クレレ誌:
https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AC%E3%83%AC%E8%AA%8C
クレレ誌はアカデミーの紀要ではない最初の主要な数学学術誌の一つである(Neuenschwander 1994, p. 1533)。ニールス・アーベル、ゲオルク・カントール、ゴットホルト・アイゼンシュタインらの研究を含む著名な論文を掲載してきた。
(引用終り)
そこで
現代の純粋・応用数学(含むガロア理論)を目指して
新スレを立てる(^^;
<前スレ>
純粋・応用数学(含むガロア理論)9
https://rio2016.5ch.net/test/read.cgi/math/1623019011/
<関連姉妹スレ>
ガロア第一論文及びその関連の資料スレ
https://rio2016.5ch.net/test/read.cgi/math/1615510393/1-
箱入り無数目を語る部屋
Inter-universal geometry と ABC予想 (応援スレ) 65
https://rio2016.5ch.net/test/read.cgi/math/1644632425/
IUTを読むための用語集資料スレ2
https://rio2016.5ch.net/test/read.cgi/math/1606813903/
現代数学の系譜 カントル 超限集合論他 3
https://rio2016.5ch.net/test/read.cgi/math/1595034113/
<過去スレの関連(含むガロア理論)>
・現代数学の系譜 工学物理雑談 古典ガロア理論も読む84
https://rio2016.5ch.net/test/read.cgi/math/1582200067/
・現代数学の系譜 工学物理雑談 古典ガロア理論も読む83
https://rio2016.5ch.net/test/read.cgi/math/1581243504/
純粋・応用数学(含むガロア理論)10
■ このスレッドは過去ログ倉庫に格納されています
1132人目の素数さん
2022/03/06(日) 10:33:12.21ID:1uP7mIdZ286132人目の素数さん
2022/03/27(日) 10:18:39.16ID:iGgJqN7k >>284 補足
まず、前振り
https://ja.wikipedia.org/wiki/%E5%86%86%E5%91%A8%E7%BE%A4
円周群
周群(えんしゅうぐん、英: circle group; 円群)とは、絶対値 1 の複素数(単位複素数)全体(つまり複素数平面上の単位円) のなす乗法群のことである。記号で
T ={z∈ C :|z|=1}
と表し、(T, ×) はアーベル群 C× の部分群である。
円周群は複素 1次ユニタリ行列全体のなす群 U(1) と見ることもできて、これは複素数平面上で原点中心の回転として作用する。
円周群は角 θ による媒介変数表示が可能で、写像
θ → z=e^iθ =cosθ +isinθ
は円周群に対する指数写像となる。
抽象群構造
本節では位相構造を考えない単に代数的な群としての円周群の構造について扱う。
円周群 T は可除群である。そのねじれ部分群は任意の正整数に亙る 1 の冪根全体の成す集合として与えられ Q/Z に同型である。可除群の構造定理と、選択公理を用いれば、T が Q/Z と適当な数の Q のコピーとの直和に同型となることが分かる[要出典]。このときの Q のコピーの数は(直和群の濃度が正しくなるためには)連続体濃度 ?? でなければならないが、Q の連続体濃度 ?? 個のコピーの直和は R に同型(R が Q 上の ??-次元ベクトル空間であるのと同様)なのだから、代数的な群の同型
T =〜 R ○+(Q/Z) (○+は直和記号)
を得る。同様にして、同型
C^x =〜 R ○+(Q/Z)(○+は直和記号)
も証明できる(C× もまた加除アーベル群で、そのねじれ部分群は T のねじれ部分群と同一であることによる)。
また>>261より
https://en.wikipedia.org/wiki/Profinite_integer
Profinite integer
Z^=lim← Z/nz=Πp Zp
(引用終り)
これで 対応としては、下記か
実数 R → Q → Z → Z/nz → Z^
円周群 R○+(Q/Z) → Q/Z → Z/Z → Z/nz → Z^(1)
まず、前振り
https://ja.wikipedia.org/wiki/%E5%86%86%E5%91%A8%E7%BE%A4
円周群
周群(えんしゅうぐん、英: circle group; 円群)とは、絶対値 1 の複素数(単位複素数)全体(つまり複素数平面上の単位円) のなす乗法群のことである。記号で
T ={z∈ C :|z|=1}
と表し、(T, ×) はアーベル群 C× の部分群である。
円周群は複素 1次ユニタリ行列全体のなす群 U(1) と見ることもできて、これは複素数平面上で原点中心の回転として作用する。
円周群は角 θ による媒介変数表示が可能で、写像
θ → z=e^iθ =cosθ +isinθ
は円周群に対する指数写像となる。
抽象群構造
本節では位相構造を考えない単に代数的な群としての円周群の構造について扱う。
円周群 T は可除群である。そのねじれ部分群は任意の正整数に亙る 1 の冪根全体の成す集合として与えられ Q/Z に同型である。可除群の構造定理と、選択公理を用いれば、T が Q/Z と適当な数の Q のコピーとの直和に同型となることが分かる[要出典]。このときの Q のコピーの数は(直和群の濃度が正しくなるためには)連続体濃度 ?? でなければならないが、Q の連続体濃度 ?? 個のコピーの直和は R に同型(R が Q 上の ??-次元ベクトル空間であるのと同様)なのだから、代数的な群の同型
