クレレ誌:
https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AC%E3%83%AC%E8%AA%8C
クレレ誌はアカデミーの紀要ではない最初の主要な数学学術誌の一つである(Neuenschwander 1994, p. 1533)。ニールス・アーベル、ゲオルク・カントール、ゴットホルト・アイゼンシュタインらの研究を含む著名な論文を掲載してきた。
(引用終り)
そこで
現代の純粋・応用数学(含むガロア理論)を目指して
新スレを立てる(^^;
<前スレ>
純粋・応用数学(含むガロア理論)7
https://rio2016.5ch.net/test/read.cgi/math/1618711564/
<関連姉妹スレ>
ガロア第一論文及びその関連の資料スレ
https://rio2016.5ch.net/test/read.cgi/math/1615510393/1-
箱入り無数目を語る部屋
https://rio2016.5ch.net/test/read.cgi/math/1609427846/
Inter-universal geometry と ABC予想 (応援スレ) 54
https://rio2016.5ch.net/test/read.cgi/math/1617170015/
IUTを読むための用語集資料スレ2
https://rio2016.5ch.net/test/read.cgi/math/1606813903/
現代数学の系譜 カントル 超限集合論他 3
https://rio2016.5ch.net/test/read.cgi/math/1595034113/
<過去スレの関連(含むガロア理論)>
・現代数学の系譜 工学物理雑談 古典ガロア理論も読む84
https://rio2016.5ch.net/test/read.cgi/math/1582200067/
・現代数学の系譜 工学物理雑談 古典ガロア理論も読む83
https://rio2016.5ch.net/test/read.cgi/math/1581243504/
探検
純粋・応用数学(含むガロア理論)8
■ このスレッドは過去ログ倉庫に格納されています
2021/05/13(木) 20:12:42.63ID:0t/ScuZ1
556現代数学の系譜 雑談 ◆yH25M02vWFhP
2021/05/27(木) 22:28:22.15ID:dKVKdotp >>521
HOL ”METAPHYSICS”だよ〜ん。 HOLは、数学独占じゃない!!(^^;
http://tedsider.org/teaching/higher_order_20/higher_order_20.html
SEMINAR ON HIGHER ORDER METAPHYSICS
Rutgers Philosophy Department, 106 Somerset St, 5th floor, Fridays, 9:50-12:50, Spring 2020
Ted Sider, Room 526, office hours TBA and by appointment
Syllabus
Handout: philosophy of logic and second-order logic http://tedsider.org/teaching/higher_order_20/HO_CC_second_order_logic.pdf
Handout: paradoxes and set theory http://tedsider.org/teaching/higher_order_20/HO_crash_course_paradoxes.pdf
Handout: type theory and lambda abstraction http://tedsider.org/teaching/higher_order_20/HO_CC_type_theory_lambda_abstraction.pdf
Handout: Boolos http://tedsider.org/teaching/higher_order_20/HO_Boolos.pdf
Handout: Prior http://tedsider.org/teaching/higher_order_20/HO_Prior.pdf
Handout: Rayo and Yablo http://tedsider.org/teaching/higher_order_20/HO_Rayo_Yablo.pdf
http://tedsider.org/teaching/higher_order_20/higher_order_crash_course.pdf
Crash course on higher-order logic*
Theodore Sider August 14, 2020
Contents
1 Introduction 2
2 Importance of syntax to logic 3
2.1 Syntax in formal languages ..5
3 First- versus second-order logic 7
3.1 Syntax ... 7
3.2 Formal logic and logical consequence ..9
3.3 Semantics ...10
3.4 Proof theory ... 12
3.5 Metalogic ...16
3.5.1 Completeness ..16
3.5.2 Compactness ..17
3.6 Metamathematics ... 20
3.6.1 Skolem’s paradox ..21
3.6.2 Nonstandard models of arithmetic .21
3.6.3 Schematic and nonschematic axiomatizations .23
4 Paradoxes 26
4.1 Abstract mathematics and set-theoretic foundations . 26
4.2 Russell’s paradox ...28
4.3 Axiomatic set theory and ZF .. 30
4.4 Other paradoxes, other solutions ..34
5.1 Third-order logic and beyond ..37
5.2 Higher-order logic and types .. 38
