2000年以上前からある奇数の完全数が存在するのかという
数学上の未解決問題の証明の計算方法が明らかになりました
wolframさんの計算結果により証明できた模様です。
(前スレ)
奇数の完全数の存在に関する証明が完成しました2
https://rio2016.5ch.net/test/read.cgi/math/1534900374/
(それより前のスレ)
最古の未解決問題が解決されたのか
https://rio2016.5ch.net/test/read.cgi/math/1522147912/
奇数の完全数の存在に関する証明は正しいはず
https://rio2016.5ch.net/test/read.cgi/math/1530434042/
奇数の完全数の存在に関する証明が完成しました
https://rio2016.5ch.net/test/read.cgi/math/1533414338/
(関連スレ)
奇数の完全数の有無について [無断転載禁止](c)2ch.net
https://rio2016.5ch.net/test/read.cgi/math/1483900653/
奇数の完全数の有無について2
https://rio2016.5ch.net/test/read.cgi/math/1523602627/
探検
奇数の完全数の存在に関する証明
■ このスレッドは過去ログ倉庫に格納されています
238132人目の素数さん
2018/09/24(月) 17:07:27.81ID:cbJ4AGw0 >>238
それがあったら、全ての変数で正しいんだから、問題の解を調べる必要がないじゃないですか?
それがあったら、全ての変数で正しいんだから、問題の解を調べる必要がないじゃないですか?
240132人目の素数さん
2018/09/24(月) 17:18:42.16ID:9zrbl8Jf241132人目の素数さん
2018/09/24(月) 17:19:24.62ID:cbJ4AGw0242132人目の素数さん
2018/09/24(月) 17:20:40.24ID:Z9l3DYh1 <高木時空での正誤判定>
・1が書いた場合
正しい!なぜこんな簡単なことも分からないのか!
・1のミスが指摘された場合
分からない!数学的に意味がない!
・1が書いた場合
正しい!なぜこんな簡単なことも分からないのか!
・1のミスが指摘された場合
分からない!数学的に意味がない!
244132人目の素数さん
2018/09/24(月) 17:43:08.83ID:9zrbl8Jf もっと簡単で正しい証明ができました
yを奇数の完全数とし、その約数のうちの一つをpとする。このとき、
0p=0
が成り立つので、pは不定となり矛盾。したがって奇数の完全数は存在しない。
簡単な証明の方が評価されるので、私の勝ちですね
お疲れさまでした
yを奇数の完全数とし、その約数のうちの一つをpとする。このとき、
0p=0
が成り立つので、pは不定となり矛盾。したがって奇数の完全数は存在しない。
簡単な証明の方が評価されるので、私の勝ちですね
お疲れさまでした
245132人目の素数さん
2018/09/24(月) 18:02:46.21ID:H+RX+3OI >>232
>>「(B)をみたすのに(C)を満たさないものがあるのはおかしい」
>このようなことは書いていません。
>(C)を満たさないのに(B)が成立するからおかしいのです。
>
>全てのpで正しい⇒NOT (C)⇒NOT (A)
「(C)を満たさないのに」というのは何が(C)をみたさないのですか?
あなたの論文で p は(C)を満たさないがどこかで証明されていますか?
論文ででてくる p は(B)を満たします。
そして(B)を満たす p は必ずしも(C)を満たすとは限りません。
そこまでは正しい。
しかし「必ずしも(C)を満たさない。」ということと「(C)が満たされないかもしれない。」は意味がちがうでしょ?
もっというなら
「全てのpで正しい⇒NOT (C)」
これがおかしいんですよ。
”すべてのpで正しい(B)の解の集合” と “p≡1 (mod 4)を満たさないpの集合” とどちらが大きいですか?
前者の方が大きいですよね?
よって (B)⇒not (C) なんて成立しないんですよ。
⇒の向きとその⇒の指し示す包含関係についてあなたは逆に理解してるんですよ。
>>「(B)をみたすのに(C)を満たさないものがあるのはおかしい」
>このようなことは書いていません。
>(C)を満たさないのに(B)が成立するからおかしいのです。
>
>全てのpで正しい⇒NOT (C)⇒NOT (A)
「(C)を満たさないのに」というのは何が(C)をみたさないのですか?
あなたの論文で p は(C)を満たさないがどこかで証明されていますか?
論文ででてくる p は(B)を満たします。
そして(B)を満たす p は必ずしも(C)を満たすとは限りません。
そこまでは正しい。
しかし「必ずしも(C)を満たさない。」ということと「(C)が満たされないかもしれない。」は意味がちがうでしょ?
もっというなら
「全てのpで正しい⇒NOT (C)」
これがおかしいんですよ。
”すべてのpで正しい(B)の解の集合” と “p≡1 (mod 4)を満たさないpの集合” とどちらが大きいですか?
前者の方が大きいですよね?
よって (B)⇒not (C) なんて成立しないんですよ。
⇒の向きとその⇒の指し示す包含関係についてあなたは逆に理解してるんですよ。
246132人目の素数さん
2018/09/24(月) 18:16:07.27ID:H+RX+3OI >>245
訂正
✕しかし「必ずしも(C)を満たさない。」ということと「(C)が満たされないかもしれない。」は意味がちがうでしょ?
◯しかし「必ずしも(C)を満たさない。」ということと「(C)が満たされない。」は意味がちがうでしょ?
です。
(B)の解の集合はすべての素数の集合です。
そして論文中の p は確かに(B)の解の集合に含まれます。
もちろん(B)に含まれる集合は必ずしも(C)を満たすとは限りません。
しかし、だからといって「(B)に含まれる p はかならず (C) を満たさない」わけではありません。
つまり(B) ⇒ NOT (C)なんて成立しません。
もちろんそれがいえれば
(A)⇒(B)⇒NOT(C)⇒NOT(A)
となって矛盾しますが(B)⇒NOT (C)のところで切れてるんですよ。
訂正
✕しかし「必ずしも(C)を満たさない。」ということと「(C)が満たされないかもしれない。」は意味がちがうでしょ?
