クレレ誌:
https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AC%E3%83%AC%E8%AA%8C
クレレ誌はアカデミーの紀要ではない最初の主要な数学学術誌の一つである(Neuenschwander 1994, p. 1533)。ニールス・アーベル、ゲオルク・カントール、ゴットホルト・アイゼンシュタインらの研究を含む著名な論文を掲載してきた。
(引用終り)
そこで
現代の純粋・応用数学(含むガロア理論)を目指して
新スレを立てる(^^;
<過去スレ>
・純粋・応用数学(含むガロア理論)2
https://rio2016.5ch.net/test/read.cgi/math/1592578498/
・純粋・応用数学
https://rio2016.5ch.net/test/read.cgi/math/1582599485/
<関連過去スレ(含むガロア理論)>
・現代数学の系譜 工学物理雑談 古典ガロア理論も読む84
https://rio2016.5ch.net/test/read.cgi/math/1582200067/
・現代数学の系譜 工学物理雑談 古典ガロア理論も読む83
https://rio2016.5ch.net/test/read.cgi/math/1581243504/
<関連姉妹スレ>
・Inter-universal geometry と ABC予想 (応援スレ) 48
https://rio2016.5ch.net/test/read.cgi/math/1592119272/
・IUTを読むための用語集資料集スレ
https://rio2016.5ch.net/test/read.cgi/math/1592654877/
・現代数学の系譜 カントル 超限集合論他 3
https://rio2016.5ch.net/test/read.cgi/math/1595034113/
探検
純粋・応用数学(含むガロア理論)3
■ このスレッドは過去ログ倉庫に格納されています
2020/07/19(日) 22:51:08.91ID:2Y0qBKwb
277132人目の素数さん
2020/08/14(金) 15:43:37.02ID:tstI7/Nb >>277
実は、B=Cとすることができる
ヒント
ケイリー・ハミルトンの定理
https://ja.wikipedia.org/wiki/%E3%82%B1%E3%82%A4%E3%83%AA%E3%83%BC%E3%83%BB%E3%83%8F%E3%83%9F%E3%83%AB%E3%83%88%E3%83%B3%E3%81%AE%E5%AE%9A%E7%90%86
線型代数学におけるケイリー・ハミルトンの定理、
またはハミルトン・ケイリーの定理は
(実数体や複素数体などの)可換環上の正方行列は固有方程式を満たす
という定理である。
アーサー・ケイリーとウィリアム・ローワン・ハミルトンにちなむ。
A が与えられた n×n 行列で、In は n×n 単位行列とすれば、
A の固有多項式は
p(λ):=det(λ I_n-A)}
で定義される。
ここで det は行列式をとること、
λ は係数環の元(スカラー)である。
引数の行列は各成分が λ の多項式(とくに一次式または定数)だから、
その行列式も λ に関する(n-次の)モニック多項式になる。
ケイリー–ハミルトンの定理の主張は、
固有多項式を行列多項式と見ればそれが A において消えること、
すなわち上記の λ を行列 A で置き換えた結果が零行列に等しいこと、
すなわち p(A)=Oの成立を述べるものである。
注
置き換えにおいて、λ の冪は、
行列の積に関する累乗としての A の冪によって置き換わるから、
特に p(λ) の定数項は A^0 すなわち単位行列の定数倍に置き換わらなければならない。
実は、B=Cとすることができる
ヒント
ケイリー・ハミルトンの定理
https://ja.wikipedia.org/wiki/%E3%82%B1%E3%82%A4%E3%83%AA%E3%83%BC%E3%83%BB%E3%83%8F%E3%83%9F%E3%83%AB%E3%83%88%E3%83%B3%E3%81%AE%E5%AE%9A%E7%90%86
線型代数学におけるケイリー・ハミルトンの定理、
またはハミルトン・ケイリーの定理は
(実数体や複素数体などの)可換環上の正方行列は固有方程式を満たす
という定理である。
アーサー・ケイリーとウィリアム・ローワン・ハミルトンにちなむ。
A が与えられた n×n 行列で、In は n×n 単位行列とすれば、
A の固有多項式は
p(λ):=det(λ I_n-A)}
で定義される。
ここで det は行列式をとること、
λ は係数環の元(スカラー)である。
引数の行列は各成分が λ の多項式(とくに一次式または定数)だから、
その行列式も λ に関する(n-次の)モニック多項式になる。
ケイリー–ハミルトンの定理の主張は、
固有多項式を行列多項式と見ればそれが A において消えること、
すなわち上記の λ を行列 A で置き換えた結果が零行列に等しいこと、
すなわち p(A)=Oの成立を述べるものである。
注
置き換えにおいて、λ の冪は、
行列の積に関する累乗としての A の冪によって置き換わるから、
特に p(λ) の定数項は A^0 すなわち単位行列の定数倍に置き換わらなければならない。
278132人目の素数さん
2020/08/14(金) 15:53:04.06ID:tstI7/Nb でも、>>276の問題を解くだけだったら、
ケイリー・ハミルトンの定理使わなくてもできるけど
ケイリー・ハミルトンの定理使わなくてもできるけど
279132人目の素数さん
2020/08/14(金) 15:54:35.61ID:tstI7/Nb 逆行列の構成もケイリー・ハミルトンの定理使ってできるけど
もちろんつかわなくてもできる そういうこと
もちろんつかわなくてもできる そういうこと
280132人目の素数さん
2020/08/14(金) 16:01:42.55ID:tstI7/Nb281現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/14(金) 18:32:21.15ID:OxWPj/ry >>271 >>272 補足
(引用開始)
最後に左逆行列と右逆行列が存在すればそれらは一致し,したがって,逆行列はただ
1 通りに定まることを示しましょう.X は A の左逆行列,Y は A の右逆行列だとすると,
XA = I, AY = I .
