる。
・A→BとB→Aの区別ができない。
・∀∃の区別ができない。
・背理法もわかってない。
・頑張って数学っぽい言葉使いをしようと精一杯背伸びしてるのが痛々しい
・テレビから自分の悪口が聞こえると発言する。
・常軌を逸した奇数芸人ネタが1から出ても、スレ住人に相手にされなくなってきた。
739132人目の素数さん
2018/09/14(金) 13:37:18.85ID:Ey7oexo0 >・常軌を逸した奇数芸人ネタが1から出ても、スレ住人に相手にされなくなってきた。
これ昔はもり上がったんだよな。
>奇数÷奇数は整数かつ奇数に決まってる。
とか
>27/5 は 3 で割り切れる。
とか
>式の形から1つのkで成り立てば、全てのkでも成り立つ。
とか
1は、マジで信じちゃうから手に負えない。
これ昔はもり上がったんだよな。
>奇数÷奇数は整数かつ奇数に決まってる。
とか
>27/5 は 3 で割り切れる。
とか
>式の形から1つのkで成り立てば、全てのkでも成り立つ。
とか
1は、マジで信じちゃうから手に負えない。
740132人目の素数さん
2018/09/14(金) 13:49:17.09ID:elfLnB/W 27/5は3でわりきれる、の時期が一番面白かった
>>731
読む方が書く方より楽なのは当然だと思います。
>>735
半年ほどずっと研究しているので労力はそれなりにかかっている。
>>739
全部間違い
>奇数÷奇数は整数かつ奇数に決まってる。
これは整数である場合には奇数だと言っただけ。
>27/5 は 3 で割り切れる。
分子が割り切られるというだけ。
>式の形から1つのkで成り立てば、全てのkでも成り立つ。
実際は最後の条件式はpに依存していないから、p=2pk-1が全てのpkで
成り立つと仮定した場合には、(pがr個解を持つことを想定している)
全てのkで成り立つ。
というだけで、特に間違いではない。
この問題は数学力が高い人は後二つの整数論の問題に帰着されている
ことを理解していると思う。
一つは、Wolfmanによると整数解がないと出てくる。もう一つの方は
整数解が存在するというふうになるが、これを否定できれば証明が
完成することになる。しかし、後者の問題を私が解決できるのかと
この内容が既知のものかどうかは私には分からない。
読む方が書く方より楽なのは当然だと思います。
>>735
半年ほどずっと研究しているので労力はそれなりにかかっている。
>>739
全部間違い
>奇数÷奇数は整数かつ奇数に決まってる。
これは整数である場合には奇数だと言っただけ。
>27/5 は 3 で割り切れる。
分子が割り切られるというだけ。
>式の形から1つのkで成り立てば、全てのkでも成り立つ。
実際は最後の条件式はpに依存していないから、p=2pk-1が全てのpkで
成り立つと仮定した場合には、(pがr個解を持つことを想定している)
全てのkで成り立つ。
というだけで、特に間違いではない。
この問題は数学力が高い人は後二つの整数論の問題に帰着されている
ことを理解していると思う。
一つは、Wolfmanによると整数解がないと出てくる。もう一つの方は
整数解が存在するというふうになるが、これを否定できれば証明が
完成することになる。しかし、後者の問題を私が解決できるのかと
この内容が既知のものかどうかは私には分からない。
742132人目の素数さん
2018/09/14(金) 14:09:42.30ID:elfLnB/W Wolfmanさん(Wolframさん?)があると言ってるならあるんじゃないですかね
744132人目の素数さん
2018/09/14(金) 14:34:50.56ID:Ey7oexo0 >というだけで、特に間違いではない。
嘘つき1の、開き直りパターンの1つだな。
嘘つき1の、開き直りパターンの1つだな。
745132人目の素数さん
2018/09/14(金) 14:38:02.68ID:EWaPx4RC 先に言葉足らずな説明をして、後で弁解する(時として煽りながら)
746132人目の素数さん
2018/09/14(金) 14:58:40.71ID:tMy3g3nw747132人目の素数さん
2018/09/14(金) 15:07:13.27ID:Ey7oexo0 もうね
言葉足らずどころか他のスレ住人から何と言われても繰り返し熱烈に
奇数÷奇数は整数かつ奇数だとか
27/5 は 3 で割り切れるとか
断言しまくっていて、更に
「なぜこんな簡単なことも分からないのか」とか
奇数芸人ネタで祭りになる度に罵倒しまくりだった。
言葉足らずどころか他のスレ住人から何と言われても繰り返し熱烈に
奇数÷奇数は整数かつ奇数だとか
27/5 は 3 で割り切れるとか
断言しまくっていて、更に
「なぜこんな簡単なことも分からないのか」とか
奇数芸人ネタで祭りになる度に罵倒しまくりだった。
>>737
私はフリーですから、本物かどうかの判定は難しいというかほぼ無視されていると思いますが
最速の数独解析システムを独自研究開発しています。
どこの研究者がそのような仕事ができるのかと思いますけれど。
昔のことですが、それの初期版を公開したときに、「○○から盗んだと言え。」という絶叫が
テレビから聞こえてきたことがありました。
私はフリーですから、本物かどうかの判定は難しいというかほぼ無視されていると思いますが
最速の数独解析システムを独自研究開発しています。
どこの研究者がそのような仕事ができるのかと思いますけれど。
昔のことですが、それの初期版を公開したときに、「○○から盗んだと言え。」という絶叫が
テレビから聞こえてきたことがありました。
749132人目の素数さん
2018/09/14(金) 16:20:31.08ID:EEZdYq96 >最速の数独解析システムを独自研究開発しています
大ボラ・嘘だってことがとっくに判明している
Excelで書かれたのろまで役立たずの糞アプリ
あまりにもしょうもないアプリなので、SEだったのが嘘だって事も判明。
大ボラ・嘘だってことがとっくに判明している
Excelで書かれたのろまで役立たずの糞アプリ
あまりにもしょうもないアプリなので、SEだったのが嘘だって事も判明。
750132人目の素数さん
2018/09/14(金) 16:31:33.44ID:EWaPx4RC >>749の絶叫が聞こえてきましたね
>>749
一部上場企業で、日本最年少主任昇格者であった人間だと言っているだろう。
どういうふうに判明しているのか明確に述べてみろ、大嘘つき野郎
ふざけんな!
数独でGNLを完全に実装するのは困難だが私はそれを成し遂げている。
あまり、私を馬鹿にするのもいい加減にしろ。
一部上場企業で、日本最年少主任昇格者であった人間だと言っているだろう。
どういうふうに判明しているのか明確に述べてみろ、大嘘つき野郎
ふざけんな!
数独でGNLを完全に実装するのは困難だが私はそれを成し遂げている。
あまり、私を馬鹿にするのもいい加減にしろ。
752132人目の素数さん
2018/09/14(金) 16:44:18.00ID:wFiRqQCX ちょっとフリーザのテイスト入ってるよね
>>748
一応フリーと書きましたが、無職ですから。
私が働けなくなったり、採用したまま放置するという考えられないことをされていて
憲法違反の、職業選択の自由と、住居選択の自由がない状態に10年以上
あり続けるのかは、日本の政治家が私の人生の妨害活動をしていることの
現れだと思います。
そうでなければ、朝の8時3分にお祈りメールを送ってくる会社はないと思います。
一応フリーと書きましたが、無職ですから。
私が働けなくなったり、採用したまま放置するという考えられないことをされていて
憲法違反の、職業選択の自由と、住居選択の自由がない状態に10年以上
あり続けるのかは、日本の政治家が私の人生の妨害活動をしていることの
現れだと思います。
そうでなければ、朝の8時3分にお祈りメールを送ってくる会社はないと思います。
754132人目の素数さん
2018/09/14(金) 16:45:02.38ID:EEZdYq96 >一部上場企業で、日本最年少主任昇格者であった人間だと言っているだろう。
1の大ボラ・嘘がどこまで拡大していくやら・・・
>絶叫がテレビから聞こえてきたことがありました。
これが1の本質なんだよな。
1の大ボラ・嘘がどこまで拡大していくやら・・・
>絶叫がテレビから聞こえてきたことがありました。
これが1の本質なんだよな。
755132人目の素数さん
2018/09/14(金) 16:47:36.15ID:tMy3g3nw >>748 貴方のことを「本物の研究者ではない」と言ったのは、
他者の執筆した文献を読んで引用したりすることをしていないということを指したのです。
貴方が、最速の数独解析システムを独自研究開発したことを認めたところで、
それは貴方自身の成果を披歴しているだけですから、
「本物の研究者」であることの証明にはなりませんよ。
他者の執筆した文献を読んで引用したりすることをしていないということを指したのです。
貴方が、最速の数独解析システムを独自研究開発したことを認めたところで、
それは貴方自身の成果を披歴しているだけですから、
「本物の研究者」であることの証明にはなりませんよ。
>>755
それはあなたの定義でしょう。最速のアルゴリズムを開発するということはそれが本当であれば
立派な学術的成果といえるのではないのでしょうか?
数学的な成果があるかどうかということが重要なのであって、体裁は二の次ではないのですか?
それはあなたの定義でしょう。最速のアルゴリズムを開発するということはそれが本当であれば
立派な学術的成果といえるのではないのでしょうか?
数学的な成果があるかどうかということが重要なのであって、体裁は二の次ではないのですか?
758132人目の素数さん
2018/09/14(金) 16:54:04.39ID:wFiRqQCX 私は現在この研究で一円も収入がないため、奇数芸人と言われたり書かれたりすうことには
非常に憤りを覚える。
ソフトを公開したら、ソフト芸人だとか。研究を公開したら、奇数芸人だとかふざけんな。
こちらはただ単なるリストラの被害者の無職であるから、芸人と言われるのは非常に不愉快だ。
別に芸人なりを差別する意図はないが、テレビで一般人で無住入の私のことをとやかく
言われることは不当の極みだと思うし、何故それをテレビ局が許容しているのかに関しては
非常に不思議なことだ。
非常に憤りを覚える。
ソフトを公開したら、ソフト芸人だとか。研究を公開したら、奇数芸人だとかふざけんな。
こちらはただ単なるリストラの被害者の無職であるから、芸人と言われるのは非常に不愉快だ。
別に芸人なりを差別する意図はないが、テレビで一般人で無住入の私のことをとやかく
言われることは不当の極みだと思うし、何故それをテレビ局が許容しているのかに関しては
非常に不思議なことだ。
760132人目の素数さん
2018/09/14(金) 16:59:32.30ID:tMy3g3nw >>757 体裁を問題にしているというよりも、他者に接する態度を問題にしているのです。
貴方は自分の数学的成果を他者に承認して欲しいのでしょう?
そうであれば、なによりもまずは貴方自身が他者の数学的成果を尊重しなければならないのです。
自分は他人の成果など知らないが、他人は自分を認めるべきであるなどという態度で、
貴方の成果が認めてもらえるはずがないと言っているのです。
貴方は自分の数学的成果を他者に承認して欲しいのでしょう?
そうであれば、なによりもまずは貴方自身が他者の数学的成果を尊重しなければならないのです。
自分は他人の成果など知らないが、他人は自分を認めるべきであるなどという態度で、
貴方の成果が認めてもらえるはずがないと言っているのです。
761132人目の素数さん
2018/09/14(金) 16:59:32.55ID:tMy3g3nw >>757 体裁を問題にしているというよりも、他者に接する態度を問題にしているのです。
貴方は自分の数学的成果を他者に承認して欲しいのでしょう?
そうであれば、なによりもまずは貴方自身が他者の数学的成果を尊重しなければならないのです。
自分は他人の成果など知らないが、他人は自分を認めるべきであるなどという態度で、
貴方の成果が認めてもらえるはずがないと言っているのです。
貴方は自分の数学的成果を他者に承認して欲しいのでしょう?