◯しかし「必ずしも(C)を満たさない。」ということと「(C)が満たされない。」は意味がちがうでしょ?
です。
(B)の解の集合はすべての素数の集合です。
そして論文中の p は確かに(B)の解の集合に含まれます。
もちろん(B)に含まれる集合は必ずしも(C)を満たすとは限りません。
しかし、だからといって「(B)に含まれる p はかならず (C) を満たさない」わけではありません。
つまり(B) ⇒ NOT (C)なんて成立しません。
もちろんそれがいえれば
(A)⇒(B)⇒NOT(C)⇒NOT(A)
となって矛盾しますが(B)⇒NOT (C)のところで切れてるんですよ。
>>245-246
>(B)⇒NOT (C)
何故言えないのでしょうか。
全てのpで正しい⇒p=4q+1
全てのpで正しい⇒p≠4q+1
が成立します
p≠4q+1⇒奇数の完全数が存在しない
全てのpで正しい⇒すべてのpで完全数になる
という内容は両立しないのです
>(B)⇒NOT (C)
何故言えないのでしょうか。
全てのpで正しい⇒p=4q+1
全てのpで正しい⇒p≠4q+1
が成立します
p≠4q+1⇒奇数の完全数が存在しない
全てのpで正しい⇒すべてのpで完全数になる
という内容は両立しないのです
248132人目の素数さん
2018/09/24(月) 18:52:42.05ID:9zrbl8Jf >>247
私が簡単な証明を発見したので、もう頑張らなくてもいいんですよ
私が簡単な証明を発見したので、もう頑張らなくてもいいんですよ
249132人目の素数さん
2018/09/24(月) 18:52:44.25ID:H+RX+3OI >>247
>全てのpで正しい⇒p=4q+1
>全てのpで正しい⇒p≠4q+1
>が成立します
成立しませんよ?
⇒の意味もういちど確認してください。
X⇒Y
は「Xをみたす任意のpはYを満たす。」
ですよ?
pが任意の素数 ⇒ p ≡ 1 (mod 4)
なんて言えるハズないでしょ?
高校のとき数Aで習ったハズです。
X ⇒ Y とは X をみたす p の集合がYを満たす p の集合に含まれるときです。
全ての素数の集合:2,3,5,7,11,13,17,19,23,……
p ≡ 1(mod 4)を満たさない p の集合:2,3,7,11,19,23,……
どっちが大きいですか?
>全てのpで正しい⇒p=4q+1
>全てのpで正しい⇒p≠4q+1
>が成立します
成立しませんよ?
⇒の意味もういちど確認してください。
X⇒Y
は「Xをみたす任意のpはYを満たす。」
ですよ?
pが任意の素数 ⇒ p ≡ 1 (mod 4)
なんて言えるハズないでしょ?
高校のとき数Aで習ったハズです。
X ⇒ Y とは X をみたす p の集合がYを満たす p の集合に含まれるときです。
全ての素数の集合:2,3,5,7,11,13,17,19,23,……
p ≡ 1(mod 4)を満たさない p の集合:2,3,7,11,19,23,……
どっちが大きいですか?
250132人目の素数さん
2018/09/24(月) 19:53:23.29ID:L0tXlVoF >高校のとき数Aで習ったハズです。
学生時代に習ったことをつっこまれると
1は常にピンチに。
学生時代に習ったことをつっこまれると
1は常にピンチに。
251132人目の素数さん
2018/09/24(月) 20:25:33.13ID:z7xnjRwI252132人目の素数さん
2018/09/24(月) 20:41:30.21ID:L0tXlVoF 1の奇数芸人ネタは無限に拡大しまくり
尽きることがない
尽きることがない
254132人目の素数さん
2018/09/24(月) 21:22:21.35ID:heWQ+Wk1 結局は⇒の意味がとれてないのが根源なんだな。
同値性が崩れた議論になると途端に迷走する。
同値性が崩れない式変形くらいしか出来ないんじゃ数学的議論なんか出ようハズもない。
同値性が崩れた議論になると途端に迷走する。
同値性が崩れない式変形くらいしか出来ないんじゃ数学的議論なんか出ようハズもない。
256132人目の素数さん
2018/09/24(月) 21:26:12.22ID:PIPFEUyw まずちゃんとした言葉で記述しろ
257132人目の素数さん
2018/09/24(月) 21:26:19.13ID:9zrbl8Jf258132人目の素数さん
2018/09/24(月) 21:28:48.86ID:HhtovFtY >>241にもまだ回答貰ってないんで、言い訳が完成したら回答お願いしますね
259132人目の素数さん
2018/09/24(月) 21:41:46.11ID:xTjzda9U >>253
D=0 ⇒ 「pは任意の素数⇒すべてのpから計算されるyは全て奇数の完全数になる」…(*)
こんなこと証明してないでしょ?
一度論文で証明したことを⇒使ってキチンと整理してみて下さい。
∃y pはymultiplicity 奇数の素因子⇒ ∃D Dp^2 - D =0
は証明できています。
ここから(*)なんて証明できませんよ?
(仮定)
Dp^2-D=0 かつ D=0、pは任意の素数。
(結論)
∃y 奇数の完全数、pはyのmultiplicity 奇数の素因子
です。
これができたなら
「Dが0なら任意のpにおいてある奇数の完全数が存在しpはyのmultiplicity 奇数の素因子となるが、さきに証明した通り例えばp=3においてそのような奇数の完全数は存在し得ないのでD≠0である。」
と言ってよろしい。
少なくとも現時点の論文にはそんな証明はありません。
D=0 ⇒ 「pは任意の素数⇒すべてのpから計算されるyは全て奇数の完全数になる」…(*)
こんなこと証明してないでしょ?