略
以上
HOL ”METAPHYSICS”だよ〜ん。 HOLは、数学独占じゃない!!(^^;
http://tedsider.org/teaching/higher_order_20/higher_order_20.html
SEMINAR ON HIGHER ORDER METAPHYSICS
Rutgers Philosophy Department, 106 Somerset St, 5th floor, Fridays, 9:50-12:50, Spring 2020
Ted Sider, Room 526, office hours TBA and by appointment
Syllabus
Handout: philosophy of logic and second-order logic http://tedsider.org/teaching/higher_order_20/HO_CC_second_order_logic.pdf
Handout: paradoxes and set theory http://tedsider.org/teaching/higher_order_20/HO_crash_course_paradoxes.pdf
Handout: type theory and lambda abstraction http://tedsider.org/teaching/higher_order_20/HO_CC_type_theory_lambda_abstraction.pdf
Handout: Boolos http://tedsider.org/teaching/higher_order_20/HO_Boolos.pdf
Handout: Prior http://tedsider.org/teaching/higher_order_20/HO_Prior.pdf
Handout: Rayo and Yablo http://tedsider.org/teaching/higher_order_20/HO_Rayo_Yablo.pdf
http://tedsider.org/teaching/higher_order_20/higher_order_crash_course.pdf
Crash course on higher-order logic*
Theodore Sider August 14, 2020
Contents
1 Introduction 2
2 Importance of syntax to logic 3
2.1 Syntax in formal languages ..5
3 First- versus second-order logic 7
3.1 Syntax ... 7
3.2 Formal logic and logical consequence ..9
3.3 Semantics ...10
3.4 Proof theory ... 12
3.5 Metalogic ...16
3.5.1 Completeness ..16
3.5.2 Compactness ..17
3.6 Metamathematics ... 20
3.6.1 Skolem’s paradox ..21
3.6.2 Nonstandard models of arithmetic .21
3.6.3 Schematic and nonschematic axiomatizations .23
4 Paradoxes 26
4.1 Abstract mathematics and set-theoretic foundations . 26
4.2 Russell’s paradox ...28
4.3 Axiomatic set theory and ZF .. 30
4.4 Other paradoxes, other solutions ..34
5.1 Third-order logic and beyond ..37
5.2 Higher-order logic and types .. 38
略
以上
557現代数学の系譜 雑談 ◆yH25M02vWFhP
2021/05/27(木) 22:30:27.94ID:dKVKdotp558現代数学の系譜 雑談 ◆yH25M02vWFhP
2021/05/28(金) 08:18:08.40ID:RuIG2yEj >>556 追加
higher-order logic topos で検索すると
高名な 下記のSteve Awodey先生がヒット
Kohei Kishida Who?
” sheaf semantics, models are built on presheaves ”
なるほど、層や圏から、higher-order logicへ繋がっていくのか(^^
参考
https://arxiv.org/pdf/1403.0020.pdf
Topos Semantics for Higher-Order Modal Logic March 4, 2014
Steve Awodey? Kohei Kishida† Hans-Christoph Kotzsch‡
†Department of Computer Science, University of Oxford
(抜粋)
Abstract. We define the notion of a model of higher-order modal logic
in an arbitrary elementary topos E. In contrast to the well-known interpretation of (non-modal) higher-order logic, the type of propositions is not interpreted by the subobject classifier ΩE , but rather by a suitable complete Heyting algebra H.
The canonical map relating H and ΩE both serves to interpret equality and provides a modal operator on H in
the form of a comonad. Examples of such structures arise from surjective geometric morphisms f : F → E, where H = f?ΩF .