そうであれば、なによりもまずは貴方自身が他者の数学的成果を尊重しなければならないのです。
自分は他人の成果など知らないが、他人は自分を認めるべきであるなどという態度で、
貴方の成果が認めてもらえるはずがないと言っているのです。
762132人目の素数さん
2018/09/14(金) 16:59:51.98ID:wFiRqQCX 修士課程なんか研究する間お金払うんだよ
一円も払わなくていいなんて贅沢だぞ
一円も払わなくていいなんて贅沢だぞ
763132人目の素数さん
2018/09/14(金) 17:09:39.75ID:EEZdYq96 >テレビで一般人で無住入の私のことをとやかく言われることは不当の極みだと思うし、
>何故それをテレビ局が許容しているのかに関しては非常に不思議なことだ。
本当に1は深刻な病状だから、真面目に病院に行った方がいい。
自分自身のためにも、家族のためにも。
>何故それをテレビ局が許容しているのかに関しては非常に不思議なことだ。
本当に1は深刻な病状だから、真面目に病院に行った方がいい。
自分自身のためにも、家族のためにも。
>>758
そうだといいですね。
この論文の内容から、一つの命題が証明され、wolframさんがないという
整数解問題が解決されれば、大変に喜ばしいことだと思います。
>>760
他者の数学的成果を否定するものではありません。ただ読んでいないというだけで
それから、金をもらってもいないし、学生でもないのに、他者の論文を読む余裕は
ありません。
>>763
テレビが私を批判したり、おちょくったりしてくるのは日常茶飯事だから。
昨日で面白かったのは、他の部屋のテレビから聞こえてきたが
「朝から、シュードリパリス〜。」
〜の部分はよく聞こえなかった。そのシュードリパリスは深海魚の名前で
私が検索した単語。だから、それがどうしたっていうの?と言いたい。
そうだといいですね。
この論文の内容から、一つの命題が証明され、wolframさんがないという
整数解問題が解決されれば、大変に喜ばしいことだと思います。
>>760
他者の数学的成果を否定するものではありません。ただ読んでいないというだけで
それから、金をもらってもいないし、学生でもないのに、他者の論文を読む余裕は
ありません。
>>763
テレビが私を批判したり、おちょくったりしてくるのは日常茶飯事だから。
昨日で面白かったのは、他の部屋のテレビから聞こえてきたが
「朝から、シュードリパリス〜。」
〜の部分はよく聞こえなかった。そのシュードリパリスは深海魚の名前で
私が検索した単語。だから、それがどうしたっていうの?と言いたい。
765132人目の素数さん
2018/09/14(金) 18:50:51.30ID:nAmkgSRx 最近の版はほとんど
・奇数 y が素因子 p をもちその multipicity n は奇数。
・2y は 1+p+…+p^n で割り切れる。
ぐらいの仮定から得られる式だけをいじくり倒して矛盾を導こうとしてる。
実際この仮定があれば
a = 2y/(1+p+…+o^n)、b=y/p^n、c=2y/(1+p+…+o^n)/p^n
は整数になるし、b は (p+1)/2 で割り切れるし論文の仮定を満たす状況になる。
だけど、これだけの仮定でそもそも矛盾なんか得られるハズがない。
・奇数 y が素因子 p をもちその multipicity n は奇数。
・2y は 1+p+…+p^n で割り切れる。
ぐらいの仮定から得られる式だけをいじくり倒して矛盾を導こうとしてる。
実際この仮定があれば
a = 2y/(1+p+…+o^n)、b=y/p^n、c=2y/(1+p+…+o^n)/p^n
は整数になるし、b は (p+1)/2 で割り切れるし論文の仮定を満たす状況になる。
だけど、これだけの仮定でそもそも矛盾なんか得られるハズがない。
766132人目の素数さん
2018/09/14(金) 18:54:52.92ID:JXvpka1u ウルフマン高木、爆誕
767132人目の素数さん
2018/09/14(金) 19:12:18.16ID:wFiRqQCX 隣から聞こえる音の情報だけなのに何でテレビからって分かるんだろうか
実際にその光景を目で見たんだろうか
実際にその光景を目で見たんだろうか
768132人目の素数さん
2018/09/14(金) 19:29:43.47ID:xJxnHhSy 基本的に査読はボランティア
依頼される場合でも報酬なんてない
それでも研究者が査読するのは持ちつ持たれつお互い様な行為だから
私の論文が読みにくくても知ったことではない
私は他人の論文なんて読まないから知らない
なんて公言する人の論文を査読したい研究者はいない
依頼される場合でも報酬なんてない
それでも研究者が査読するのは持ちつ持たれつお互い様な行為だから
私の論文が読みにくくても知ったことではない
私は他人の論文なんて読まないから知らない
なんて公言する人の論文を査読したい研究者はいない
769132人目の素数さん
2018/09/14(金) 21:05:52.69ID:394Q3Kmm >>748
そういうので計算ミスチェッカーでも作れば
そういうので計算ミスチェッカーでも作れば
770132人目の素数さん
2018/09/14(金) 21:08:50.77ID:394Q3Kmm 採用して放置された奴が、最年少で主任に昇格とかなんやねん
772132人目の素数さん
2018/09/14(金) 22:35:50.82ID:ZTzSSpdq 日本語もなんか変だけど?
既出か
既出か
会社のことを書くとすぐにワンパターンの日本語がおかしいので
日本での話ではない。あるいは、日本人が書いたものではない。
よくある情報操作ですな。
日本での話ではない。あるいは、日本人が書いたものではない。
よくある情報操作ですな。
774132人目の素数さん
2018/09/14(金) 22:43:39.42ID:MQny/LYC 本物の完全数の論文はもっと簡潔で分かりやすい
1の無駄に複雑で間違いだらけのもどき証明を見るより遥かに有益だ
1の無駄に複雑で間違いだらけのもどき証明を見るより遥かに有益だ
775132人目の素数さん
2018/09/14(金) 22:57:55.31ID:/aBcOKhB 彼にとって指摘やアドバイスは敵なんだろう
776132人目の素数さん
2018/09/14(金) 23:06:00.42ID:y6vLmOQY 数学の論文を読むのに必要なのは学位じゃない
ちゃんとした数学の知識だけだよ
ちゃんとした数学の知識だけだよ
777132人目の素数さん
2018/09/15(土) 00:50:15.15ID:YyuEqBCq 松本深志高校出身の山田洋平くん。
毎日ゲームばかりやってたのに、現役で東京理科大学理学部応用数学科に受かってすごいな。
鉄道も趣味らしい。
眼鏡しててピースしてる人が彼。
まさか推薦ではないよね?
https://twitter.com/denkichi369
https://twitter.com/denkichi369_1
https://twitter.com/doit_369
https://twitter.com/keepmathtop
https://twitter.com/EjC0mPe26Nlm92d
https://twitter.com/xPuGPq8Tn9GWCJb
https://twitter.com/K46_N700_hikari
https://i.imgur.com/D2v6N5w.jpg
https://i.imgur.com/5D48Tls.jpg
https://i.imgur.com/9WV2RCu.jpg
https://i.imgur.com/HoUzihY.jpg
https://i.imgur.com/YkUiF5A.jpg
https://i.imgur.com/AUlJtv1.png
https://i.imgur.com/ObqqE2G.png
私の話聞いてる?
https://twitter.com/5chan_nel (5ch newer account)
毎日ゲームばかりやってたのに、現役で東京理科大学理学部応用数学科に受かってすごいな。
鉄道も趣味らしい。
眼鏡しててピースしてる人が彼。
まさか推薦ではないよね?
https://twitter.com/denkichi369
https://twitter.com/denkichi369_1
https://twitter.com/doit_369
https://twitter.com/keepmathtop
https://twitter.com/EjC0mPe26Nlm92d
https://twitter.com/xPuGPq8Tn9GWCJb
https://twitter.com/K46_N700_hikari
https://i.imgur.com/D2v6N5w.jpg
https://i.imgur.com/5D48Tls.jpg
https://i.imgur.com/9WV2RCu.jpg
https://i.imgur.com/HoUzihY.jpg
https://i.imgur.com/YkUiF5A.jpg
https://i.imgur.com/AUlJtv1.png
https://i.imgur.com/ObqqE2G.png
私の話聞いてる?
https://twitter.com/5chan_nel (5ch newer account)
778132人目の素数さん
2018/09/15(土) 07:32:44.11ID:mZ1H3G7s >>771
>専門の論文を読むには数学の学位が必要だと考えられるので読んでも
>分からないだろうから、論文を読んでもあまり意味がないと考えている。
まさに、自分は数学研究者ではないと明言したような発言。
貴方の研究が認めてもらえないのも仕方ないですね。
>専門の論文を読むには数学の学位が必要だと考えられるので読んでも
>分からないだろうから、論文を読んでもあまり意味がないと考えている。
まさに、自分は数学研究者ではないと明言したような発言。
貴方の研究が認めてもらえないのも仕方ないですね。
>>778
cr=qr-1の場合に解の非存在を証明できれば、証明終了ですけど
2m+1=hprが成立するとして、このときに
2b(p-1)=c(p^(n+1)-1)
4b(pr-1)=c(p^(n+1)-1)
x=2m+1とすると
4b(x/h-1)=c(p^(2x)-1)
となりますが、wolframさんによりますとこれには不適にならない整数解はありません。以上。
cr=qr-1の場合に解の非存在を証明できれば、証明終了ですけど
2m+1=hprが成立するとして、このときに
2b(p-1)=c(p^(n+1)-1)
4b(pr-1)=c(p^(n+1)-1)
x=2m+1とすると
4b(x/h-1)=c(p^(2x)-1)
となりますが、wolframさんによりますとこれには不適にならない整数解はありません。以上。
780132人目の素数さん
2018/09/15(土) 07:55:41.74ID:+5EiJ2rU ウルフマン高木、降臨
781132人目の素数さん
2018/09/15(土) 07:58:21.57ID:MCz5TSMr >4b(x/h-1)=c(p^(2x)-1)
>となりますが、wolframさんによりますとこれには不適にならない整数解はありません。
そんな自由変数の多い方程式をwolframにかけたところで解の有無がわかるわけがなかろう。
pr=x/h, p=2pr-1なので、最初の式は
4b(pr-1)=c((2(pr-1)+1)^(2hpr)-1)
(2(pr-1)+1)^(2hpr)-1 は明らかに 4(pr-1) の倍数だから、この式に解があっても矛盾しない。
>となりますが、wolframさんによりますとこれには不適にならない整数解はありません。
そんな自由変数の多い方程式をwolframにかけたところで解の有無がわかるわけがなかろう。
pr=x/h, p=2pr-1なので、最初の式は
4b(pr-1)=c((2(pr-1)+1)^(2hpr)-1)
(2(pr-1)+1)^(2hpr)-1 は明らかに 4(pr-1) の倍数だから、この式に解があっても矛盾しない。
782132人目の素数さん
2018/09/15(土) 08:34:08.61ID:1kf0wGMF SEあがりの癖に計算機に出来ることと出来ないことの区別もできんのか
784132人目の素数さん
2018/09/15(土) 09:00:50.73ID:s0xVf9ul さんざんwolframって言ってると思ったら
使い方を知らないのかよ
使い方を知らないのかよ
785132人目の素数さん
2018/09/15(土) 09:52:26.96ID:qc3pYObg 遂に自分で考える事を諦めてカンニングすることを覚えたが
カンニングしてすら間違えるという与太郎っぷりを披露
もうどうしようも無いドアホン(ピンポーン)
カンニングしてすら間違えるという与太郎っぷりを披露
もうどうしようも無いドアホン(ピンポーン)
786132人目の素数さん
2018/09/15(土) 10:06:40.08ID:+5EiJ2rU >>784
ウルフマンだぞ
ウルフマンだぞ
787132人目の素数さん
2018/09/15(土) 10:18:03.34ID:/bbzD8RU オオカミ中年ってことか
見事すぎるダブルミーニング
見事すぎるダブルミーニング
>>781
解は出してくれますよ
http://www.wolframalpha.com/input/?i=4*b*(x%2Fh-1)%3Dc*(p%5E(2*x)-1)
>>785
じゃああなたは
4b(pr-1)=c((2(pr-1)+1)^(2hpr)-1)
でprがどういう解になるか、正解を筆算で出すことができるのですか?
その解が整数になるかどうかを判定できるのですか?
この問題を解決できれば、この問題の一部解決ということになり
かなりの数学的成果ということになると思います。
>>787
数学的成果は出していると思うけどな
cr≠qr-1のときに
2m+1=wpr^(qr-cr-1)
が成り立たなければならないという
解は出してくれますよ
http://www.wolframalpha.com/input/?i=4*b*(x%2Fh-1)%3Dc*(p%5E(2*x)-1)
>>785
じゃああなたは
4b(pr-1)=c((2(pr-1)+1)^(2hpr)-1)
でprがどういう解になるか、正解を筆算で出すことができるのですか?
その解が整数になるかどうかを判定できるのですか?
この問題を解決できれば、この問題の一部解決ということになり
かなりの数学的成果ということになると思います。
>>787
数学的成果は出していると思うけどな
cr≠qr-1のときに
2m+1=wpr^(qr-cr-1)
が成り立たなければならないという
789132人目の素数さん
2018/09/15(土) 13:05:47.95ID:qTba1afT >>771
明らかなのは、親の部屋のテレビが君の悪口を言っているのではなく、親自身が君の悪口を言っているってことですよね
明らかなのは、親の部屋のテレビが君の悪口を言っているのではなく、親自身が君の悪口を言っているってことですよね
>>789
それもあるだろうけれども、テレビが言っている場合もあるこの前も明確に若い女性の声で
「体操選手を泣かせたから、こっち見んな。」
と聞こえてきた。
これは私が盗聴されている部屋で、最近話題となっている選手の問題を私がパワハラとは
思わないと言ったことによるものだと考えられる。
最近、「テレビに指差すな。」とも聞こえてきている。
視聴者の真面目な反応を馬鹿にして、賛同できなければこっち見んなとは何と言う稚拙な
反応だろうとも思える。
それもあるだろうけれども、テレビが言っている場合もあるこの前も明確に若い女性の声で
「体操選手を泣かせたから、こっち見んな。」
と聞こえてきた。
これは私が盗聴されている部屋で、最近話題となっている選手の問題を私がパワハラとは
思わないと言ったことによるものだと考えられる。
最近、「テレビに指差すな。」とも聞こえてきている。
視聴者の真面目な反応を馬鹿にして、賛同できなければこっち見んなとは何と言う稚拙な
反応だろうとも思える。
792132人目の素数さん
2018/09/15(土) 13:19:52.95ID:uZAUJfnl >>790
何か水平思考ゲームみたいだな
耳で聞いただけの情報で、実際には何が行われているのか推測するのって
体操のくだりは分からなかったけれど、テレビの方は分かるわ
テレビにテレビが映ってて、そのテレビに出演者がつっこんだと考えても辻褄が合うぞ
耳で聞いただけじゃなくて目でもちゃんと見て判断しようってことだな
何か水平思考ゲームみたいだな
耳で聞いただけの情報で、実際には何が行われているのか推測するのって
体操のくだりは分からなかったけれど、テレビの方は分かるわ
テレビにテレビが映ってて、そのテレビに出演者がつっこんだと考えても辻褄が合うぞ
耳で聞いただけじゃなくて目でもちゃんと見て判断しようってことだな
793132人目の素数さん
2018/09/15(土) 13:30:19.35ID:NQNnUcix 糖質が芸でなければ病院行ったらいいのにね
>>792
なんで分からないの?簡単な理屈でしょう。気に入らない発言をする奴は見るなと
視聴者にテレビの中で言っている人間が確実にいるというだけですから。
普通の日本語が理解できないのか、不適切発言の不祥事だから理解したくないのか
どちらですか?
なんで分からないの?簡単な理屈でしょう。気に入らない発言をする奴は見るなと
視聴者にテレビの中で言っている人間が確実にいるというだけですから。
普通の日本語が理解できないのか、不適切発言の不祥事だから理解したくないのか
どちらですか?