一度論文で証明したことを⇒使ってキチンと整理してみて下さい。
∃y pはymultiplicity 奇数の素因子⇒ ∃D Dp^2 - D =0
は証明できています。
ここから(*)なんて証明できませんよ?
(仮定)
Dp^2-D=0 かつ D=0、pは任意の素数。
(結論)
∃y 奇数の完全数、pはyのmultiplicity 奇数の素因子
です。
これができたなら
「Dが0なら任意のpにおいてある奇数の完全数が存在しpはyのmultiplicity 奇数の素因子となるが、さきに証明した通り例えばp=3においてそのような奇数の完全数は存在し得ないのでD≠0である。」
と言ってよろしい。
少なくとも現時点の論文にはそんな証明はありません。
262132人目の素数さん
2018/09/24(月) 21:49:35.03ID:xTjzda9U >>260
>全てのpで正しい⇒p≠4q+1の場合も成立⇒そのpに対応するyは奇数の完全数にならない
にならないんですよ。
全てのpで正しい⇒p≠4q+1の場合も成立
が成立しません。
「全てのpで正しい」
と
「p≠4q+1の場合」
のどっちの条件が厳しいですか?
日本語の言葉の響きで勘違いしてませんか?
>全てのpで正しい⇒p≠4q+1の場合も成立⇒そのpに対応するyは奇数の完全数にならない
にならないんですよ。
全てのpで正しい⇒p≠4q+1の場合も成立
が成立しません。
「全てのpで正しい」
と
「p≠4q+1の場合」
のどっちの条件が厳しいですか?
日本語の言葉の響きで勘違いしてませんか?
>>262
範囲の問題ではないのです。
全てのpで成立するというのは、全てのpでこのpに対応する奇数の完全数yが存在するということです。
だから、p≠4q+1のときにもこのpに対応するyが全て奇数の完全数になるということになるのです。
範囲の問題ではないのです。
全てのpで成立するというのは、全てのpでこのpに対応する奇数の完全数yが存在するということです。
だから、p≠4q+1のときにもこのpに対応するyが全て奇数の完全数になるということになるのです。
264132人目の素数さん
2018/09/24(月) 21:54:43.12ID:9zrbl8Jf266132人目の素数さん
2018/09/24(月) 21:56:10.91ID:FCcdlzFR 仮にも数学の論文を提出しようとしてる人間なんだから全てのpで"何が"正しいとか、全てのpで"何が"成立するとか、p=4q+1"となるような自然数qが存在する"とか、ちゃんとした命題の形で書いてくれよ
267132人目の素数さん
2018/09/24(月) 22:01:25.21ID:9zrbl8Jf >>265
後発の、しかも長い証明に価値はあるのですか?
後発の、しかも長い証明に価値はあるのですか?
268132人目の素数さん
2018/09/24(月) 22:02:08.68ID:xTjzda9U >>263
>範囲の問題ではないのです。
範囲の問題です。X⇒Yは「Xを満たす範囲はYを満たす範囲に含まれる」です。
それが数学的定義と言って差し支えありません。
>全てのpで成立するというのは、全てのpでこのpに対応する奇数の完全数yが存在するということです。
D=0 ⇒ “Dp^2 -D=0 は全ての素数 p で成立”
これは正しい。
しかしだからといって
“D=0” ⇒ “∃y 奇数の完全数 p は y の multiplicity 奇数の素因子”
になりませんよ?
だってあなた
Dp^2 -D=0” ⇒ “∃y 奇数の完全数 p は y の multiplicity 奇数の素因子”
なんて証明してないでしょ?
あなたが証明したのは
“∃y 奇数の完全数 p は y の multiplicity 奇数の素因子” ⇒ Dp^2 - D = 0
ですよ?
逆の証明なんてしてないでしょ?
>範囲の問題ではないのです。
範囲の問題です。X⇒Yは「Xを満たす範囲はYを満たす範囲に含まれる」です。
それが数学的定義と言って差し支えありません。
>全てのpで成立するというのは、全てのpでこのpに対応する奇数の完全数yが存在するということです。
D=0 ⇒ “Dp^2 -D=0 は全ての素数 p で成立”
これは正しい。
しかしだからといって
“D=0” ⇒ “∃y 奇数の完全数 p は y の multiplicity 奇数の素因子”
になりませんよ?
だってあなた
Dp^2 -D=0” ⇒ “∃y 奇数の完全数 p は y の multiplicity 奇数の素因子”
なんて証明してないでしょ?
あなたが証明したのは
“∃y 奇数の完全数 p は y の multiplicity 奇数の素因子” ⇒ Dp^2 - D = 0
ですよ?
逆の証明なんてしてないでしょ?
269132人目の素数さん
2018/09/24(月) 22:05:31.93ID:L0tXlVoF272132人目の素数さん
2018/09/24(月) 22:11:30.78ID:9zrbl8Jf >>268
>“D=0” ⇒ “∃y 奇数の完全数 p は y の multiplicity 奇数の素因子”
これは、D=0⇒奇数の完全数yが存在する
という意味でしょうか?そうでしたら、そのようなことは書いていません。
>“D=0” ⇒ “∃y 奇数の完全数 p は y の multiplicity 奇数の素因子”
これは、D=0⇒奇数の完全数yが存在する
という意味でしょうか?そうでしたら、そのようなことは書いていません。
275132人目の素数さん
2018/09/24(月) 22:14:06.26ID:9zrbl8Jf >>274
pに0かけたら0ですよね
pに0かけたら0ですよね
276132人目の素数さん
2018/09/24(月) 22:14:07.30ID:9JgemrDY 自分の論文が認められてない人「認めません」
277132人目の素数さん
2018/09/24(月) 22:14:45.08ID:xTjzda9U278132人目の素数さん
2018/09/24(月) 22:21:07.77ID:xTjzda9U >>273
違います。
あなた>>253で
>p≠4q+1⇒このpから計算される奇数の完全数yが存在しない
>全てのpで正しい⇒すべてのpから計算されるyは全て奇数の完全数になる
>が何故両立できるというのですか?