このとき,行列の積の結合則 (AB)C = A(BC) と単位行列の性質 IA = AI = A より,
X = XI = X(AY) = (XA)Y = IY = Y.
よって,X = Y,したがって,XA = AX = I が成り立ちます.
逆行列の性質
AA-1 = A-1A = E
実際,AX = E のとき,XY = E なる Y の存在を仮定する。
XA = XAE = XA(XY ) = X(AX)Y = XEY = XY = E
したがって,AX = E かつ XY = E なる Y が存在するならば,XA = E
これは,右逆行列が存在するならば,それは左逆行列も存在して一致するという,逆行列
の性質の証明には不十分である。A に対する X の存在は仮定しているが,それだけで X に
対する Y の存在がいえないからである。
(引用終り)
ここ
重要変形テク
1)X = XI = X(AY) = (XA)Y = IY = Y.
同じだが
X = XE = X(AY) = (XA)Y = EY = Y.
2)A = XAE = XA(XY ) = X(AX)Y = XEY = XY = E
さて
行列では、AX = E のとき,XAを考えると
XA=XEA=X(AX)A=X(AX)A=(XA)(XA)=(XA)^2
これから
(XA)^2-XA=0(零行列)
(XA)(XA-E)=0
Xが零因子でなく、従って、XAが零因子であることを認めると、
XA-E=0より
XA=E 成立(途中、結合則と分配則などを使った)
この証明は、行列だから可能です
一般の代数系では、できない。(下記、松本 眞 広島大などご参照)
なので、群では、左逆元と右逆元との存在を仮定し(それは即ち、モノイドでは一致するが)、それらを公理として与えるのです(松本 眞 広島大などご参照)
つづく
(引用開始)
最後に左逆行列と右逆行列が存在すればそれらは一致し,したがって,逆行列はただ
1 通りに定まることを示しましょう.X は A の左逆行列,Y は A の右逆行列だとすると,
XA = I, AY = I .
このとき,行列の積の結合則 (AB)C = A(BC) と単位行列の性質 IA = AI = A より,
X = XI = X(AY) = (XA)Y = IY = Y.
よって,X = Y,したがって,XA = AX = I が成り立ちます.
逆行列の性質
AA-1 = A-1A = E
実際,AX = E のとき,XY = E なる Y の存在を仮定する。
XA = XAE = XA(XY ) = X(AX)Y = XEY = XY = E
したがって,AX = E かつ XY = E なる Y が存在するならば,XA = E
これは,右逆行列が存在するならば,それは左逆行列も存在して一致するという,逆行列
の性質の証明には不十分である。A に対する X の存在は仮定しているが,それだけで X に
対する Y の存在がいえないからである。
(引用終り)
ここ
重要変形テク
1)X = XI = X(AY) = (XA)Y = IY = Y.
同じだが
X = XE = X(AY) = (XA)Y = EY = Y.