795132人目の素数さん
2018/09/15(土) 13:34:22.73ID:uZAUJfnl796132人目の素数さん
2018/09/15(土) 13:36:01.36ID:uZAUJfnl >>794
簡単な理屈だけど、そういう考え方はとってないかな
簡単な理屈だけど、そういう考え方はとってないかな
798132人目の素数さん
2018/09/15(土) 13:47:34.05ID:QWT66dGo 聞こえるはずもないものが聞こえるんだからそういう病気なんだと自覚できないの?
統合失調症のこと何も知らないけど。
統合失調症のこと何も知らないけど。
799132人目の素数さん
2018/09/15(土) 13:48:28.00ID:qTba1afT >>790
テレビが君を知ってるわけないんだから、テレビが君の悪口言ってるってのは気のせいですよね。
数学できるんだから、そのくらいの理屈は分かってくれますよね。
本当に聞こえてくるというならそれは幻聴という精神疾患ですから急ぎ病院へ行かれたほうが良いです
テレビが君を知ってるわけないんだから、テレビが君の悪口言ってるってのは気のせいですよね。
数学できるんだから、そのくらいの理屈は分かってくれますよね。
本当に聞こえてくるというならそれは幻聴という精神疾患ですから急ぎ病院へ行かれたほうが良いです
800132人目の素数さん
2018/09/15(土) 13:50:29.16ID:NQNnUcix この人が思ってるほど世間はこの人に興味がないことに気づくべき
本来なら周りの大人が病院に連れてくなりすべきなんだがなぁ
本来なら周りの大人が病院に連れてくなりすべきなんだがなぁ
801132人目の素数さん
2018/09/15(土) 13:51:35.61ID:qTba1afT あとは>>792が言っているように、無関係な事を自分のことのように捉えてしまう被害妄想ですかね。
いずれにしても精神的に参ってるんでしょうね
いずれにしても精神的に参ってるんでしょうね
804132人目の素数さん
2018/09/15(土) 13:53:12.76ID:uZAUJfnl >>797
信じがたい出来事が起こったら耳と目でダブルチェックをして誤解がないか確認してください、ということです
信じがたい出来事が起こったら耳と目でダブルチェックをして誤解がないか確認してください、ということです
806132人目の素数さん
2018/09/15(土) 13:55:28.15ID:YeOTR053 糖質路線に走り始めたか
807132人目の素数さん
2018/09/15(土) 14:01:07.63ID:QWT66dGo youtubeとかで統合失調症の動画見たぐらいのことしか知らないけど、
病気に罹患してしまって、幻聴や幻覚、被害妄想が起きてしまうけれど、でもそれを脳内が、
誰が言った・敵はどこにいる、ということが合理的に説明できないために、
より強いイメージを持って無理やり敵を作り出すと。
録音しろ、録画しろって第三者が要求しても、それをしてしまうとより脳内がパニックになるので
防衛反応のためか絶対にそういうことはしない。
>>1はここのスレで自分への批判を貰うことで、それを実際の敵と認識して安心してたりするのかなと思った。
治療のためにはまずは通院だけど、信頼関係のある人間がなんとか説得して、
ほんの少しでも「自分病気なのかな・・・」と思わせて病院に行かせることだと。
>>1はそういう信頼のおける人はいないの?
病気に罹患してしまって、幻聴や幻覚、被害妄想が起きてしまうけれど、でもそれを脳内が、
誰が言った・敵はどこにいる、ということが合理的に説明できないために、
より強いイメージを持って無理やり敵を作り出すと。
録音しろ、録画しろって第三者が要求しても、それをしてしまうとより脳内がパニックになるので
防衛反応のためか絶対にそういうことはしない。
>>1はここのスレで自分への批判を貰うことで、それを実際の敵と認識して安心してたりするのかなと思った。
治療のためにはまずは通院だけど、信頼関係のある人間がなんとか説得して、
ほんの少しでも「自分病気なのかな・・・」と思わせて病院に行かせることだと。
>>1はそういう信頼のおける人はいないの?
808132人目の素数さん
2018/09/15(土) 14:01:25.40ID:uZAUJfnl809132人目の素数さん
2018/09/15(土) 14:01:38.71ID:NQNnUcix >>803
で?
で?
あなた方は、勝手に私が病気だと決めつけているわけですが、そういうことが
あったのかなかったのかは、その場に他者がいたということですから
その他者に聞くことにより、その事実がなかったということを証明できない限り
私を病気だと決定付けることはできないはずですが。
私に奇妙なことが起きているからと言って病気のレッテル張りをするということは
何かまずいことでもあるんじゃないんですか?
そうですよね。私が受験で信じられない程のイカサマをされたり、病気の誤診で
大変に大迷惑しているだとか、机の脚を蹴ったぐらいのことで不当に会社を
解雇されたり、その後その会社の不正を厚生労働省に訴える文書を送ったら
みのもんたがテレビで、「厚生労働省は文書を書いて金をゆするところではない。」
とおちょくったり。そのようなことは全て私の事実誤認にしたいんだろうからな。
あったのかなかったのかは、その場に他者がいたということですから
その他者に聞くことにより、その事実がなかったということを証明できない限り
私を病気だと決定付けることはできないはずですが。
私に奇妙なことが起きているからと言って病気のレッテル張りをするということは
何かまずいことでもあるんじゃないんですか?
そうですよね。私が受験で信じられない程のイカサマをされたり、病気の誤診で
大変に大迷惑しているだとか、机の脚を蹴ったぐらいのことで不当に会社を
解雇されたり、その後その会社の不正を厚生労働省に訴える文書を送ったら
みのもんたがテレビで、「厚生労働省は文書を書いて金をゆするところではない。」
とおちょくったり。そのようなことは全て私の事実誤認にしたいんだろうからな。
811132人目の素数さん
2018/09/15(土) 16:59:31.60ID:NQNnUcix 病院行った?
病気かそうでないかはそこでわかるよ
病気かそうでないかはそこでわかるよ
>>811
なんの診断もしないで話しを聞いただけで、診断なんてできる訳がないでしょう。
それと文章をまともに入力することができる精神病患者をあなたは一人でも
知っているのでしょうか?
それから、残念ながら精神病では、受験レベルの数学でも解くことはできないのでは
ないのでしょうか?病気のレッテルを張られるのは非常に不愉快ですので、止めて
いただきたい。それは精神科医の誤診なので。しかもこの診断をされたのは、18年も
前のことだ。
その誤診のお蔭とこの精神病煽りの掲示板のお蔭でどれ程私が腹立たしい思いを
しているか知って欲しいものだ。
なんの診断もしないで話しを聞いただけで、診断なんてできる訳がないでしょう。
それと文章をまともに入力することができる精神病患者をあなたは一人でも
知っているのでしょうか?
それから、残念ながら精神病では、受験レベルの数学でも解くことはできないのでは
ないのでしょうか?病気のレッテルを張られるのは非常に不愉快ですので、止めて
いただきたい。それは精神科医の誤診なので。しかもこの診断をされたのは、18年も
前のことだ。
その誤診のお蔭とこの精神病煽りの掲示板のお蔭でどれ程私が腹立たしい思いを
しているか知って欲しいものだ。
>>812
何の診断もしないというのは、話を聞くだけで、それ以外の診断方法がないという意味で書きました。
そうだから、会社が必要のない社員を解雇するときに精神科医がそういうことに加担しているのでは
ないかという疑いは、この世の中にはあるわけですよね。私の場合がそうだったのかどうかは
分かりませんが。
何の診断もしないというのは、話を聞くだけで、それ以外の診断方法がないという意味で書きました。
そうだから、会社が必要のない社員を解雇するときに精神科医がそういうことに加担しているのでは
ないかという疑いは、この世の中にはあるわけですよね。私の場合がそうだったのかどうかは
分かりませんが。
814132人目の素数さん
2018/09/15(土) 17:27:42.45ID:NQNnUcix >>812
だから病院行って診てもらって、病気かどうか確かめてもらお?
だから病院行って診てもらって、病気かどうか確かめてもらお?
815132人目の素数さん
2018/09/15(土) 17:34:30.13ID:bFVj4A3f 最新論文はこちら >>712
>>814
会社のリストラと親が田舎に住むことを決めたので、不本意に全く働くことができなくなって
何年も経っている。こちらに移住してから親がしつこく進めるので精神科医に一回だけ見てもらったが
「天才薄明といいますからね。」
と言われました。
このことからも、非常に私の過去の診断が怪しいものだと考えられます。私が精神科医にかかることは
二度とないと思います。
政治批判をしたら、精神科に入院させられた外国の女性の話がテレビで放送されていますが
この日本という国でも多々あるのではないのかと思います。政治家が都合よく病気になるのと逆に。
昔心臓病で入院するという国会議員がいて、その人が報道陣から逃げるときに走っていたことが
思い出されます。
会社のリストラと親が田舎に住むことを決めたので、不本意に全く働くことができなくなって
何年も経っている。こちらに移住してから親がしつこく進めるので精神科医に一回だけ見てもらったが
「天才薄明といいますからね。」
と言われました。
このことからも、非常に私の過去の診断が怪しいものだと考えられます。私が精神科医にかかることは
二度とないと思います。
政治批判をしたら、精神科に入院させられた外国の女性の話がテレビで放送されていますが
この日本という国でも多々あるのではないのかと思います。政治家が都合よく病気になるのと逆に。
昔心臓病で入院するという国会議員がいて、その人が報道陣から逃げるときに走っていたことが
思い出されます。
818132人目の素数さん
2018/09/15(土) 17:49:31.83ID:qTba1afT >>812
いやいや、ただ心配しただけなんだけどね。
確定診断なんかしたつもりもないし。
ただ、君から聞いてる症状が精神疾患そのものだから医者にかかったらどうかとアドバイスしてるんだよ。
それでどうするかは君の勝手さね
いやいや、ただ心配しただけなんだけどね。
確定診断なんかしたつもりもないし。
ただ、君から聞いてる症状が精神疾患そのものだから医者にかかったらどうかとアドバイスしてるんだよ。
それでどうするかは君の勝手さね
819132人目の素数さん
2018/09/15(土) 17:50:20.47ID:+5EiJ2rU >>817
そこだけかァウルフマン!
そこだけかァウルフマン!
820132人目の素数さん
2018/09/15(土) 17:52:28.44ID:uZAUJfnl こういうのって病気か病気じゃないかの線引きは曖昧なもんだよ
それに精神科なんてピンキリだからね
ちゃんと調べないと(俺は明神下に行った)
高木さんは「奇妙な現象の観測に五感を拘束された人」だよね
こんな人と話すのははじめてで困惑していると共に魅力的だよね
「殺人事件の観測に五感を拘束された人」名探偵コナンみたいな
それに精神科なんてピンキリだからね
ちゃんと調べないと(俺は明神下に行った)
高木さんは「奇妙な現象の観測に五感を拘束された人」だよね
こんな人と話すのははじめてで困惑していると共に魅力的だよね
「殺人事件の観測に五感を拘束された人」名探偵コナンみたいな
821132人目の素数さん
2018/09/15(土) 18:04:14.21ID:j4hnMV8N 「医者でないと病気かどうかわからない!」
からの
「医者は怪しい」
の流れは無敵すぎる
からの
「医者は怪しい」
の流れは無敵すぎる
822132人目の素数さん
2018/09/15(土) 18:07:39.02ID:Ye54RKpD 受験に失敗する → イカサマだ!学校が悪い!
会社をクビになる → 不当だ!会社が悪い!
再就職に失敗する → 政治家が人生を妨害している!
病気と診断される → 誤診だ!医者が悪い!
論文が完成しない → 誰かが研究を妨害している!
自分を中心に世界が回ってると思ってるんだろうな
会社をクビになる → 不当だ!会社が悪い!
再就職に失敗する → 政治家が人生を妨害している!
病気と診断される → 誤診だ!医者が悪い!
論文が完成しない → 誰かが研究を妨害している!
自分を中心に世界が回ってると思ってるんだろうな
823132人目の素数さん
2018/09/15(土) 18:07:52.14ID:s0xVf9ul 奇数芸人をあきらめて、統失芸人にクラスチェンジかよ。
824132人目の素数さん
2018/09/15(土) 18:08:54.20ID:s0xVf9ul >>822 既にテンプレまでできちゃった。
826132人目の素数さん
2018/09/15(土) 18:21:01.20ID:s0xVf9ul >無勉強で
1に必要なのは勉強!
今も昔も勉強がすごく足りない!
1に必要なのは勉強!
今も昔も勉強がすごく足りない!
>>826
今は足りないでしょうね。足りたとしてもこの問題が解決できるのか疑問ですけど。
昔は足りていたから5科目の平均が75だったのではないでしょうか?
間違いなく、イカサマです。受験による被害です。
日本は天才向けの教育カリキュラムがないのは問題だと思います。
計算ドリル1年分が6時間で終わる小学生に普通の教育は無理だと思います。
今は足りないでしょうね。足りたとしてもこの問題が解決できるのか疑問ですけど。
昔は足りていたから5科目の平均が75だったのではないでしょうか?
間違いなく、イカサマです。受験による被害です。
日本は天才向けの教育カリキュラムがないのは問題だと思います。
計算ドリル1年分が6時間で終わる小学生に普通の教育は無理だと思います。
828132人目の素数さん
2018/09/15(土) 18:41:02.94ID:j4hnMV8N 自分のこと天才だと思ってるの?
829132人目の素数さん
2018/09/15(土) 18:59:56.40ID:uZAUJfnl ある尺度から測ったら天才だからといって、どっかが絶望的にダメなこともある
つまりそういうこと
つまりそういうこと
830132人目の素数さん
2018/09/15(土) 19:02:38.05ID:+5EiJ2rU ウルフマンが(ある尺度では)天才であることは認めるのか?
831132人目の素数さん
2018/09/15(土) 19:10:13.49ID:mmknUsKs センターの数学で満点叩き出すほどの天才が
これまで1つとして正しいことを言っていないのはどうして?