>両立しえないと考えたので、D=0が不適になると思いますけど
と書いたんでしょ?
つまり
p≠4q+1⇒このpから計算される奇数の完全数yが存在しない…(A)
全てのpで正しい⇒すべてのpから計算されるyは全て奇数の完全数になる…(B)
は矛盾するからD=0のハズがないといってるんですよね?
それは
D=0 ⇒ 「全てのpで正しい⇒すべてのpから計算されるyは全て奇数の完全数になる」
といってるのと同じですよ?
(A)はDに無関係ですから。
対偶とってみて下さい。
違います。
あなた>>253で
>p≠4q+1⇒このpから計算される奇数の完全数yが存在しない
>全てのpで正しい⇒すべてのpから計算されるyは全て奇数の完全数になる
>が何故両立できるというのですか?
>両立しえないと考えたので、D=0が不適になると思いますけど
と書いたんでしょ?
つまり
p≠4q+1⇒このpから計算される奇数の完全数yが存在しない…(A)
全てのpで正しい⇒すべてのpから計算されるyは全て奇数の完全数になる…(B)
は矛盾するからD=0のハズがないといってるんですよね?
それは
D=0 ⇒ 「全てのpで正しい⇒すべてのpから計算されるyは全て奇数の完全数になる」
といってるのと同じですよ?
(A)はDに無関係ですから。
対偶とってみて下さい。
>>275
だから、それは0という定数を掛けたということではないのでしょうか?
u=p^(n-1)+p^(n-3)+…+1
2b=cu(p+1)
から始まって、間違いのない計算により、D(p^2-1)=0が出てきているのですから
定数0を意味不明に掛けたものとは違います。
だから、それは0という定数を掛けたということではないのでしょうか?
u=p^(n-1)+p^(n-3)+…+1
2b=cu(p+1)
から始まって、間違いのない計算により、D(p^2-1)=0が出てきているのですから
定数0を意味不明に掛けたものとは違います。
281132人目の素数さん
2018/09/24(月) 22:26:43.05ID:9zrbl8Jf >>281
どう計算するのかを示してもらわないと分かりません
どう計算するのかを示してもらわないと分かりません
283132人目の素数さん
2018/09/24(月) 22:28:19.48ID:9zrbl8Jf >>282
0とpをかければいいだけです
0とpをかければいいだけです
>>283
それは良かったですね
それは良かったですね
285132人目の素数さん
2018/09/24(月) 22:30:57.97ID:9zrbl8Jf >>284
はい、証明がすでに完了したので、わざわざ後発でしかも長い証明を頑張る必要がなくなってよかったですね
はい、証明がすでに完了したので、わざわざ後発でしかも長い証明を頑張る必要がなくなってよかったですね
286132人目の素数さん
2018/09/24(月) 22:32:05.31ID:9JgemrDY ・0p=0がどう導かれたのか分からない(New!)
287132人目の素数さん
2018/09/24(月) 22:33:14.40ID:9zrbl8Jf もしかして仰々しい式変形の方が価値があるとか思ってるんですかね?
不備がなければシンプルな方がいいんですよ?
不備がなければシンプルな方がいいんですよ?
289132人目の素数さん
2018/09/24(月) 22:35:56.15ID:xTjzda9U ちがいます。
D=0 ⇒ 「全てのpで正しい⇒すべてのpから計算されるyは全て奇数の完全数になる」…(X)
これが証明されていないからあなたの証明には穴があるのです。
(X)が正しいなら
「
D=0とする。
(X)が正しいので (←ここだめ)
任意のpにおいて奇数の完全数yに対応するpとなる。
とくにp=3でも対応する奇数の完全数がある。
しかし既に証明した通りそのような素数 p は p≡1 (mod 4)でなければならない。
これは矛盾である。
よってD≠0でなければならない。
」
となって話がつながるのです。
逆にいえば(X)の部分があなたの論文にはないので穴があいているのです。
D=0 ⇒ 「全てのpで正しい⇒すべてのpから計算されるyは全て奇数の完全数になる」…(X)
これが証明されていないからあなたの証明には穴があるのです。
(X)が正しいなら
「
D=0とする。
(X)が正しいので (←ここだめ)
任意のpにおいて奇数の完全数yに対応するpとなる。
とくにp=3でも対応する奇数の完全数がある。
しかし既に証明した通りそのような素数 p は p≡1 (mod 4)でなければならない。
これは矛盾である。
よってD≠0でなければならない。
」
となって話がつながるのです。
逆にいえば(X)の部分があなたの論文にはないので穴があいているのです。
290132人目の素数さん
2018/09/24(月) 22:36:24.20ID:9zrbl8Jf291132人目の素数さん
2018/09/24(月) 22:39:12.31ID:w8/YZGQK >>288
「意味があるかどうか」で数学的な正しさは変わりませんよ
「意味があるかどうか」で数学的な正しさは変わりませんよ
294132人目の素数さん
2018/09/24(月) 22:49:52.13ID:xTjzda9U >>292
どこがわからないのですか?
>全てのpで成り立つのがおかしい
の理由をかいてないからだめだといってるのです。
Dp^2-D=0
がすべてのpで成立すると矛盾することが何も証明できてないのです。
論文には
――
D=0と仮定する。
この時Dp^2 - D=0はすべての p で成立する。
このとき✕✕✕となるがこれは◯◯◯に矛盾する。
――
という記述は一切ありませんね?
✕✕✕と◯◯◯を埋めて下さいと言っているのです。
どこがわからないのですか?