2)A = XAE = XA(XY ) = X(AX)Y = XEY = XY = E
さて
行列では、AX = E のとき,XAを考えると
XA=XEA=X(AX)A=X(AX)A=(XA)(XA)=(XA)^2
これから
(XA)^2-XA=0(零行列)
(XA)(XA-E)=0
Xが零因子でなく、従って、XAが零因子であることを認めると、
XA-E=0より
XA=E 成立(途中、結合則と分配則などを使った)
この証明は、行列だから可能です
一般の代数系では、できない。(下記、松本 眞 広島大などご参照)
なので、群では、左逆元と右逆元との存在を仮定し(それは即ち、モノイドでは一致するが)、それらを公理として与えるのです(松本 眞 広島大などご参照)
つづく
282現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/14(金) 18:32:56.30ID:OxWPj/ry >>281
つづき
(参考)
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/daisu-nyumon.pdf
代数系への入門 松本 眞 広島大 平成 25 年 8 月 26 日
P45
2.4 群
2.4.1 逆元と群
定義 2.4.1. (S, ・) を単位元 eS を持つマグマとする。(単位元はあれば一つであること、すなわち問題 2.12 に注意。)
g ∈ S の(e に関する)左逆元 a とは、
a ・ g = eS
を満たす a ∈ S のことをいう。
g ∈ S の右逆元 b とは、
g ・ b = eS
を満たす b ∈ S のことをいう。
g の左逆元であって、かつ右逆元であるような元を g の逆元という。すなわち、
a ・ g = eS, g ・ a = eS
となるような a のことである。
逆元を持つ元を可逆元という。
命題 2.4.2. (S, ・, eS) をモノイドとする。g に左逆元 a と右逆元 b が存在するならば、それら
は一致する。特に、g の逆元は存在すれば唯一つ。これを g-1 で表す。
証明.
a = a ・ eS = a ・ (g ・ b) = (a ・ g) ・ b = eS ・ b = b.
よって左逆元と右逆元は、両方存在すれば一致する。
特に、逆元が二つあったとしよう。それらを a, b とすれば、a は左逆元でもあるし、b は右
逆元でもあるから、上の事実より一致せざるを得ない。
問題 2.20. モノイドの代わりに、条件を弱めて「単位元をもつマグマ」に対しても、逆元が
存在すれば唯一つであることが証明できるか?
ヒント:実は、反例がたくさんあり、当然証明はできない。例えば (R, *) を
x * y = x + y + x^2y^2
で定義するとこれはマグマであり、0 が単位元となっている。
x * y = 0
を二次方程式の解の公式を用いて解くと、逆元が二つ存在することがあることがわかる。
https://ja.wikipedia.org/wiki/%E7%92%B0_(%E6%95%B0%E5%AD%A6)
環 (数学)
環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ[注 1]。
定義と導入
略
つづく
つづき
(参考)
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/daisu-nyumon.pdf
代数系への入門 松本 眞 広島大 平成 25 年 8 月 26 日
P45
2.4 群
2.4.1 逆元と群
定義 2.4.1. (S, ・) を単位元 eS を持つマグマとする。(単位元はあれば一つであること、すなわち問題 2.12 に注意。)
g ∈ S の(e に関する)左逆元 a とは、
a ・ g = eS
を満たす a ∈ S のことをいう。
g ∈ S の右逆元 b とは、
g ・ b = eS
を満たす b ∈ S のことをいう。
g の左逆元であって、かつ右逆元であるような元を g の逆元という。すなわち、
a ・ g = eS, g ・ a = eS
となるような a のことである。
逆元を持つ元を可逆元という。
命題 2.4.2. (S, ・, eS) をモノイドとする。g に左逆元 a と右逆元 b が存在するならば、それら
は一致する。特に、g の逆元は存在すれば唯一つ。これを g-1 で表す。
証明.
a = a ・ eS = a ・ (g ・ b) = (a ・ g) ・ b = eS ・ b = b.
よって左逆元と右逆元は、両方存在すれば一致する。
特に、逆元が二つあったとしよう。それらを a, b とすれば、a は左逆元でもあるし、b は右
逆元でもあるから、上の事実より一致せざるを得ない。
問題 2.20. モノイドの代わりに、条件を弱めて「単位元をもつマグマ」に対しても、逆元が
存在すれば唯一つであることが証明できるか?
ヒント:実は、反例がたくさんあり、当然証明はできない。例えば (R, *) を
x * y = x + y + x^2y^2
で定義するとこれはマグマであり、0 が単位元となっている。
x * y = 0
を二次方程式の解の公式を用いて解くと、逆元が二つ存在することがあることがわかる。
https://ja.wikipedia.org/wiki/%E7%92%B0_(%E6%95%B0%E5%AD%A6)
環 (数学)
環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ[注 1]。
定義と導入
略
つづく
283現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/14(金) 18:34:44.66ID:OxWPj/ry >>282
つづき
https://ja.wikipedia.org/wiki/%E3%83%A2%E3%83%8E%E3%82%A4%E3%83%89
モノイド
単系(たんけい、英: monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。
モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。
定義
集合 S とその上の二項演算 ・: S × S → S が与えられ、以下の条件
結合律
S の任意の元 a, b, c に対して、(a ・ b) ・ c = a ・ (b ・ c).