これまで1つとして正しいことを言っていないのはどうして?
832132人目の素数さん
2018/09/15(土) 19:24:44.03ID:oEiDJxK/ >>831
オオカミ中年だから
ウソつき、というより、ゴマカシのテクニックを総動員して、なんとか自分が数学的な偉業を成し遂げたように見せたいのがこの1
これまでの論文で見つかった数々のミスはケアレスミス等ては決してなく、すべてが計画的に、巧妙に仕込まれたゴマカシである
その意味では天才的と言っていい
オオカミ中年だから
ウソつき、というより、ゴマカシのテクニックを総動員して、なんとか自分が数学的な偉業を成し遂げたように見せたいのがこの1
これまでの論文で見つかった数々のミスはケアレスミス等ては決してなく、すべてが計画的に、巧妙に仕込まれたゴマカシである
その意味では天才的と言っていい
834132人目の素数さん
2018/09/15(土) 20:49:42.60ID:NQNnUcix >>833
自分のことは天才だと思ってるけど、変に思われたくないから言わないだけってことね、なるほど
自分のことは天才だと思ってるけど、変に思われたくないから言わないだけってことね、なるほど
835132人目の素数さん
2018/09/15(土) 20:50:37.61ID:NQNnUcix 天才はあんまり計算ミスもしなそうだし、早稲田には入学しないだろうし、無職にもなってないだろう
836132人目の素数さん
2018/09/15(土) 20:50:53.75ID:oEiDJxK/ ゴマカシを指摘すると、必ずただの間違いだと言い訳をするが、これまでの数ヵ月間に同種の間違いを何度も何度も繰り返しているのは事実
故意にやっていると考える他はありえない
故意にやっていると考える他はありえない
>>835-836
何度も書いているが計算間違いをしないと正しいと誤認する結果にならない
それとこの問題は未解決問題であることを知っていてそう書いているのですか
答えを出すのは困難を極めると思いますが
何度も書いているが計算間違いをしないと正しいと誤認する結果にならない
それとこの問題は未解決問題であることを知っていてそう書いているのですか
答えを出すのは困難を極めると思いますが
838132人目の素数さん
2018/09/15(土) 21:09:17.18ID:+5EiJ2rU 計算ミスをするから未解決みたいに言うなよ
839132人目の素数さん
2018/09/15(土) 21:32:29.98ID:bcDrhEdo 計算ミスを言い訳にしているようでは中学受験する小学生にも劣る
840132人目の素数さん
2018/09/15(土) 21:34:51.64ID:oEiDJxK/ >>837
それが分かっているならば、正しいと思う結果が出たときに、必ず間違っている箇所があると考えて見直すべき
それをせず、証明が完成しましたとスレッドのタイトルに書き、あまつさえ誤りの指摘にも絶対に正しいと言い張る
これこそがゴマカシをゴマカシと知りながら論文を公開し、なおかつゴマカシを必死に押し隠そうとする姿勢に他ならない
それが分かっているならば、正しいと思う結果が出たときに、必ず間違っている箇所があると考えて見直すべき
それをせず、証明が完成しましたとスレッドのタイトルに書き、あまつさえ誤りの指摘にも絶対に正しいと言い張る
これこそがゴマカシをゴマカシと知りながら論文を公開し、なおかつゴマカシを必死に押し隠そうとする姿勢に他ならない
841132人目の素数さん
2018/09/15(土) 21:42:28.21ID:NQNnUcix 計算が大変だから困難だと思ってるのか
さすが天才だなw
さすが天才だなw
842132人目の素数さん
2018/09/15(土) 21:59:06.12ID:Zr4smbxu 背理法で示すなら矛盾を導かなければならないのはそうだけど、それを
>計算間違いをしないと
といったらあかんやろ。
むしろ計算ミスはしたらアウト。
どこにも計算ミス、ロジックエラーもないにもかかわらず矛盾が導けてなんぼなんだから。
計算ミスしても気づけないなら背理法は使えないも同然。
>計算間違いをしないと
といったらあかんやろ。
むしろ計算ミスはしたらアウト。
どこにも計算ミス、ロジックエラーもないにもかかわらず矛盾が導けてなんぼなんだから。
計算ミスしても気づけないなら背理法は使えないも同然。
>>839
この問題は難しくてなかなか答えが出ないから、そうなるのは致し方ない。
後何回も間違っていると、慣れてくるというのもあるが。
a*x=c(p^(2x)-1)だとかはまだしも、a=c(x-1)^(2x/h)だとかいう計算は
計算のしようがないと思う。もう初等的な計算はほぼ全て行ったので私にできることはもうないと
考えられる。
>>840
間違いを押し通したこともあったが、間違った指摘もある以上多少そういうことがあるのも仕方がない。
>>841
計算だけではないですよ。当然。
>>842
それはそうでしょうけど。背理法を使えないというのと計算間違いをするというのは別問題。
それを言ってしまうとこの問題の背理法は誰も使えないということになります。
この問題は難しくてなかなか答えが出ないから、そうなるのは致し方ない。
後何回も間違っていると、慣れてくるというのもあるが。
a*x=c(p^(2x)-1)だとかはまだしも、a=c(x-1)^(2x/h)だとかいう計算は
計算のしようがないと思う。もう初等的な計算はほぼ全て行ったので私にできることはもうないと
考えられる。
>>840
間違いを押し通したこともあったが、間違った指摘もある以上多少そういうことがあるのも仕方がない。
>>841
計算だけではないですよ。当然。
>>842
それはそうでしょうけど。背理法を使えないというのと計算間違いをするというのは別問題。
それを言ってしまうとこの問題の背理法は誰も使えないということになります。
844132人目の素数さん
2018/09/15(土) 23:24:24.40ID:NQNnUcix 普通の人はそんなに計算ミスなんてしないんですよ、天才にはわからないでしょうけど
845132人目の素数さん
2018/09/15(土) 23:27:01.81ID:m2ib/T6j >>843
計算ミスの多すぎをそうやって開き直るから進歩がないんだよ。
計算ミスの多すぎをそうやって開き直るから進歩がないんだよ。
848132人目の素数さん
2018/09/15(土) 23:32:56.81ID:NQNnUcix >>846
確かに研究者とおかしな人くらいでしょうね、未解決問題に挑むのは
確かに研究者とおかしな人くらいでしょうね、未解決問題に挑むのは
849132人目の素数さん
2018/09/15(土) 23:37:11.90ID:NQNnUcix というか他の人間に見てもらえば認めてもらえると思ってるんですか?
このスレでのやり取りを忘れてしまったんでしょうか?
このスレでのやり取りを忘れてしまったんでしょうか?
数学的成果は出していると言っているので、それを無視するかどうかは他者が判断すべき
ことだと思います。もしかすると、完全に既知かもしれませんし。
ことだと思います。もしかすると、完全に既知かもしれませんし。
852132人目の素数さん
2018/09/15(土) 23:45:00.39ID:NQNnUcix ネットするお金があるならハロワまでの交通費くらい出せるんじゃないですか?
>>852
ド田舎なのでSEの仕事はありません。
東京で月40万以上の会社からスカウトが来ることもあるので、馬鹿らしい限り。
つまらない無職生活をほぼ10年。経済危機の被害者を日本社会は10年放置。
どころか、テレビでその被害者を攻撃しまくり。
ド田舎なのでSEの仕事はありません。
東京で月40万以上の会社からスカウトが来ることもあるので、馬鹿らしい限り。
つまらない無職生活をほぼ10年。経済危機の被害者を日本社会は10年放置。
どころか、テレビでその被害者を攻撃しまくり。
854132人目の素数さん
2018/09/16(日) 00:06:16.52ID:pmmB3AXO >>853
SE以外にも仕事はあるんだよ
SE以外にも仕事はあるんだよ
>>854
田舎でいろいろ応募したけれど全滅
田舎でいろいろ応募したけれど全滅
856132人目の素数さん
2018/09/16(日) 02:45:06.71ID:vOhbaJSk 企業「この空白期間の10年は何をしていたんですか?」
高木「前の会社で不当に解雇され、政治家に人生の妨害活動をされていました」
企業(なんだこいつ…)
高木「前の会社で不当に解雇され、政治家に人生の妨害活動をされていました」
企業(なんだこいつ…)
857132人目の素数さん
2018/09/16(日) 08:30:47.07ID:evvIr47u 高井じゃね?
858132人目の素数さん
2018/09/16(日) 10:07:42.03ID:Je84gqbt 高木くんは、統失なので1人暮らしができず両親のもとでヒキニート。
だめだなあ〜。
統失でもそのための作業所とかで仕事をするスレが5chにはいくらでもあるのに。
だめだなあ〜。
統失でもそのための作業所とかで仕事をするスレが5chにはいくらでもあるのに。
859132人目の素数さん
2018/09/16(日) 11:38:20.83ID:0MrQUBvh >>858
完全に健常者にレッテル張りすんな、カス
毎日のように外から聞こえてくる誹謗中傷も聞き飽きた、文句があるんだったら
面と向かって言え。
大の大人がこんなド田舎まで訪れて朝4時半に外から、「なになにだから、氏ね。」
だとかよくそんな幼稚なことが言えるもんだわ。女々しすぎ。
完全に健常者にレッテル張りすんな、カス
毎日のように外から聞こえてくる誹謗中傷も聞き飽きた、文句があるんだったら
面と向かって言え。
大の大人がこんなド田舎まで訪れて朝4時半に外から、「なになにだから、氏ね。」
だとかよくそんな幼稚なことが言えるもんだわ。女々しすぎ。
860132人目の素数さん
2018/09/16(日) 11:46:26.59ID:Je84gqbt トリップ忘れちゃダメ。
高木くんでも仕事をする場所があるってことだよ。
高木くんでも仕事をする場所があるってことだよ。
861132人目の素数さん
2018/09/16(日) 12:33:49.30ID:pmmB3AXO 「自分は天才だ」というと変に見られるというのは理解してるのに、>>859のような書き込みをすると変に見られるというのは理解できてない不思議
862132人目の素数さん
2018/09/16(日) 13:36:51.97ID:DpvrZtou 最新論文はこちら >>712
>>861
そういうことを言って逃げる輩がいるからしょうがない
そういうことを言って逃げる輩がいるからしょうがない
864132人目の素数さん
2018/09/16(日) 15:18:05.58ID:nt0xWHx/ >>859 がネタでなくマジなら冗談ぬきでいちど精神科訪ねてみてもいいかもしれないね。
訪ねてみて問題なしと診断されたならそれでいいんだし。
訪ねてみて問題なしと診断されたならそれでいいんだし。
865132人目の素数さん
2018/09/16(日) 16:26:29.47ID:q79/R8lf 全部が作り話やけん
866132人目の素数さん
2018/09/16(日) 16:36:41.77ID:hdOs0U2+867132人目の素数さん
2018/09/16(日) 16:51:35.02ID:Dk+/659M 盗聴されているだけなら、こちらから盗聴してもバレないな
高木さん安心して良さそうだ
高木さん安心して良さそうだ
868132人目の素数さん
2018/09/16(日) 19:21:52.39ID:Je84gqbt >>859 の「なになにだから、氏ね。」なんて言葉は
「〜からしねぇ」
で普通の会話でありそう。
以前も名古屋のごみ屋敷がニュースになっているときに、
TVでごみ屋敷って自分のことを非難してると勘違いして怒りまくってたし
これまでいつもこんなのばかり。
「〜からしねぇ」
で普通の会話でありそう。
以前も名古屋のごみ屋敷がニュースになっているときに、
TVでごみ屋敷って自分のことを非難してると勘違いして怒りまくってたし
これまでいつもこんなのばかり。
869132人目の素数さん
2018/09/16(日) 19:52:10.16ID:S0haNoN7 「〜からしねぇ。」を使った例文を挙げてくれ
870132人目の素数さん
2018/09/16(日) 21:10:23.56ID:kb4xyUSF おじいちゃん、おでんにはわさびじゃなくてからしねぇ。
871132人目の素数さん
2018/09/16(日) 22:08:06.23ID:Dk+/659M 「〜だったかららしいねぇ」
だと思うよ
だと思うよ
872132人目の素数さん
2018/09/16(日) 22:18:56.94ID:Dk+/659M 情報の取得ができないか、取得した情報を感覚記憶に保存できない時間が数ミリ秒〜数秒間あるのかもしれん
これが日常的に起こってたらそれが彼にとっての常識になるのもうなずける
これが日常的に起こってたらそれが彼にとっての常識になるのもうなずける
873132人目の素数さん
2018/09/16(日) 22:23:25.98ID:zBOdzCcL 統失患者の被害妄想は論破できないよ。
患者にとって都合のよい解釈がいくらでも存在するので、
こちらがいくら正論を言っても患者は納得しない。
そんな病人でさえも、数学についての間違いは認めざるを得ないのだから、
数学ってすごいですね。
患者にとって都合のよい解釈がいくらでも存在するので、
こちらがいくら正論を言っても患者は納得しない。
そんな病人でさえも、数学についての間違いは認めざるを得ないのだから、
数学ってすごいですね。
874132人目の素数さん
2018/09/17(月) 00:46:36.72ID:T7a194so お前を盗聴しているぞ
875132人目の素数さん
2018/09/17(月) 08:42:45.46ID:IvmiQcMs >そんな病人でさえも、数学についての間違いは認めざるを得ないのだから
すごく時間が掛かることが多かったけどね。
すごく時間が掛かることが多かったけどね。
876132人目の素数さん
2018/09/17(月) 09:04:25.01ID:qkPY/c3Z >>870 評価する。
877132人目の素数さん
2018/09/17(月) 09:48:38.31ID:QfjXpo7k >>868-871
絶叫している感じだったから、ヤジに決まっていると思う。
>>873
そんなことは簡単だ。私が数学以外で書いている内容で間違っている事実があることを
証明すればいいだけ。それを全部嘘と騒ぐのは、おかしい。
何か私が書いた内容がその人間に対しては、不都合な事実というだけのことだろうと思う。
cr≠qr-1になる証明ができました。
vをprを因数に含まない奇数、sを奇数として
c=vpr^(qr-1)
s=Π[k=1,r-1]pk^qk
とすると
b=cpr(p^(n-1)+p^(n-3)+…+1)
だから
s=v(p^(n-1)+p^(n-3)+…+1)
s=v(p^(n+1)-1)/((p+1)(p-1))
s=v((2pr-1)^(n+1)-1)/(4(pr-1)pr)
sに因数prが含まれていないから、p^(n-1)+p^(n-3)+…+1には
因数prが含まれないので、分母にprがあるから割り切られない
で整数にならないので不適になる。
後は2m+1=wpr^(qr-cr-1)が成立するときに解がないことを
示せばいいことになった。この問題がかなり前進したのでは
ないかと思う。
絶叫している感じだったから、ヤジに決まっていると思う。
>>873
そんなことは簡単だ。私が数学以外で書いている内容で間違っている事実があることを
証明すればいいだけ。それを全部嘘と騒ぐのは、おかしい。
何か私が書いた内容がその人間に対しては、不都合な事実というだけのことだろうと思う。
cr≠qr-1になる証明ができました。
vをprを因数に含まない奇数、sを奇数として
c=vpr^(qr-1)
s=Π[k=1,r-1]pk^qk
とすると
b=cpr(p^(n-1)+p^(n-3)+…+1)
だから
s=v(p^(n-1)+p^(n-3)+…+1)
s=v(p^(n+1)-1)/((p+1)(p-1))
s=v((2pr-1)^(n+1)-1)/(4(pr-1)pr)
sに因数prが含まれていないから、p^(n-1)+p^(n-3)+…+1には
因数prが含まれないので、分母にprがあるから割り切られない
で整数にならないので不適になる。
後は2m+1=wpr^(qr-cr-1)が成立するときに解がないことを
示せばいいことになった。この問題がかなり前進したのでは
ないかと思う。
879132人目の素数さん
2018/09/17(月) 11:14:51.38ID:FnrnWGEq https://m.facebook.com/masaoki.iwasaki.9
https://twitter.com/mas20285
https://twitter.com/keepmathtop
https://twitter.com/puratinaomega
https://twitter.com/xPuGPq8Tn9GWCJb
成立学園1-F担任の岩崎柾典先生がヤバイ。
成立学園に勤めるのは3年目。
担当科目は数学。
女子テニス部の顧問をしている。
何がヤバイというと、2013年4月から2015年3月まで宮前平中に働いていたらしく、女子中学生とsexしたことがバレて、飛ばされたから。
今でも教師を続けているのがすごく不思議な感じだよ。
岩崎先生って、ツイッターとFacebookをやってるみたいだから、覗いてみては?