>全てのpで成り立つのがおかしい
の理由をかいてないからだめだといってるのです。
Dp^2-D=0
がすべてのpで成立すると矛盾することが何も証明できてないのです。
論文には
――
D=0と仮定する。
この時Dp^2 - D=0はすべての p で成立する。
このとき✕✕✕となるがこれは◯◯◯に矛盾する。
――
という記述は一切ありませんね?
✕✕✕と◯◯◯を埋めて下さいと言っているのです。
295132人目の素数さん
2018/09/24(月) 22:53:30.08ID:9zrbl8Jf296132人目の素数さん
2018/09/24(月) 23:13:54.39ID:IF6m42Wg 先生「1*0=0です」
高木くん「そのような意味不明な式変形より得られる式に価値などない。よって私は認めない」
高木くん「そのような意味不明な式変形より得られる式に価値などない。よって私は認めない」
297132人目の素数さん
2018/09/24(月) 23:46:18.31ID:w8/YZGQK 0p=(0+0)p=0p+0p
移項して0p=0p-0p=0
よって0p=0
はい、これで「正しい式変形により」0p=0が得られましたね
移項して0p=0p-0p=0
よって0p=0
はい、これで「正しい式変形により」0p=0が得られましたね
>>294
必要だと思いません。p=4q+1だと書いているので、それ以外でも満たされることになる
D=0は不適です。
以下の内容は変です。何故数学と、言語ではこのような齟齬があるのでしょうか?
数学
〇p=4q+1⇒pが不定である
×pが不定である⇒p=4q+1
言語
×p=4q+1⇒pが不定である
〇pが不定である⇒p=4q+1
必要だと思いません。p=4q+1だと書いているので、それ以外でも満たされることになる
D=0は不適です。
以下の内容は変です。何故数学と、言語ではこのような齟齬があるのでしょうか?
数学
〇p=4q+1⇒pが不定である
×pが不定である⇒p=4q+1
言語
×p=4q+1⇒pが不定である
〇pが不定である⇒p=4q+1
300132人目の素数さん
2018/09/25(火) 09:43:24.06ID:Z1WWFutP301132人目の素数さん
2018/09/25(火) 11:11:20.54ID:GKrvJbw8 >>298
矛盾というのは
7>8、2 ≠3
のようにそれ自体が矛盾している場合には
「7>8 となり矛盾」
でよいでしょう。
しかし
∃D Dp^2 -D = 0…(*)
という式はこれ単独では矛盾していません。
このような場合にはこの式が具体的に何に矛盾しるのか明示しなくてはいけません。
あなたは先にこれが
∃q p=4q+1…(#)
に対して矛盾すると主張し、その証明を与えようとして失敗しましたね?
つまり今あなたは論文、このスレ含めていまだ(*)に矛盾する式を一つも与えることに成功してません。
(*)と(#)が矛盾するというなら
∃D Dp^2 - D = 0 ⇒ ∀q p≠4q +1
または
∃q p=4q+1 ⇒ ∀D Dp^2 - D ≠ 0
のいずれかを証明しないといけません。
決して自明では済まされません。
実際あなた一回失敗してるでしょ?
どちらか証明して下さい。
矛盾というのは
7>8、2 ≠3
のようにそれ自体が矛盾している場合には
「7>8 となり矛盾」
でよいでしょう。
しかし
∃D Dp^2 -D = 0…(*)
という式はこれ単独では矛盾していません。
このような場合にはこの式が具体的に何に矛盾しるのか明示しなくてはいけません。
あなたは先にこれが
∃q p=4q+1…(#)
に対して矛盾すると主張し、その証明を与えようとして失敗しましたね?
つまり今あなたは論文、このスレ含めていまだ(*)に矛盾する式を一つも与えることに成功してません。
(*)と(#)が矛盾するというなら
∃D Dp^2 - D = 0 ⇒ ∀q p≠4q +1
または
∃q p=4q+1 ⇒ ∀D Dp^2 - D ≠ 0
のいずれかを証明しないといけません。
決して自明では済まされません。
実際あなた一回失敗してるでしょ?
どちらか証明して下さい。
302132人目の素数さん
2018/09/25(火) 11:58:04.10ID:1wkqybLA p, qが整数なら……
303132人目の素数さん
2018/09/25(火) 12:23:59.16ID:ysiK0sqv コミュニケーションにも数学にも問題のある1が
半年も数学の掲示板で暴れまくり。
高木時空でファンタジー小説でも書いて出せば長編が出来上がるだろう。
半年も数学の掲示板で暴れまくり。
高木時空でファンタジー小説でも書いて出せば長編が出来上がるだろう。
304132人目の素数さん
2018/09/25(火) 13:49:15.92ID:TMFUwKYX305132人目の素数さん
2018/09/25(火) 13:58:58.49ID:wJbL+Cn9 もしかして:言語障害
> 〇pが不定である⇒p=4q+1
「pが不定であるならば p=4q+1」なんて、普通の言語で言ったって正しくはないだろ
> 〇pが不定である⇒p=4q+1
「pが不定であるならば p=4q+1」なんて、普通の言語で言ったって正しくはないだろ
306132人目の素数さん
2018/09/25(火) 14:10:11.29ID:BgJ/zHln @ 元々は本当に頭が良かったが、何らかの原因で糖質になってしまった
A 実は学生時代も頭が良くはなかったが、糖質特有の妄想で頭が良かったと言っている
B 健常者だが、糖質のフリをした高度な釣り
さあどれだ
A 実は学生時代も頭が良くはなかったが、糖質特有の妄想で頭が良かったと言っている
B 健常者だが、糖質のフリをした高度な釣り
さあどれだ
307132人目の素数さん
2018/09/25(火) 14:15:36.38ID:/QJkUkwr こんなやべーやつの存在があって欲しくないという願いを込めてB
308132人目の素数さん
2018/09/25(火) 14:20:59.26ID:TMFUwKYX A
309132人目の素数さん
2018/09/25(火) 14:27:52.98ID:JzoAaOxx310132人目の素数さん