The logic differs from non-modal higher-order logic in that the principles of functional and propositional extensionality are not longer valid but may be replaced by modalized versions.
The usual Kripke, neighborhood, and sheaf semantics for propositional and first-order modal logic are subsumed by this notion.
In many conventional systems of semantics for quantified modal logic, models are built on presheaves.
Given a set K of “possible worlds”, Kripke’s semantics [11], for
instance, assigns to each world k ∈ K a domain of quantification P(k) - regarded
as the set of possible individuals that “exist” in k - and then ∃x Φ is true at k iff
some a ∈ P(k) satisfies Φ at k.
(引用終り)
higher-order logic topos で検索すると
高名な 下記のSteve Awodey先生がヒット
Kohei Kishida Who?
” sheaf semantics, models are built on presheaves ”
なるほど、層や圏から、higher-order logicへ繋がっていくのか(^^
参考
https://arxiv.org/pdf/1403.0020.pdf
Topos Semantics for Higher-Order Modal Logic March 4, 2014
Steve Awodey? Kohei Kishida† Hans-Christoph Kotzsch‡
†Department of Computer Science, University of Oxford
(抜粋)
Abstract. We define the notion of a model of higher-order modal logic
in an arbitrary elementary topos E. In contrast to the well-known interpretation of (non-modal) higher-order logic, the type of propositions is not interpreted by the subobject classifier ΩE , but rather by a suitable complete Heyting algebra H.
The canonical map relating H and ΩE both serves to interpret equality and provides a modal operator on H in
the form of a comonad. Examples of such structures arise from surjective geometric morphisms f : F → E, where H = f?ΩF .
The logic differs from non-modal higher-order logic in that the principles of functional and propositional extensionality are not longer valid but may be replaced by modalized versions.
The usual Kripke, neighborhood, and sheaf semantics for propositional and first-order modal logic are subsumed by this notion.
In many conventional systems of semantics for quantified modal logic, models are built on presheaves.
Given a set K of “possible worlds”, Kripke’s semantics [11], for
instance, assigns to each world k ∈ K a domain of quantification P(k) - regarded
as the set of possible individuals that “exist” in k - and then ∃x Φ is true at k iff
some a ∈ P(k) satisfies Φ at k.
(引用終り)
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 首相、就職氷河期世代の支援表明 週内に関係閣僚会議設置 ★6 [どどん★]
- 【福岡】「知らない人がシャワーを浴びている」独居女性(28)の部屋に侵入した自称大工男(43)逮捕「自分の家にいるつもりだった」 [おっさん友の会★]
- 【車文化】なぜスポーツカーは"チー牛の車"と嘲笑されるのか? ネットスラングの偏見とは? [おっさん友の会★]
- 【速報】ドジャース・大谷翔平がパパに! 第1子となる「女児誕生」を報告 早朝から日米のファンが祝福★2 [冬月記者★]
- 【速報】石破首相はNHK番組で、日米の関税交渉「食の安全を譲ることはない」 [蚤の市★]
- 【TBS】『報道特集』で「死を選んだ理由は立花孝志」との被害者実名の遺書を公開… 立花氏は撮影取材求める★2 [冬月記者★]
- 【朗報】石破「日本の食の安全を守る!トランプへ農産品を譲ることは無い!」と、先ほどNHKの番組で表明。市場開放しない模様 [219241683]
- 【悲報】石破首相、農産品関税引き下げを否定。「食の安全を譲ることはない😤」わー国は代わりに何を献上するの?🥺 [519511584]
- 【悲報】大阪万博➕89000 [616817505]
- 【画像】大阪・関西万博の大屋根リングの模型が販売 1個33,000円→と思いきや1周16個いるので1周528,000円! [808139444]
- 【悲報】大阪万博、累計関係者来場者数115,000人(7日目) [616817505]
- 【悲報】大阪万博0勝7敗(残日数177日)初週まさかの全敗 [616817505]