https://i.imgur.com/Ih1vtbs.png
https://i.imgur.com/PL5otNF.png
https://i.imgur.com/2UR2NsQ.jpg
https://i.imgur.com/wVyAk68.jpg
https://i.imgur.com/tCLqV3S.jpg
https://i.imgur.com/5MQec4w.jpg
https://i.imgur.com/utScB5j.jpg
https://i.imgur.com/inTVEtU.jpg
この人そんなにヤバイの?
https://twitter.com/5chan_nel (5ch newer account)
https://twitter.com/mas20285
https://twitter.com/keepmathtop
https://twitter.com/puratinaomega
https://twitter.com/xPuGPq8Tn9GWCJb
成立学園1-F担任の岩崎柾典先生がヤバイ。
成立学園に勤めるのは3年目。
担当科目は数学。
女子テニス部の顧問をしている。
何がヤバイというと、2013年4月から2015年3月まで宮前平中に働いていたらしく、女子中学生とsexしたことがバレて、飛ばされたから。
今でも教師を続けているのがすごく不思議な感じだよ。
岩崎先生って、ツイッターとFacebookをやってるみたいだから、覗いてみては?
https://i.imgur.com/Ih1vtbs.png
https://i.imgur.com/PL5otNF.png
https://i.imgur.com/2UR2NsQ.jpg
https://i.imgur.com/wVyAk68.jpg
https://i.imgur.com/tCLqV3S.jpg
https://i.imgur.com/5MQec4w.jpg
https://i.imgur.com/utScB5j.jpg
https://i.imgur.com/inTVEtU.jpg
この人そんなにヤバイの?
https://twitter.com/5chan_nel (5ch newer account)
880132人目の素数さん
2018/09/17(月) 11:25:10.90ID:IvgJN1sv 1でも働けるらしい作業所のスレを検索してみた。
良いとこに行けるといいらしいんだが?
A型事業所・A型作業所 Part64
https://mevius.5ch.net/test/read.cgi/utu/1536989081/l50
B型作業所・事業所part59
https://mevius.5ch.net/test/read.cgi/utu/1536708753/l50
A型事業所・A型作業所 Part59 ワッチョイあり
https://mevius.5ch.net/test/read.cgi/utu/1532072896/l50
良いとこに行けるといいらしいんだが?
A型事業所・A型作業所 Part64
https://mevius.5ch.net/test/read.cgi/utu/1536989081/l50
B型作業所・事業所part59
https://mevius.5ch.net/test/read.cgi/utu/1536708753/l50
A型事業所・A型作業所 Part59 ワッチョイあり
https://mevius.5ch.net/test/read.cgi/utu/1532072896/l50
881132人目の素数さん
2018/09/17(月) 11:25:16.04ID:mbjb6tyB >>878
またループしているな
>s=v(p^(n-1)+p^(n-3)+…+1) @
>s=v(p^(n+1)-1)/((p+1)(p-1)) A
>sに因数prが含まれていないから、p^(n-1)+p^(n-3)+…+1には
>因数prが含まれないので、
@をAに変形したわけだから、分母だけではなく分子も(p+1)(p-1)の倍数だ
よってAの分母は
>分母にprがあるから割り切られない
とはならない
またループしているな
>s=v(p^(n-1)+p^(n-3)+…+1) @
>s=v(p^(n+1)-1)/((p+1)(p-1)) A
>sに因数prが含まれていないから、p^(n-1)+p^(n-3)+…+1には
>因数prが含まれないので、
@をAに変形したわけだから、分母だけではなく分子も(p+1)(p-1)の倍数だ
よってAの分母は
>分母にprがあるから割り切られない
とはならない
882132人目の素数さん
2018/09/17(月) 11:25:33.30ID:bGuoEh3u おばあちゃんが「からしねぇ!!!」と絶叫してたのか
介護施設連れてけよ
介護施設連れてけよ
883132人目の素数さん
2018/09/17(月) 11:38:22.31ID:Ri3o3kt6 たぶん誰もこの路線で証明しようと思ってないから、全身も何もないゾ
884132人目の素数さん
2018/09/17(月) 11:51:26.60ID:aXv0MeU1 >>881
ループはしていない。
ループはしていない。
886132人目の素数さん
2018/09/17(月) 12:25:40.40ID:IvgJN1sv PDF無しのまま、いつものフェイズ3に >>16
887132人目の素数さん
2018/09/17(月) 12:27:49.36ID:mbjb6tyB888132人目の素数さん
2018/09/17(月) 12:30:51.27ID:bGuoEh3u 俺には全然明らかには見えないんだけどすげえなお前ら
889132人目の素数さん
2018/09/17(月) 12:34:50.61ID:IvgJN1sv 1の書いてることが全然明らかには見えないなら正しいね。
890132人目の素数さん
2018/09/17(月) 12:39:42.13ID:nWs1TvDp 「この問題がある論法によってかなり前進した」⇒「その論法には計算間違いが含まれている」
891132人目の素数さん
2018/09/17(月) 12:40:59.60ID:mbjb6tyB はしょりすぎたか
>s=v((2pr-1)^(n+1)-1)/(4(pr-1)pr)
(n+1)が偶数だから、
(2pr-1)^(n+1)は(2pr-1)^2=4(pr-1)pr+1のベキであり、
(2pr-1)^(n+1)≡1 (mod 4(pr-1)pr)となる
よって(2pr-1)^(n+1)-1は4(pr-1)prの倍数
>s=v((2pr-1)^(n+1)-1)/(4(pr-1)pr)
(n+1)が偶数だから、
(2pr-1)^(n+1)は(2pr-1)^2=4(pr-1)pr+1のベキであり、
(2pr-1)^(n+1)≡1 (mod 4(pr-1)pr)となる
よって(2pr-1)^(n+1)-1は4(pr-1)prの倍数
分子がprで割り切られないと書いたのは誤り、
(2pr-1)^(n+1)-1はprで割り切られるのはpr=0を代入すれば(2pr-1)^(n+1)-1=0
となるから、自明だった。
p^(n+1)-1にprが含まれていないと誤解したが、p^(n-1)+p^(n-3)+…+1に
p+1=2prを掛けているのだから、prで割り切られる。
>>890
cr≠qr-1を示せば前進することは事実。それが可能かは分からないけれども。
(2pr-1)^(n+1)-1はprで割り切られるのはpr=0を代入すれば(2pr-1)^(n+1)-1=0
となるから、自明だった。
p^(n+1)-1にprが含まれていないと誤解したが、p^(n-1)+p^(n-3)+…+1に
p+1=2prを掛けているのだから、prで割り切られる。
>>890
cr≠qr-1を示せば前進することは事実。それが可能かは分からないけれども。
893132人目の素数さん
2018/09/17(月) 13:28:55.61ID:bGuoEh3u pやrは自然数でいいんだよな?
>>893
pは素数で、rは自然数
pは素数で、rは自然数
895132人目の素数さん
2018/09/17(月) 16:42:14.74ID:bGuoEh3u p+1=2prってなんだよじゃあ
>>895
prのrは添え字です
prのrは添え字です
897132人目の素数さん
2018/09/17(月) 16:53:11.40ID:bGuoEh3u 今までのも全部そうなのか
指数に^使う気遣いができるなら下付き添え字も_使ってくれる?
指数に^使う気遣いができるなら下付き添え字も_使ってくれる?
898132人目の素数さん
2018/09/17(月) 17:15:01.62ID:jP8D23S8 見づらくなるけどな
そこまでするならもうlatexにしなさいとも思う
そこまでするならもうlatexにしなさいとも思う
899132人目の素数さん
2018/09/17(月) 17:29:17.12ID:bGuoEh3u してくれないの?
901132人目の素数さん
2018/09/17(月) 19:26:42.79ID:IvmiQcMs PC関係のツール
1は、ほんと使えない人
1は、ほんと使えない人
902132人目の素数さん
2018/09/17(月) 19:45:19.69ID:+we0HO3w903132人目の素数さん
2018/09/17(月) 20:23:15.98ID:UGjqumaZ904132人目の素数さん
2018/09/17(月) 20:37:39.47ID:IvmiQcMs もはや家族の手には負えない状態だろ。
905132人目の素数さん
2018/09/17(月) 20:58:09.29ID:umuAQR7p どうみたってSEとしても無能だろ
>>902
コマンドで入力しても、エラーで出るようになった。\87というコードが何かおかしいらしい。
以前使ったときに出なかったが、最近実行したらそうなった。
>>903
親は無視しているし、幻聴だと言って病院に行くように勧めたりする。
本当に、ただの寝不足を精神病だと誤診されると、私の五感を不当に疑われる。
会社での嫌がらせもこの事実を知っている人間が誰も私の言う内容を信じないと
思ってそうしていると考えられる。
>>904
家族はド田舎で私をほぼ無視して生活している。
>>905
月に700万分製造したことがあるから、年収査定は30才で680万円でした。
普通の社員のスピードの3倍は出ていると考えられます。
最近、テレビで女性の声で「○○(自民党の超大物政治家)を馬鹿にした血だからだ。」
という絶叫が聞こえてきた。受験のイカサマの理由でしょうか?
コマンドで入力しても、エラーで出るようになった。\87というコードが何かおかしいらしい。
以前使ったときに出なかったが、最近実行したらそうなった。
>>903
親は無視しているし、幻聴だと言って病院に行くように勧めたりする。
本当に、ただの寝不足を精神病だと誤診されると、私の五感を不当に疑われる。
会社での嫌がらせもこの事実を知っている人間が誰も私の言う内容を信じないと
思ってそうしていると考えられる。
>>904
家族はド田舎で私をほぼ無視して生活している。
>>905
月に700万分製造したことがあるから、年収査定は30才で680万円でした。
普通の社員のスピードの3倍は出ていると考えられます。
最近、テレビで女性の声で「○○(自民党の超大物政治家)を馬鹿にした血だからだ。」
という絶叫が聞こえてきた。受験のイカサマの理由でしょうか?
907132人目の素数さん
2018/09/17(月) 21:37:20.64ID:UGjqumaZ908132人目の素数さん
2018/09/17(月) 21:40:05.34ID:+we0HO3w >>906
標準の LaTeX に \87 などという制御綴りはないけど
標準の LaTeX に \87 などという制御綴りはないけど
909132人目の素数さん
2018/09/17(月) 21:47:02.27ID:Ri3o3kt6 700万分製造←意味不明
年収査定は680万←実際の年収は?
年収査定は680万←実際の年収は?