2018/09/25(火) 14:46:46.02ID:ysnqgoGz Aでしかありえん。
311132人目の素数さん
2018/09/25(火) 14:49:33.00ID:Z1WWFutP pを2とする。このとき、
0p=0
が成り立つので、pは不定となり不適となる。
したがって2はこの世に存在してはならない。以上。
0p=0
が成り立つので、pは不定となり不適となる。
したがって2はこの世に存在してはならない。以上。
312132人目の素数さん
2018/09/25(火) 14:53:59.00ID:ysnqgoGz >B 健常者だが、糖質のフリをした高度な釣り
これは半年以上の長期間で手間がかかりすぎ。
こんなの実演するだけで基地外決定
>@ 元々は本当に頭が良かったが、何らかの原因で糖質になってしまった
頭が良かったどころか異常でなかったことの痕跡がまるでない。
1が主張するのは偏差値の数字やら多浪の末の早稲田だけで怪しさ満点
通常時なら学校で学ぶ事項を、1はまるで理解できない
分からないと言って逃げる。
普通科なのに学生時代は寝ていただけと主張する大ウソつき。
これは半年以上の長期間で手間がかかりすぎ。
こんなの実演するだけで基地外決定
>@ 元々は本当に頭が良かったが、何らかの原因で糖質になってしまった
頭が良かったどころか異常でなかったことの痕跡がまるでない。
1が主張するのは偏差値の数字やら多浪の末の早稲田だけで怪しさ満点
通常時なら学校で学ぶ事項を、1はまるで理解できない
分からないと言って逃げる。
普通科なのに学生時代は寝ていただけと主張する大ウソつき。
314132人目の素数さん
2018/09/25(火) 15:42:27.82ID:Z1WWFutP 「なり得る」だってww
315132人目の素数さん
2018/09/25(火) 15:44:05.55ID:ysnqgoGz ・数学と言語が反転しているように考えらえる。(New)
316132人目の素数さん
2018/09/25(火) 15:46:02.17ID:Z1WWFutP317132人目の素数さん
2018/09/25(火) 15:58:52.14ID:OlBAWD/P >>313
>>>301
>主張内容が変わりましたね。p=3のときには完全数になり得ないのに
>D=0の場合があるのはおかしいと書いていたような気がしますが。
>
>>∃q p=4q+1
>>に対して矛盾すると主張し、その証明を与えようとして失敗しましたね?
>最近では全然失敗していません。p≠4q+1では、完全数は存在しません。
主張は変えてませんよ。
∃D Dp^2 - D = 0 ⇒ ∀q p≠4q +1
の証明ならまず仮定は
Dp^2 - D = 0
ですね?
ここから p が素数で p≠±1 より
D=0
ですね?つまり
Dp^2 - D = 0 かつ D=0
です。
で前回あなたは
Dp^2 - D = 0 かつ D=0 ⇒ p ≠ 1 (mod 4)
と主張して間違いを認めましたよね?>>249 >>253
Dp^2-D=0 かつ D=0を満たすpn集合:2,3,5,7,11,13,17,19,23,……
p ≡ 1(mod 4)を満たさない p の集合:2,3,7,11,19,23,……
なので。
つまり
∃D Dp^2 - D = 0 ⇒ ∀q p≠4q +1
の証明に失敗したんでしょ?⇒の意味取り違えて。
よってあなたは未だ
∃D Dp^2 -D = 0…(*) と ∃q p=4q+1…(#)
が矛盾することの証明に成功していません。
証明して下さい。
>>>301
>主張内容が変わりましたね。p=3のときには完全数になり得ないのに
>D=0の場合があるのはおかしいと書いていたような気がしますが。
>
>>∃q p=4q+1
>>に対して矛盾すると主張し、その証明を与えようとして失敗しましたね?
>最近では全然失敗していません。p≠4q+1では、完全数は存在しません。
主張は変えてませんよ。
∃D Dp^2 - D = 0 ⇒ ∀q p≠4q +1
の証明ならまず仮定は
Dp^2 - D = 0
ですね?
ここから p が素数で p≠±1 より
D=0
ですね?つまり
Dp^2 - D = 0 かつ D=0
です。
で前回あなたは
Dp^2 - D = 0 かつ D=0 ⇒ p ≠ 1 (mod 4)
と主張して間違いを認めましたよね?>>249 >>253
Dp^2-D=0 かつ D=0を満たすpn集合:2,3,5,7,11,13,17,19,23,……
p ≡ 1(mod 4)を満たさない p の集合:2,3,7,11,19,23,……
なので。
つまり
∃D Dp^2 - D = 0 ⇒ ∀q p≠4q +1
の証明に失敗したんでしょ?⇒の意味取り違えて。
よってあなたは未だ
∃D Dp^2 -D = 0…(*) と ∃q p=4q+1…(#)
が矛盾することの証明に成功していません。
証明して下さい。
318132人目の素数さん
2018/09/25(火) 16:02:42.99ID:I7YU+Tqh >pが不定であるならば p=4q+1になり得る
やはり∃と∀を取り違えてるんだな
上の意味ならば∃p∈Z[0p=0⇒p=4q+1]だからこれは真だろう
しかし「pが不定であるならば p=4q+1」と言ったら、その意味するものは
∀p∈Z[0p=0⇒p=4q+1]だ。これは当然ながら偽となる。
結局、1が∃と∀を理解してないことがまた明らかになった。
やはり∃と∀を取り違えてるんだな
上の意味ならば∃p∈Z[0p=0⇒p=4q+1]だからこれは真だろう
しかし「pが不定であるならば p=4q+1」と言ったら、その意味するものは
∀p∈Z[0p=0⇒p=4q+1]だ。これは当然ながら偽となる。
結局、1が∃と∀を理解してないことがまた明らかになった。
319132人目の素数さん
2018/09/25(火) 16:02:48.11ID:OlBAWD/P >>313
>当然数学は理解した上で書いているが
>pが不定であるならば p=4q+1になり得る
>p=4q+1であるならばpが不定になり得ない
>この国語的な意味だと、数学と言語が反転しているように考えらえる。
国語的な意味などどうでもよろしい。
数学の論文書きたいんでしょ?