T =〜 R ○+(Q/Z) (○+は直和記号)
を得る。同様にして、同型
C^x =〜 R ○+(Q/Z)(○+は直和記号)
も証明できる(C× もまた加除アーベル群で、そのねじれ部分群は T のねじれ部分群と同一であることによる)。
また>>261より
https://en.wikipedia.org/wiki/Profinite_integer
Profinite integer
Z^=lim← Z/nz=Πp Zp
(引用終り)
これで 対応としては、下記か
実数 R → Q → Z → Z/nz → Z^
円周群 R○+(Q/Z) → Q/Z → Z/Z → Z/nz → Z^(1)
287132人目の素数さん
2022/03/27(日) 10:30:15.91ID:iGgJqN7k >>284&>>286 補足
”so that their limit is the circle group T = R/Z.”に関する下記の質疑が、参考になる
https://mathoverflow.net/questions/14487/the-continuous-as-the-limit-of-the-discrete
The continuous as the limit of the discrete asked Feb 7, 2010 Matt
Reading this documment: www.math.ucla.edu/~tao/preprints/compactness.pdf, I got interested in the following thing: "One can also use compacti?cations to view the continuous as the limit of the discrete; for instance, it is possible to compactify the sequence Z/2Z, Z/3Z, Z/4Z, etc. of cyclic groups, so that their limit is the circle group T = R/Z.". Could you give me a point of start to understand what idea of compactification is being used there? Where could I find an sketch of proof for that fact?
つづく
”so that their limit is the circle group T = R/Z.”に関する下記の質疑が、参考になる
https://mathoverflow.net/questions/14487/the-continuous-as-the-limit-of-the-discrete
The continuous as the limit of the discrete asked Feb 7, 2010 Matt
Reading this documment: www.math.ucla.edu/~tao/preprints/compactness.pdf, I got interested in the following thing: "One can also use compacti?cations to view the continuous as the limit of the discrete; for instance, it is possible to compactify the sequence Z/2Z, Z/3Z, Z/4Z, etc. of cyclic groups, so that their limit is the circle group T = R/Z.". Could you give me a point of start to understand what idea of compactification is being used there? Where could I find an sketch of proof for that fact?
つづく
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 【俳優】吉沢亮 酒に酔って侵入した隣室は鍵が開いていた 滞在約5分でトイレを使用 今後の活動や会見は未定 ★3 [muffin★]
- 【テレビ】中居正広が司会の7日放送『仰天ニュース』 日テレ「明日の放送は適切な対応をいたします」とコメント [冬月記者★]
- 【立憲】野田代表、消費減税「将来世代にプラスにならない」「現実的な路線を取っていく」 [樽悶★]
- ケンタッキー「食べ放題」期間限定で開催! [おっさん友の会★]
- 関経連会長「赤字になったらどうにもならないので、チケットを買ってください」…新年互礼会 万博の成功と関西経済の活性化願う 大阪 [少考さん★]
- 【芸能】47都道府県別 『自慢の出身芸能人』1位を発表! 静岡:広瀬すず、石川:浜辺美波、神奈川:中居正広、徳島:米津玄師… [冬月記者★]
- 【動画】サンリオピューロランド、ポップコーン持ち逃げ少女が話題。複数目撃ありおそらく年パスで連れてこられている子供。 [776365898]
- 高校生の7割「原発は必要」 [389326466]
- 宇宙について質問?
- 【悲報】吉沢亮さん、トイレを約5分借りていた ウンコの可能性が急浮上
- 【悲報】斎藤元彦陣営のネット広報担当会社が投稿したnoteで騒然★358 [931948549]
- 小田急の準急でいつも奇声あげてる障害者乗ってるでしょ?