>>909
新規でC++言語5k分の制御ファームウェアの製造を1ヵ月で行った。
その時の年収はその70%弱だ。
はっきり言うと早稲田の物理学科に2浪だけれども、ぶっちぎりの成績で合格した人間は
どこで働けば言い訳?田舎で稼ぐ手段がなく、10年も無職生活が続いているわけだが。
頭に気まくっているから、これにレスはいらない。全て事実だ。
新規でC++言語5k分の制御ファームウェアの製造を1ヵ月で行った。
その時の年収はその70%弱だ。
はっきり言うと早稲田の物理学科に2浪だけれども、ぶっちぎりの成績で合格した人間は
どこで働けば言い訳?田舎で稼ぐ手段がなく、10年も無職生活が続いているわけだが。
頭に気まくっているから、これにレスはいらない。全て事実だ。
912132人目の素数さん
2018/09/17(月) 21:57:06.76ID:Ri3o3kt6 まず本当にぶっちぎりで入学できるなら二浪はしないでしょ
913132人目の素数さん
2018/09/17(月) 21:59:03.88ID:UGjqumaZ 働かないと。
914132人目の素数さん
2018/09/17(月) 22:02:57.61ID:RJpeeck8915132人目の素数さん
2018/09/17(月) 22:06:55.82ID:D4u6zPpw >>912
だから、無勉強で5科目平均偏差値75だったのに、イカサマで学区4位の都立高校に
進学しなければならなかった。それに頭に来たので私は聞くに値すると判断した4人のteacher
以外は全て寝ていたので、3年間事実上勉強をボイコットした。
その影響で2浪になったのでしょう。1浪の時もまたイカサマが起こり、駿台の国立理系で
最後には偏差値66あり、全ての模試でA判定しかとったことがなかった偏差値10下の青山学院大学
の物理学科にも落ちて全滅しました。イカサマの限りだということが分かると思います。
だから、無勉強で5科目平均偏差値75だったのに、イカサマで学区4位の都立高校に
進学しなければならなかった。それに頭に来たので私は聞くに値すると判断した4人のteacher
以外は全て寝ていたので、3年間事実上勉強をボイコットした。
その影響で2浪になったのでしょう。1浪の時もまたイカサマが起こり、駿台の国立理系で
最後には偏差値66あり、全ての模試でA判定しかとったことがなかった偏差値10下の青山学院大学
の物理学科にも落ちて全滅しました。イカサマの限りだということが分かると思います。
917132人目の素数さん
2018/09/17(月) 22:12:18.37ID:Ri3o3kt6918132人目の素数さん
2018/09/17(月) 22:14:11.51ID:RJpeeck8919132人目の素数さん
2018/09/17(月) 22:15:05.89ID:+we0HO3w920132人目の素数さん
2018/09/17(月) 22:15:46.61ID:+we0HO3w ×放送今日
○放送局
○放送局
921132人目の素数さん
2018/09/17(月) 22:16:24.28ID:IvmiQcMs これまでずっと
>青山学院大学理工学部物理学科にも落ちる。意味不明に2浪になる。
って書いてきたじゃんか。
二浪は青山学院
それに高校入試では
>意味不明に国立・私立に全滅し、
都立城東高校の特別支援学校に進学したんだろ。
高校に進学したんならちゃんと高校の学力をつけるべきだった。
「無勉強」を強調するばかりでは何の利益もなし。
>青山学院大学理工学部物理学科にも落ちる。意味不明に2浪になる。
って書いてきたじゃんか。
二浪は青山学院
それに高校入試では
>意味不明に国立・私立に全滅し、
都立城東高校の特別支援学校に進学したんだろ。
高校に進学したんならちゃんと高校の学力をつけるべきだった。
「無勉強」を強調するばかりでは何の利益もなし。
>>917
偏差値のギャップを考えるべきです。
駿台の国立理系の母集団で、偏差値10下の学科に落ちる人間がこの世に存在するの
でしょうか?高校受験のときは開成とか筑波大付属レベルの偏差値で都立高校って
あり得ない。通りがかりのオッサンに「開成だけ受けていればいいんだよ。」
と言われたこともありました。
>>919
2chにTBSのみのもんたのことは書いてあるログがあると思う。テレビ朝日のQ様は
畠山検定というタレントがそう発言した。調べればその放送があると思う。
>>921
普通科だふざけんな。駿台の国立理系で、5科目平均偏差値が66というのが私の学力が
あるということを端的に示しているが。一浪のときに偏差値10下で落ちるはずのない青学の
物理に落ちたというだけ。
無勉強は本当にその程度だから仕方がない。学の時は統計力学の教科書を90分で
220ページぐらい読んで理解した。
偏差値のギャップを考えるべきです。
駿台の国立理系の母集団で、偏差値10下の学科に落ちる人間がこの世に存在するの
でしょうか?高校受験のときは開成とか筑波大付属レベルの偏差値で都立高校って
あり得ない。通りがかりのオッサンに「開成だけ受けていればいいんだよ。」
と言われたこともありました。
>>919
2chにTBSのみのもんたのことは書いてあるログがあると思う。テレビ朝日のQ様は
畠山検定というタレントがそう発言した。調べればその放送があると思う。
>>921
普通科だふざけんな。駿台の国立理系で、5科目平均偏差値が66というのが私の学力が
あるということを端的に示しているが。一浪のときに偏差値10下で落ちるはずのない青学の
物理に落ちたというだけ。
無勉強は本当にその程度だから仕方がない。学の時は統計力学の教科書を90分で
220ページぐらい読んで理解した。
924132人目の素数さん
2018/09/17(月) 22:35:38.40ID:Ri3o3kt6 >>922
いや、だからあなたは点数足りなくて落ちたんだよ?
いや、だからあなたは点数足りなくて落ちたんだよ?
925132人目の素数さん
2018/09/17(月) 22:38:52.17ID:Ri3o3kt6 自分のことを天才だと思いたくて思いたくて、受験という客観的に評価される場での結果を認められないんですかね?
>>924
受験で下駄をはかせるということが問題となる場合があるのに
その逆に不当に点を下げられてるという可能性がありますよね。
あなたは、駿台で偏差値10も下のところに落ちるなんて事態が確率的に
発生する事象だと考えるのですか?確率的にあり得ないということです。
中学のときの最後の進学塾の英語のテストも2点から4点の問題しかない
33問の試験で2問間違えただけで、85点と採点されたことがあるんです。
本当の高校の試験でどんなことがされているかなんていうのは完全に
AIと一緒でブラックボックスじゃないですか?
受験で下駄をはかせるということが問題となる場合があるのに
その逆に不当に点を下げられてるという可能性がありますよね。
あなたは、駿台で偏差値10も下のところに落ちるなんて事態が確率的に
発生する事象だと考えるのですか?確率的にあり得ないということです。
中学のときの最後の進学塾の英語のテストも2点から4点の問題しかない
33問の試験で2問間違えただけで、85点と採点されたことがあるんです。
本当の高校の試験でどんなことがされているかなんていうのは完全に
AIと一緒でブラックボックスじゃないですか?
927132人目の素数さん
2018/09/17(月) 22:43:22.27ID:Ri3o3kt6928132人目の素数さん
2018/09/17(月) 22:44:07.85ID:Ri3o3kt6 結論として、問題が解けずに落ちた
これだけのことが何故わからないんでしょうか?
これだけのことが何故わからないんでしょうか?
930132人目の素数さん
2018/09/17(月) 22:49:14.22ID:Ri3o3kt6 >>929
だからなんであなたの点数を下げるの?
だからなんであなたの点数を下げるの?
>>928
じゃあ何故駿台で1浪のときは国立理系偏差値66で青学の物理にも落ちるのに
2浪のときは、国立理系偏差値68で、早稲田、慶応、上智(補欠)、中央大学の物理学科
全てに合格になるんですか?点が足りなかったはずはありません。
高校受験は不当の極みです。この世に自分から望まないのに偏差値19も下の高校に
進学する人間が私以外にいるのでしょうか?
じゃあ何故駿台で1浪のときは国立理系偏差値66で青学の物理にも落ちるのに
2浪のときは、国立理系偏差値68で、早稲田、慶応、上智(補欠)、中央大学の物理学科
全てに合格になるんですか?点が足りなかったはずはありません。
高校受験は不当の極みです。この世に自分から望まないのに偏差値19も下の高校に
進学する人間が私以外にいるのでしょうか?
932132人目の素数さん
2018/09/17(月) 22:52:49.18ID:Ri3o3kt6 >>931
点が足りなかったんだよ
点が足りなかったんだよ
>>932
その小学生みたいなレスやめてくれますか?
その小学生みたいなレスやめてくれますか?
935132人目の素数さん
2018/09/17(月) 22:54:52.86ID:mbjb6tyB テレビの悪口は無視すれば無害だし言わせておけばいいさ。
それより数学の話をしようよ。
それより数学の話をしようよ。
936132人目の素数さん
2018/09/17(月) 22:56:02.37ID:Ri3o3kt6 >>934
点数操作されたとかいう小学生でもしない言い訳やめましょう
点数操作されたとかいう小学生でもしない言い訳やめましょう
937132人目の素数さん
2018/09/17(月) 22:57:00.16ID:Ri3o3kt6 なんでこの人の点数を下げるの?
なんでわざわざテレビでこの人の悪口を言うの?
なんでわざわざテレビでこの人の悪口を言うの?
938132人目の素数さん
2018/09/17(月) 22:58:15.02ID:+wPdJ5bz いや、冷静に考えてさ、君のような極一般人の受験なり、生活なりに介入して誰得なん?
誰がなんのためにそんなことするん?
あれ?と思わん?
誰がなんのためにそんなことするん?
あれ?と思わん?
940132人目の素数さん
2018/09/17(月) 23:01:13.49ID:nWs1TvDp >>931
試験なら問題の回答を全て控えてテスト後にすぐ見直し出来るようにしておくのが常識なのですが、何故しなかったんでしょうか?
物的証拠がないのでそれが事実だったとしても、状況証拠の証言だけでは信用できないです
試験なら問題の回答を全て控えてテスト後にすぐ見直し出来るようにしておくのが常識なのですが、何故しなかったんでしょうか?
物的証拠がないのでそれが事実だったとしても、状況証拠の証言だけでは信用できないです
941132人目の素数さん
2018/09/17(月) 23:01:58.59ID:Ri3o3kt6943132人目の素数さん
2018/09/17(月) 23:08:00.59ID:+wPdJ5bz944132人目の素数さん
2018/09/17(月) 23:08:39.49ID:Ri3o3kt6 >>942
あなたの独り言を恐れる人なんていると思う?
あなたの独り言を恐れる人なんていると思う?
945132人目の素数さん
2018/09/17(月) 23:09:13.60ID:nWs1TvDp >>942
何で盗撮されてるとは考えないの?何で全部耳関連なの?
何で盗撮されてるとは考えないの?何で全部耳関連なの?
946132人目の素数さん
2018/09/17(月) 23:09:14.43ID:IvmiQcMs 交通事故までやらかしていたのか!
だから、確率的に考えてイカサマだって、下駄を私の場合には下げた。嫌がらせで。
テレビ朝日で、首相を馬鹿にすると三代祟られるというのを放送していた。
私の例からすると強ち虚構とも思えない。
テレビ朝日で、首相を馬鹿にすると三代祟られるというのを放送していた。
私の例からすると強ち虚構とも思えない。
948132人目の素数さん
2018/09/17(月) 23:12:17.34ID:Ri3o3kt6 >>947
何故あなたに嫌がらせをするの?
何故あなたに嫌がらせをするの?
949132人目の素数さん
2018/09/17(月) 23:13:05.26ID:nWs1TvDp950132人目の素数さん
2018/09/17(月) 23:15:17.97ID:+we0HO3w >>943
事故に見せかける暗殺は多くあるんじゃないの?
信号無視して横断歩道を渡っていたら、50kmの道路で加速して60km超ぐらい
のスピードで私を轢こうとした車があった。かなりRの小さい交差点で右折をしなければ
ならないところだったので、計画的としか思えない。
事故に見せかける暗殺は多くあるんじゃないの?
信号無視して横断歩道を渡っていたら、50kmの道路で加速して60km超ぐらい
のスピードで私を轢こうとした車があった。かなりRの小さい交差点で右折をしなければ
ならないところだったので、計画的としか思えない。
952132人目の素数さん
2018/09/17(月) 23:17:55.62ID:Ri3o3kt6 >>951
何故あなたを暗殺するの?
何故あなたを暗殺するの?
>>95
そんなテレビでの放送内容を一々メモしたりしませんから。
そんなテレビでの放送内容を一々メモしたりしませんから。
954132人目の素数さん
2018/09/17(月) 23:18:47.91ID:Ri3o3kt6 点数操作、嫌がらせ、盗聴、暗殺、全部理由がないんですよ
957132人目の素数さん
2018/09/17(月) 23:21:49.01ID:Ri3o3kt6 >>956
だってなんで5chでうだうだやってる無職にそんなことするんですか?
だってなんで5chでうだうだやってる無職にそんなことするんですか?
958132人目の素数さん
2018/09/17(月) 23:22:39.44ID:+we0HO3w >>953
じゃあテレビで何を言われようとも気にしなければいいんじゃないの?
どうせ大したこと放送してないんだし
人の賛同を得たいなら根拠をもっと明確にせよ
これはあなたの数学についても言えることだが
じゃあテレビで何を言われようとも気にしなければいいんじゃないの?
どうせ大したこと放送してないんだし
人の賛同を得たいなら根拠をもっと明確にせよ
これはあなたの数学についても言えることだが
959132人目の素数さん
2018/09/17(月) 23:24:07.68ID:ENijfptJ >>922
>駿台の国立理系の母集団で、偏差値10下の学科に落ちる人間
その「駿台の偏差値」というのは、高々1回の模擬試験の結果で算出されたものでしょう?
模擬試験で数学・物理・化学の全範囲が主題されるのなら、その偏差値を信頼してもいいかもしれないけれども、
数学・物理・化学の範囲は膨大だから、一回の試験では、その一部分の実力しか反映されていないのでは?
あなたの思っている偏差値は、たまたま自分が得意な部分が出て高めに出た偏差値なのではないのでしょうか?
>駿台の国立理系の母集団で、偏差値10下の学科に落ちる人間
その「駿台の偏差値」というのは、高々1回の模擬試験の結果で算出されたものでしょう?
模擬試験で数学・物理・化学の全範囲が主題されるのなら、その偏差値を信頼してもいいかもしれないけれども、
数学・物理・化学の範囲は膨大だから、一回の試験では、その一部分の実力しか反映されていないのでは?
あなたの思っている偏差値は、たまたま自分が得意な部分が出て高めに出た偏差値なのではないのでしょうか?