ならば
Dp^2 - D = 0 かつ D=0 ⇒ p ≠ 1 (mod 4)
は数学の世界では成立していません。
数学の世界のロジックで議論してください。
そして数学の世界のロジックで矛盾を導出して下さい。
>当然数学は理解した上で書いているが
>pが不定であるならば p=4q+1になり得る
>p=4q+1であるならばpが不定になり得ない
>この国語的な意味だと、数学と言語が反転しているように考えらえる。
国語的な意味などどうでもよろしい。
数学の論文書きたいんでしょ?
ならば
Dp^2 - D = 0 かつ D=0 ⇒ p ≠ 1 (mod 4)
は数学の世界では成立していません。
数学の世界のロジックで議論してください。
そして数学の世界のロジックで矛盾を導出して下さい。
320132人目の素数さん
2018/09/25(火) 16:19:36.09ID:TMFUwKYX ∃D Dp^2 -D = 0…(*) と ∃q p=4q+1…(#)
が矛盾しない事、つまり
∃D Dp^2 -D = 0 ⇒ ∀q p ≠ 4q+1
が証明できっこないなんてセンター数学のレベルやん。
ただし∀と∃の意味がちゃんとわかってればだけど。
が矛盾しない事、つまり
∃D Dp^2 -D = 0 ⇒ ∀q p ≠ 4q+1
が証明できっこないなんてセンター数学のレベルやん。
ただし∀と∃の意味がちゃんとわかってればだけど。
321132人目の素数さん
2018/09/25(火) 16:50:26.96ID:TMFUwKYX322132人目の素数さん
2018/09/25(火) 17:43:28.02ID:kAMCo7nS 授業中に寝ていても許されるのは特殊学級だよね。
>>317
>>319
あなたは、>>253が失敗していることの証明に失敗しているように考えられるのですが。
もう一度書けば
p≠4q+1⇒そのpに対応する奇数の完全数yは存在しない
D=0が成立するのであれば全てのpでそのpに対応する奇数の完全数yが存在する
下の命題は成り立たないからD=0は不適だと書いているのです。
何故
D=0⇒全てのpでこれに対応する奇数の完全数yが存在する
この命題が正しいと言えるのですか?明確に答えて下さい。
この質問に答えることを避けているようにしか見えませんが。
>>320
>∃D Dp^2 -D = 0
なんでこんな書き方ができるのか、数学記号を書けば煙に巻けるとでも思っているのか
今はD=0の場合の議論をしている。
>>322
特殊学校と書くのは止めた方がいいと思います。高校の関係者に訴えられるかもしれませんし。
>>319
あなたは、>>253が失敗していることの証明に失敗しているように考えられるのですが。
もう一度書けば
p≠4q+1⇒そのpに対応する奇数の完全数yは存在しない
D=0が成立するのであれば全てのpでそのpに対応する奇数の完全数yが存在する
下の命題は成り立たないからD=0は不適だと書いているのです。
何故
D=0⇒全てのpでこれに対応する奇数の完全数yが存在する
この命題が正しいと言えるのですか?明確に答えて下さい。
この質問に答えることを避けているようにしか見えませんが。
>>320
>∃D Dp^2 -D = 0
なんでこんな書き方ができるのか、数学記号を書けば煙に巻けるとでも思っているのか
今はD=0の場合の議論をしている。
>>322
特殊学校と書くのは止めた方がいいと思います。高校の関係者に訴えられるかもしれませんし。
324132人目の素数さん
2018/09/25(火) 18:43:32.96ID:SXQ8iiU3 >>323
>D=0が成立するのであれば全てのpでそのpに対応する奇数の完全数yが存在する
いえ、D=0のとき成立するのは
Dp^2 - D =0 … (B)
がすべての素数 p について成立するだけです。
あなたが論文中で証明したのは
∃y y:奇数の完全数 p は y の multiplicity 奇数の素数 … (A)
とおくとき (A) ⇒ (B) だけです。
(B) ⇒ (A) など証明していません。
つまり(B)がすべての素数について成立するからといって(A)がすべての素数で成立することなど証明していません。
ということは
D=0 ⇒ ∀p (B) ⇒ ∀ (A)
の2番目の⇒で論理が切れています。
切れていないというなら(B) ⇒ (A)を証明して下さい。
>D=0が成立するのであれば全てのpでそのpに対応する奇数の完全数yが存在する
いえ、D=0のとき成立するのは
Dp^2 - D =0 … (B)
がすべての素数 p について成立するだけです。
あなたが論文中で証明したのは
∃y y:奇数の完全数 p は y の multiplicity 奇数の素数 … (A)
とおくとき (A) ⇒ (B) だけです。
(B) ⇒ (A) など証明していません。
つまり(B)がすべての素数について成立するからといって(A)がすべての素数で成立することなど証明していません。
ということは
D=0 ⇒ ∀p (B) ⇒ ∀ (A)
の2番目の⇒で論理が切れています。
切れていないというなら(B) ⇒ (A)を証明して下さい。
325132人目の素数さん
2018/09/25(火) 18:48:17.68ID:SXQ8iiU3 >>324
訂正
✕:D=0 ⇒ ∀p (B) ⇒ ∀ (A)
◯:D=0 ⇒ ∀p (B) ⇒ ∀p (A)
ちなみに∀p (A)が矛盾している命題に異存はありませんよ?