960132人目の素数さん
2018/09/17(月) 23:26:11.36ID:nWs1TvDp >>956
試験なら問題の回答を全て控えてテスト後にすぐ見直し出来るようにしておくのが常識なのですが、何故しなかったんでしょうか?
物的証拠がないのでそれが事実だったとしても、状況証拠の証言だけでは信用できないです。
他の場合も同様です。そこまで狙われていると感じるのなら、すぐに物的証拠を押さえられるように準備すればいいんです。
なんの対策もとらないとは、案外間抜けなんですね。だから狙われるんじゃないですかね。
試験なら問題の回答を全て控えてテスト後にすぐ見直し出来るようにしておくのが常識なのですが、何故しなかったんでしょうか?
物的証拠がないのでそれが事実だったとしても、状況証拠の証言だけでは信用できないです。
他の場合も同様です。そこまで狙われていると感じるのなら、すぐに物的証拠を押さえられるように準備すればいいんです。
なんの対策もとらないとは、案外間抜けなんですね。だから狙われるんじゃないですかね。
961132人目の素数さん
2018/09/17(月) 23:34:46.27ID:6PKE11M9962132人目の素数さん
2018/09/17(月) 23:37:16.92ID:ENijfptJ >>922
>駿台の国立理系で、5科目平均偏差値が66
それ、偏差値を全部足して5で割ったものですか?
「偏差値の平均」って意味があるとお思いですか?
「確率・統計」で平均と分散について勉強したでしょう?そのときに分散や分散のルートである標準偏差を学んだはず
ある一連の試行に対して平均点をa, 標準偏差を s としたとき、
このs, a, と自分の素点x だけを使って自分の順位が推定できる…@
というのが「偏差値が意味を持つ」立場の仮定ですが、試行がガウス分布でなければ@は正しくない
「確率・統計」をきちんと意味を考えながら勉強すれば、@は疑わしいことは、高校生の学習範囲で、すでに理解できるはず
そして、そういう偏差値を足したり割ったりした結果は、数学的に何の意味も持たないことも自明なはず
>駿台の国立理系で、5科目平均偏差値が66
それ、偏差値を全部足して5で割ったものですか?
「偏差値の平均」って意味があるとお思いですか?
「確率・統計」で平均と分散について勉強したでしょう?そのときに分散や分散のルートである標準偏差を学んだはず
ある一連の試行に対して平均点をa, 標準偏差を s としたとき、
このs, a, と自分の素点x だけを使って自分の順位が推定できる…@
というのが「偏差値が意味を持つ」立場の仮定ですが、試行がガウス分布でなければ@は正しくない
「確率・統計」をきちんと意味を考えながら勉強すれば、@は疑わしいことは、高校生の学習範囲で、すでに理解できるはず
そして、そういう偏差値を足したり割ったりした結果は、数学的に何の意味も持たないことも自明なはず
963132人目の素数さん
2018/09/17(月) 23:40:41.01ID:D4u6zPpw >>959
いやそうではない。1浪のときは春の模試で58それから、順調に上がり最後は66。だから
全ての模試で青学の物理の合格判定はAだった。ちなみに母集団の学力が低い駿台の
私大模試では3科目で偏差値78だった。
高校受験のイカサマはとんでもない。2学期ぐらいの偏差値は66ぐらい直近の75より
一つ前の試験は70ぐらいでした。東大にほぼ100%合格する筑波大付属より偏差値が
高かったのに、学区4位の都立ですよ。私に全て落ちたら大変だから、学区1位ではなく
4位を受けろと担任の教師がいいました。私は都立に行く気は0%なのでどうでもいいと
思ってそういうふうにしてしまいました。都立入試の結果は473点でした。
いやそうではない。1浪のときは春の模試で58それから、順調に上がり最後は66。だから
全ての模試で青学の物理の合格判定はAだった。ちなみに母集団の学力が低い駿台の
私大模試では3科目で偏差値78だった。
高校受験のイカサマはとんでもない。2学期ぐらいの偏差値は66ぐらい直近の75より
一つ前の試験は70ぐらいでした。東大にほぼ100%合格する筑波大付属より偏差値が
高かったのに、学区4位の都立ですよ。私に全て落ちたら大変だから、学区1位ではなく
4位を受けろと担任の教師がいいました。私は都立に行く気は0%なのでどうでもいいと
思ってそういうふうにしてしまいました。都立入試の結果は473点でした。
>>962
確率統計に興味はないが、5科目合計の点数での偏差値という意味で書いてきました
確率統計に興味はないが、5科目合計の点数での偏差値という意味で書いてきました
965132人目の素数さん
2018/09/17(月) 23:42:51.14ID:Ri3o3kt6 でも結局点数が足りなくてダメだったんだよね
966132人目の素数さん
2018/09/17(月) 23:44:31.92ID:+we0HO3w 次スレはもう立てるなよ
発表したいなら自分のブログでやれ
発表したいなら自分のブログでやれ
967132人目の素数さん
2018/09/17(月) 23:46:26.48ID:D4u6zPpw >>965
だから、筑波大付属や開成レベルの偏差値で都立の学区4位ってあり得ないでしょうと
言っているんだけど。イカサマに決まっている。点数を不当に減点すれば
どうにでもなるわけだよね。受験の結果なんて。いろいろ判明する不正な受験の事件を
考えれば。それは不正に加点するというときに問題になる場合が多いけれど
逆に点を減らす不正もあるのではないかというだけのこと。
確率的に考えて私の受験の結果はおかしいことだらけだ。
だから、筑波大付属や開成レベルの偏差値で都立の学区4位ってあり得ないでしょうと
言っているんだけど。イカサマに決まっている。点数を不当に減点すれば
どうにでもなるわけだよね。受験の結果なんて。いろいろ判明する不正な受験の事件を
考えれば。それは不正に加点するというときに問題になる場合が多いけれど
逆に点を減らす不正もあるのではないかというだけのこと。
確率的に考えて私の受験の結果はおかしいことだらけだ。
968132人目の素数さん
2018/09/17(月) 23:49:07.42ID:CRq5xwHM >>968
じゃあ一人の無職の人間を何でテレビの出演者は攻撃するんですか?
じゃあ一人の無職の人間を何でテレビの出演者は攻撃するんですか?
970132人目の素数さん
2018/09/17(月) 23:52:24.65ID:nWs1TvDp971132人目の素数さん
2018/09/17(月) 23:52:53.94ID:Ri3o3kt6 >>969
それあなたの幻聴なんですよ
それあなたの幻聴なんですよ
972132人目の素数さん
2018/09/17(月) 23:54:39.24ID:ENijfptJ >>963
>1浪のときは春の模試で58それから、順調に上がり最後は66。
偏差値 58 というのも、それは春の模擬試験1回から算出した「58」なんですよね
最後の偏差値 66 というのも、それは一回の模擬試験で算出した「66」なんですよね
それぞれの試験で、数学、物理、化学の全範囲が出題されたんですか?そうではないですよね
自分の得意範囲が出れば、偏差値は上目に出てもおかしくないでしょう?
あと、模擬試験が満点100の平均点50になるように設計されていなかった場合は、不正確になります、偏差値 70 以上なんて、実はほとんど当てにならない
根本にたちかえって、「3科目で偏差値 78」というのは、科目の素点を合計したか、科目の偏差値の平均をとったか、いずれにしても、そんな操作が意味を持つというのは限りなく疑わしい
本番試験だって同じこと
いくら模擬試験の「偏差値」がよくても、当日の出題が、自分の理解の足りない分野にあたってしまったら、
模擬試験の偏差値を反映しない結果になる可能性は十分にあるでしょう
まず「偏差値」なるものが、数学的に意味がないものであるを、「確率・統計」の教科書を読み返して確かめてみたらいかがですか?
>1浪のときは春の模試で58それから、順調に上がり最後は66。
偏差値 58 というのも、それは春の模擬試験1回から算出した「58」なんですよね
最後の偏差値 66 というのも、それは一回の模擬試験で算出した「66」なんですよね
それぞれの試験で、数学、物理、化学の全範囲が出題されたんですか?そうではないですよね
自分の得意範囲が出れば、偏差値は上目に出てもおかしくないでしょう?
あと、模擬試験が満点100の平均点50になるように設計されていなかった場合は、不正確になります、偏差値 70 以上なんて、実はほとんど当てにならない
根本にたちかえって、「3科目で偏差値 78」というのは、科目の素点を合計したか、科目の偏差値の平均をとったか、いずれにしても、そんな操作が意味を持つというのは限りなく疑わしい
本番試験だって同じこと
いくら模擬試験の「偏差値」がよくても、当日の出題が、自分の理解の足りない分野にあたってしまったら、
模擬試験の偏差値を反映しない結果になる可能性は十分にあるでしょう
まず「偏差値」なるものが、数学的に意味がないものであるを、「確率・統計」の教科書を読み返して確かめてみたらいかがですか?
973132人目の素数さん
2018/09/17(月) 23:55:22.99ID:RJpeeck8 そういや、ようつべかなんかで、統合失調症患者同士のやりとりを見たけど、
一方が「電波攻撃」「悪口」等の被害妄想があると言ったら片方は「そんなことあるわけないじゃん、あほ」って言いつつ、
自分はそういう被害を受けてるけどね、って言ってた。
>>1は友人でも親でもいいけど、自分と同様の被害を訴えていたらどう思うの?
一方が「電波攻撃」「悪口」等の被害妄想があると言ったら片方は「そんなことあるわけないじゃん、あほ」って言いつつ、
自分はそういう被害を受けてるけどね、って言ってた。
>>1は友人でも親でもいいけど、自分と同様の被害を訴えていたらどう思うの?
974132人目の素数さん
2018/09/17(月) 23:59:51.09ID:ENijfptJ >>964
>確率統計に興味はないが、5科目合計の点数での偏差値
偏差値による評価がまやかしであることは、実は「確率・統計」の教科書に十分に記述されています
皆、特に理系の人間は、「確率・統計」を勉強して、偏差値による評価が実力を反映していないことを十分に承知しながら、受験をくぐりぬけてきたわけです
しかしあなたはそうではなかった、つまり、実力がなかった、ということになるのではないでしょうか?
>確率統計に興味はないが、5科目合計の点数での偏差値
偏差値による評価がまやかしであることは、実は「確率・統計」の教科書に十分に記述されています
皆、特に理系の人間は、「確率・統計」を勉強して、偏差値による評価が実力を反映していないことを十分に承知しながら、受験をくぐりぬけてきたわけです
しかしあなたはそうではなかった、つまり、実力がなかった、ということになるのではないでしょうか?
975132人目の素数さん
2018/09/17(月) 23:59:53.43ID:bGuoEh3u 統失の妄想に真正面から反論しても時間の無駄だと思うがお前らすげえなほんとうに
976132人目の素数さん
2018/09/18(火) 00:17:01.85ID:DDbX/VPU977132人目の素数さん
2018/09/18(火) 00:19:18.62ID:/wc9VJKp >>971
みのもんたなんて、カメラの前に寄ってきて、紙を示しながら私を馬鹿にしていましたが。
>>972
駿台の国立理系は5科目(英・国・社・数学・物理・科学)を試験をしますからその合計での
偏差値です。
>あと、模擬試験が満点100の平均点50になるように設計されていなかった場合は、
>不正確になります、偏差値 70 以上なんて、実はほとんど当てにならない
>根本にたちかえって、「3科目で偏差値 78」というのは、科目の素点を合計したか、
>科目の偏差値の平均をとったか、いずれにしても、そんな操作が意味を持つというのは限りなく疑わしい
何言っているんですが、合計点に対して偏差値をつけたものだと思います。
正規分布に従っていれば、偏差値75は上から0.3%ぐらいだと思います。記憶が正しければと
いうことですけど。
あなたは偏差値の有効性を認めないのですか?偏差値に従って志望校を決めるというのが普通だと
思いますが。
>>973
そういう内容を見たことはないが、産業医が精神病レッテルを張る場合があるという内容の記事は
読んだことがある。
>>974
実力のない人間が早稲田の物理学科に、96点/180点で受かる試験に135点も取って合格することが
できるのですか?面白いですね。
>>975
侮辱はいい加減にしろ
みのもんたなんて、カメラの前に寄ってきて、紙を示しながら私を馬鹿にしていましたが。
>>972
駿台の国立理系は5科目(英・国・社・数学・物理・科学)を試験をしますからその合計での
偏差値です。
>あと、模擬試験が満点100の平均点50になるように設計されていなかった場合は、
>不正確になります、偏差値 70 以上なんて、実はほとんど当てにならない
>根本にたちかえって、「3科目で偏差値 78」というのは、科目の素点を合計したか、
>科目の偏差値の平均をとったか、いずれにしても、そんな操作が意味を持つというのは限りなく疑わしい
何言っているんですが、合計点に対して偏差値をつけたものだと思います。
正規分布に従っていれば、偏差値75は上から0.3%ぐらいだと思います。記憶が正しければと
いうことですけど。
あなたは偏差値の有効性を認めないのですか?偏差値に従って志望校を決めるというのが普通だと
思いますが。
>>973
そういう内容を見たことはないが、産業医が精神病レッテルを張る場合があるという内容の記事は
読んだことがある。
>>974
実力のない人間が早稲田の物理学科に、96点/180点で受かる試験に135点も取って合格することが
できるのですか?面白いですね。
>>975
侮辱はいい加減にしろ
979132人目の素数さん
2018/09/18(火) 00:24:59.32ID:cDODlI0s980132人目の素数さん
2018/09/18(火) 00:31:54.24ID:ueF6atas >>977
>正規分布に従っていれば、偏差値75は上から0.3%ぐらいだと思います。記憶が正しければということですけど。
それは模擬試験の素点 x が上にも下にも無限大に伸びていくのなら、模擬試験は「正規分布に従う」「正規分布にあるていど近い」と仮定しても妥当(つまり偏差値が実力を反映している)としますが、
現実の模擬試験は0点〜満点(100点)の間に限定されている(…@)わけでしょう?
そして標準偏差は0点〜満点の差に比べると比較的大きい…A
@、Aの状況から、模擬試験の素点が正規分布に従う、と仮定するのが不自然になります
そして、正規分布にしたがっていないのなら「偏差値 75 が上から0.3% 位」とはいえないかと
模擬試験の平均点が、素点の範囲のちょうど真ん中になければ、まず「偏差値75」なんて、ほとんどあてにならない数字です
高偏差値をたたき出す状況、というのは、まず、平均点がかなり下に寄っている状況といってよい、そんな分布では、(平均と分散から算出される)偏差値から順位を推定することは妥当でないでしょうね
>正規分布に従っていれば、偏差値75は上から0.3%ぐらいだと思います。記憶が正しければということですけど。
それは模擬試験の素点 x が上にも下にも無限大に伸びていくのなら、模擬試験は「正規分布に従う」「正規分布にあるていど近い」と仮定しても妥当(つまり偏差値が実力を反映している)としますが、
現実の模擬試験は0点〜満点(100点)の間に限定されている(…@)わけでしょう?
そして標準偏差は0点〜満点の差に比べると比較的大きい…A
@、Aの状況から、模擬試験の素点が正規分布に従う、と仮定するのが不自然になります
そして、正規分布にしたがっていないのなら「偏差値 75 が上から0.3% 位」とはいえないかと
模擬試験の平均点が、素点の範囲のちょうど真ん中になければ、まず「偏差値75」なんて、ほとんどあてにならない数字です
高偏差値をたたき出す状況、というのは、まず、平均点がかなり下に寄っている状況といってよい、そんな分布では、(平均と分散から算出される)偏差値から順位を推定することは妥当でないでしょうね
982132人目の素数さん
2018/09/18(火) 00:46:13.43ID:cDODlI0s 偏差値と点数混同して記憶してそう
983132人目の素数さん
2018/09/18(火) 00:47:32.19ID:cDODlI0s >>983
だから、確率的に考えられないって言っているの。
周りで偏差値が7も9も下の高校に落ちた人間が一人でもいるわけ?
政治権力の圧力かもしれないし、内申操作かもしれないですね。
何故私が高校生になったころ、内申操作が社会問題になっていたのですか?
だから、確率的に考えられないって言っているの。
周りで偏差値が7も9も下の高校に落ちた人間が一人でもいるわけ?
政治権力の圧力かもしれないし、内申操作かもしれないですね。
何故私が高校生になったころ、内申操作が社会問題になっていたのですか?
985132人目の素数さん
2018/09/18(火) 00:53:37.26ID:cDODlI0s >>984
確率的に点数操作の方があり得ないよ
確率的に点数操作の方があり得ないよ
986132人目の素数さん
2018/09/18(火) 00:54:38.75ID:JaEppXdF987132人目の素数さん
2018/09/18(火) 00:54:48.12ID:cDODlI0s それと偏差値の話なのか内申の話なのか一貫性がないよ
988132人目の素数さん
2018/09/18(火) 00:55:41.98ID:ueF6atas >>981
ある一回の模擬試験にて、それも各教科を素点を単純に足すとか各教科の偏差値を平均するとか、のようなやりかただったら
「偏差値 75 と 68 の二者の実量に大きな差はないでしょうね」
そういう偏差値の計算の仕方では、「正規分布を仮定していいのでしょうか?」
>偏差値が高い高校の受験は当てにならず運しだいということですか?
偏差値による実力の判定はきわめて不正確です、特に難易度の低い中学生レベルの問題で差別化する高校入試は、偏差値はあてにならない
完全に運まかせ、とはいいませんが、偏差値 65 と 70 の差なんて、当日の本番試験での出来によって簡単にひっくり返せるようなものですね
ある一回の模擬試験にて、それも各教科を素点を単純に足すとか各教科の偏差値を平均するとか、のようなやりかただったら
「偏差値 75 と 68 の二者の実量に大きな差はないでしょうね」
そういう偏差値の計算の仕方では、「正規分布を仮定していいのでしょうか?」
>偏差値が高い高校の受験は当てにならず運しだいということですか?
偏差値による実力の判定はきわめて不正確です、特に難易度の低い中学生レベルの問題で差別化する高校入試は、偏差値はあてにならない
完全に運まかせ、とはいいませんが、偏差値 65 と 70 の差なんて、当日の本番試験での出来によって簡単にひっくり返せるようなものですね
989132人目の素数さん
2018/09/18(火) 00:57:13.98ID:OaUQIOsD >>984
俺だけど。
俺だけど。
990132人目の素数さん
2018/09/18(火) 00:58:53.55ID:cDODlI0s でもまぁ、18年前に精神病の診断もらって何もしてこなかったってのは、18年以上ずっと病気なんだよ
例えばそんな長い期間ずっと頭痛がするとか、熱があるとか想像してみたら恐怖だ
治療を受けたら必ず楽になるわけでないけど、治療しないとずっと具合悪いままだよ
例えばそんな長い期間ずっと頭痛がするとか、熱があるとか想像してみたら恐怖だ
治療を受けたら必ず楽になるわけでないけど、治療しないとずっと具合悪いままだよ
991132人目の素数さん
2018/09/18(火) 01:05:26.42ID:ueF6atas >>984
>偏差値が7も9も下の高校に落ちた人間が一人でもいるわけ?
私がそうですね、大学入試でいうと
前期日程の神戸大学工学部システム工学科に受かりましたが、同じ年のC日程の旧大阪府立大学工学部に落ちました、センター試験の足切りにひっかかったのです…
大阪府立大学の偏差値は当時は 60, 神戸大学は学科によるが 69 くらいはありました
そんな大阪府立大学の足きり点に引っかかるくらい、センター試験はボロボロ(おそらく偏差値的に 50 くらい)だったのですが、神戸大学の出題がたまたま私に相性がよく、晴れて合格となってのです。
(以上は古い名称だから、私の年齢もわかっちゃうね)
>偏差値が7も9も下の高校に落ちた人間が一人でもいるわけ?
私がそうですね、大学入試でいうと
前期日程の神戸大学工学部システム工学科に受かりましたが、同じ年のC日程の旧大阪府立大学工学部に落ちました、センター試験の足切りにひっかかったのです…
大阪府立大学の偏差値は当時は 60, 神戸大学は学科によるが 69 くらいはありました
そんな大阪府立大学の足きり点に引っかかるくらい、センター試験はボロボロ(おそらく偏差値的に 50 くらい)だったのですが、神戸大学の出題がたまたま私に相性がよく、晴れて合格となってのです。
(以上は古い名称だから、私の年齢もわかっちゃうね)
993132人目の素数さん
2018/09/18(火) 01:22:12.11ID:cDODlI0s994132人目の素数さん
2018/09/18(火) 02:24:51.74ID:bCEvKKhg 無職ダメ板か、メンヘラ板に1は引っ越したほうがいい。
1の書き込みは数学板ではない。
1の書き込みは数学板ではない。
995132人目の素数さん
2018/09/18(火) 02:41:47.72ID:hTYNtONR 数学として板違い以前に、スレタイとも合っていない
1の個人的な話したけりゃ他所でやんなさい
なお、分からないスレにも書き込まないように
1の個人的な話したけりゃ他所でやんなさい
なお、分からないスレにも書き込まないように
996132人目の素数さん
2018/09/18(火) 02:46:16.27ID:KlCqpobf テンプレ貼っとく
【 他虐型ADHDの特徴 】
・極端な学歴至上主義や、在日、底辺職への強引な差別
・周囲の人を馬鹿にすることが多く他者を決して褒めない
・自分の価値観が全てで、周囲の全員にしつこく繰り返して主張し続ける
・自分の価値観以外の考え方が存在すること自体が理解できない
・自分の評価には異常にこだわる
・無理のある言い訳を繰り返して自分が悪いことは一切認めようとしない
・何でもゴリ押ししようと必死、強引に言い張って主張を通すパターンを続ける
・問い詰められると自分が被害者であることをアピールしだす
【 他虐型ADHDの特徴 】
・極端な学歴至上主義や、在日、底辺職への強引な差別
・周囲の人を馬鹿にすることが多く他者を決して褒めない
・自分の価値観が全てで、周囲の全員にしつこく繰り返して主張し続ける
・自分の価値観以外の考え方が存在すること自体が理解できない
・自分の評価には異常にこだわる
・無理のある言い訳を繰り返して自分が悪いことは一切認めようとしない
・何でもゴリ押ししようと必死、強引に言い張って主張を通すパターンを続ける
・問い詰められると自分が被害者であることをアピールしだす
997132人目の素数さん
2018/09/18(火) 07:47:27.05ID:ueF6atas >>992
>75は高校受験の進学塾の偏差値で、68は駿台予備校の5科目合計の偏差値。
>母集団が違うから当然偏差値も違う。
>5ぐらいの差ではなく7とか9なわけ。75なのに、66とか68のA判定の高校に
>落ちるのはどう考えても不当。
高校入試は、
@試験範囲が中学生レベルだから、差がつきにくく、また差がついても、それが実力をあらわしたものではない
A高校入試には「内申点」があり、教師がいかようにも操作できる、教師に反感を買って、オール1とか送られてしまうこともありうる
たぶんAのせいでしょうね、でもこれは教師の権利だからしかたないね
>>991
で示したように、番狂わせなんて日常茶飯時ですよ、偏差値評価は実は実力を反映しているとは限らないから、
そういう人間が大学入学後にごろごろいることがよくわかりました
>75は高校受験の進学塾の偏差値で、68は駿台予備校の5科目合計の偏差値。
>母集団が違うから当然偏差値も違う。
>5ぐらいの差ではなく7とか9なわけ。75なのに、66とか68のA判定の高校に
>落ちるのはどう考えても不当。
高校入試は、
@試験範囲が中学生レベルだから、差がつきにくく、また差がついても、それが実力をあらわしたものではない
A高校入試には「内申点」があり、教師がいかようにも操作できる、教師に反感を買って、オール1とか送られてしまうこともありうる
たぶんAのせいでしょうね、でもこれは教師の権利だからしかたないね
>>991
で示したように、番狂わせなんて日常茶飯時ですよ、偏差値評価は実は実力を反映しているとは限らないから、
そういう人間が大学入学後にごろごろいることがよくわかりました
998132人目の素数さん
2018/09/18(火) 09:51:44.34ID:fyBCp0YB 都立城東高校の特別支援学校での校内偏差値が
良かったとでも言うのだろうか?
1は、特別支援学校でも落ちこぼれてしまい、
3年間ずっと勉強できなかったクズなのに。
良かったとでも言うのだろうか?
1は、特別支援学校でも落ちこぼれてしまい、
3年間ずっと勉強できなかったクズなのに。
>>998
高校を馬鹿にすんな、普通科しかないわボケ
高校を馬鹿にすんな、普通科しかないわボケ
1000132人目の素数さん
2018/09/18(火) 10:31:13.14ID:fyBCp0YB 自分の入学した高校を馬鹿にしているのは1
バカにせずにちゃんと授業についてくるように頑張っていれば、
今ここで小学生以下のミスを100連発することもなく
数学の話がさっぱり理解不能なんて悲惨なことにはならなかった。
バカにせずにちゃんと授業についてくるように頑張っていれば、
今ここで小学生以下のミスを100連発することもなく
数学の話がさっぱり理解不能なんて悲惨なことにはならなかった。
10011001
Over 1000Thread このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 27日 0時間 18分 19秒
新しいスレッドを立ててください。
life time: 27日 0時間 18分 19秒
10021002
Over 1000Thread 5ちゃんねるの運営はプレミアム会員の皆さまに支えられています。
運営にご協力お願いいたします。
───────────────────
《プレミアム会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────
会員登録には個人情報は一切必要ありません。
月300円から匿名でご購入いただけます。
▼ プレミアム会員登録はこちら ▼
https://premium.5ch.net/
▼ 浪人ログインはこちら ▼
https://login.5ch.net/login.php
運営にご協力お願いいたします。
───────────────────
《プレミアム会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────
会員登録には個人情報は一切必要ありません。
月300円から匿名でご購入いただけます。
▼ プレミアム会員登録はこちら ▼
https://premium.5ch.net/
▼ 浪人ログインはこちら ▼
https://login.5ch.net/login.php
レス数が1000を超えています。これ以上書き込みはできません。
ニュース
- 高校トイレで生徒に暴行の動画が拡散、栃木県警が容疑で捜査 加害生徒「本当に申し訳なかった」 県教委などに抗議殺到 ★3 [Hitzeschleier★]
- 【物価高】2026年も続く「飲食料品」値上げ、1万5000品目前後の見通し 原材料・物流・人件費が重荷に ★2 [煮卵★]
- 【国連安保理】ベネズエラ攻撃で非難の応酬 国際法違反に懸念も ★3 [蚤の市★]
- 高市首相の国会答弁に「日本の万博がけがれる」 関経連会長が批判 「あれは全然だめ」 [少考さん★]
- 木原官房長官「直接の当事者でない」 米ベネズエラ攻撃の言及避ける [少考さん★]
- 【400日ぶりの肉声】中居正広が独占直撃に語ったこと 騒動後も支え続けた15年来の恋人と百貨店で買い物デート《初2ショット》★2 [Ailuropoda melanoleuca★]
- 女子新体操「馬鹿め! ジャップオス避けに、全然エロくないレオタードを開発したわ!!」 [592058334]
- X、grokで児童ポルノを生成したロリコンを法執行機関に通報開始wwwwwwwwwwwwwwwwwww [329329848]
- 【画像】悠仁内親王殿下がgrokで脱がされててワロタ
- 日本人の「髪離れ」が深刻に…美容室の倒産が2年連続で過去最多を更新 [779857986]
- ▶ホロライブすこすこスレ🏡
- 【悲報】アメリカ、国連安保理緊急会合で各国から叩かれ始めるWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