そこに異存はないのでコメントしてないだけです。
問題視しているのは D=0 ⇒ ∀p (A) の導出の部分です。
この向きの導出論文には一つもありませんよ?
訂正
✕:D=0 ⇒ ∀p (B) ⇒ ∀ (A)
◯:D=0 ⇒ ∀p (B) ⇒ ∀p (A)
ちなみに∀p (A)が矛盾している命題に異存はありませんよ?
そこに異存はないのでコメントしてないだけです。
問題視しているのは D=0 ⇒ ∀p (A) の導出の部分です。
この向きの導出論文には一つもありませんよ?
326132人目の素数さん
2018/09/25(火) 18:54:57.74ID:Swq0Dt18329132人目の素数さん
2018/09/25(火) 19:47:24.80ID:Swq0Dt18330132人目の素数さん
2018/09/25(火) 20:07:39.99ID:SXQ8iiU3 >>327,328
>p≠4q+1というのはこの証明から導かれる条件なので
(B) から ∀q p ≠ 4q+1 の導出前回失敗してますよね?
導いてください。
(B) : 2,3,5,7,11,13,17,…
∀q p ≠ 4q+1:2,3,7,11,19,…
ですよ?
>p≠4q+1というのはこの証明から導かれる条件なので
(B) から ∀q p ≠ 4q+1 の導出前回失敗してますよね?
導いてください。
(B) : 2,3,5,7,11,13,17,…
∀q p ≠ 4q+1:2,3,7,11,19,…
ですよ?
331132人目の素数さん
2018/09/25(火) 20:55:41.87ID:es5is2oH332132人目の素数さん
2018/09/25(火) 21:57:30.22ID:FCb8LbnM >>313
>>∃D Dp^2 -D = 0
>なんでこんな書き方ができるのか、数学記号を書けば煙に巻>けるとでも思っているのか
>今はD=0の場合の議論をしている。
このレベルでもうついてこれなくなるのか……
>>∃D Dp^2 -D = 0
>なんでこんな書き方ができるのか、数学記号を書けば煙に巻>けるとでも思っているのか
>今はD=0の場合の議論をしている。
このレベルでもうついてこれなくなるのか……
333132人目の素数さん
2018/09/25(火) 22:05:45.19ID:Tya4K6Jw >>317
>D=0が成立するのであれば全てのpでそのpに対応する奇数の完全数yが存在する
これが駄目です。
D=0 からいえるのは
「∀p Dp^2 - D = 0」
だけです。
ここから
「∀p pに対応する奇数の完全数が存在する」
を証明するためには
「Dp^2 - D = 0⇒pに対応する奇数の完全数が存在する」
を証明しないと駄目です。
論文で証明されているのは
「pに対応する奇数の完全数が存在する ⇒ Dp^2 - D=0」
であって反対向きは証明していません。
証明して下さい。
>D=0が成立するのであれば全てのpでそのpに対応する奇数の完全数yが存在する
これが駄目です。
D=0 からいえるのは
「∀p Dp^2 - D = 0」
だけです。
ここから
「∀p pに対応する奇数の完全数が存在する」
を証明するためには
「Dp^2 - D = 0⇒pに対応する奇数の完全数が存在する」
を証明しないと駄目です。
論文で証明されているのは
「pに対応する奇数の完全数が存在する ⇒ Dp^2 - D=0」
であって反対向きは証明していません。
証明して下さい。
334132人目の素数さん
2018/09/25(火) 22:12:58.18ID:es5is2oH 1の数学アレルギー強い!
数学記号が出てくるだけで拒否なんて
授業中は寝てるしかないな。
数学記号が出てくるだけで拒否なんて
授業中は寝てるしかないな。
335132人目の素数さん
2018/09/25(火) 22:14:38.41ID:JwwCTZlf336132人目の素数さん
2018/09/25(火) 22:16:47.92ID:MC27vVme だから1には∀とか∃とか理解できないって何万回言ったら
数学的センスはもちろんゼロ
数学的センスはもちろんゼロ
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 【国際】ロシアの石油タンカー拿捕 米当局、ベネズエラ関連で米 ★3 [ぐれ★]
- スマイリーキクチ、栃木県高校の“暴行動画”拡散に私見「被害者の少年が喜ぶと思いますか?」 [jinjin★]
- 結婚を匂わせ、避妊せず200回以上も…既婚男性の独身偽装で人生を壊された女性が明かす今も続く地獄…裁判では男に151万円の賠償命令 [ぐれ★]
- 米国が制裁していたベネズエラ沖の石油タンカー、ロシアが潜水艦を派遣して護衛 米国が拿捕強行ならロシアが報復か [お断り★]
- 中国政府が軍民両用品の対日輸出規制、レアアースも対象か 高市首相答弁への対抗措置 ★20 [ぐれ★]
- 「おじさんとのクルマ移動、どんな曲流す?」20代男女5人に聞いたら、ユーミン、山下達郎…80年代シティポップが鉄板 [muffin★]
- 【悲報】中国「韓国にはパンダ貸してあげる☺」ジャップ「ああああああぁぁぁあぁぁ!!!!」 [616817505]
- 【訃報】ぶっちゃけ家族、親族、親戚、血縁👈これほど厄介な存在ってないよね、表立って言えないけど、一番厄介なまであ [943688309]
- 自民党国会議員の長島昭久さん「すまん、ぶっちゃけ統一教会信者だったし合同結婚式挙げたわ」 [963243619]
- 中古車見に行くんやが駅から4キロもある
- 【悲報】声優・楠木ともりさん、結婚発表後の初ツイートがこれ→オタクブチギレwwwwwwwwwwwwwwww [839150984]
- 【悲報】タイヤ屋社長「氷の上ではスタッドレス一択」識者「あのさぁ」 [394133584]