単位元の存在
S の元 e が存在して、S の任意の元 a に対して e ・ a = a ・ e = a.
を満たすならば、組 (S, ・, e) をモノイドという。まぎれの虞のない場合、対 (S, ・) あるいは単に S のみでも表す。 二項演算の結果 a ・ b を a と b の積[注釈 1]と呼ぶ。手短に述べれば、モノイドとは単位元を持つ半群のことである。モノイドに各元の可逆性を課せば、群が得られる。逆に任意の群はモノイドである。
性質
モノイドにおいては、可逆元(あるいは単元)の概念を定義することができる。モノイドの元 x が可逆であるとは xy = e かつ yx = e を満たす元 y が存在するときにいう。y は x の逆元と呼ばれる。y および z が x の逆元ならば、結合律により y = (zx)y = z(xy) = z となるから、逆元は存在すればただひとつである[3]。
任意のモノイドが必ず何らかの群に含まれるとは限らない。例えば、b が単位元ではない場合にも a ・ b = a を満たすような二つの元 a, b をとることができるモノイドというものを矛盾なく考えることができるが、このようなモノイドを群に埋め込むことはできない。なぜなら、埋め込んだ群において必ず存在する a の逆元を両辺に掛けることにより b = e が導かれ、b が単位元でないことに矛盾するからである。モノイド (M, ・) が消約律 (cancellation property) を満たす、あるいは消約的 (cancellative) であるとは
つづく
つづき
https://ja.wikipedia.org/wiki/%E3%83%A2%E3%83%8E%E3%82%A4%E3%83%89
モノイド
単系(たんけい、英: monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。
モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。
定義
集合 S とその上の二項演算 ・: S × S → S が与えられ、以下の条件
結合律
S の任意の元 a, b, c に対して、(a ・ b) ・ c = a ・ (b ・ c).
単位元の存在
S の元 e が存在して、S の任意の元 a に対して e ・ a = a ・ e = a.
を満たすならば、組 (S, ・, e) をモノイドという。まぎれの虞のない場合、対 (S, ・) あるいは単に S のみでも表す。 二項演算の結果 a ・ b を a と b の積[注釈 1]と呼ぶ。手短に述べれば、モノイドとは単位元を持つ半群のことである。モノイドに各元の可逆性を課せば、群が得られる。逆に任意の群はモノイドである。
性質
モノイドにおいては、可逆元(あるいは単元)の概念を定義することができる。モノイドの元 x が可逆であるとは xy = e かつ yx = e を満たす元 y が存在するときにいう。y は x の逆元と呼ばれる。y および z が x の逆元ならば、結合律により y = (zx)y = z(xy) = z となるから、逆元は存在すればただひとつである[3]。
任意のモノイドが必ず何らかの群に含まれるとは限らない。例えば、b が単位元ではない場合にも a ・ b = a を満たすような二つの元 a, b をとることができるモノイドというものを矛盾なく考えることができるが、このようなモノイドを群に埋め込むことはできない。なぜなら、埋め込んだ群において必ず存在する a の逆元を両辺に掛けることにより b = e が導かれ、b が単位元でないことに矛盾するからである。モノイド (M, ・) が消約律 (cancellation property) を満たす、あるいは消約的 (cancellative) であるとは
つづく
284132人目の素数さん
2020/08/14(金) 18:35:10.32ID:OOQfjZEv Dulmage - Mendelsohn分解を実装しようと思っていますが、まずは2部グラフの最大マッチングを求めるHopcroft - Karpのアルゴリズムから
実装しないといけないので大変です。
実装しないといけないので大変です。
285現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/14(金) 18:35:48.38ID:OxWPj/ry >>283
つづき
M の任意の元 a, b, c に対し、a ・ b = a ・ c が成り立つならば、常に b = c を帰結することができる
という条件を満たすときにいう。消約的可換モノイドは常にグロタンディーク構成によって群に埋め込むことができる。これは、整数全体の成す加法群(加法演算 "+" に関する群)を自然数全体の成す加法モノイド(加法演算 "+" に関する消約的可換モノイド)から構成する方法の一般化である。しかし、非可換消約的モノイドは必ずしも群に埋め込み可能でない。
消約的モノイドが有限ならば、実は群になる。実際、モノイドの元 x を一つ選べば、有限性より適当な m > n > 0 をとって xn = xm とすることができるが、これは消約律により xm-n = e(e はモノイドの単位元)となり、xm-n-1 が x の逆元となる。
モノイドの右消約元の全体あるいは左消約元の全体は部分モノイドを成す(単位元を含むのは明らかだが、演算が閉じていることはそれほど明らかではない)。これは、任意の可換モノイドの消約元の全体はかならず群に延長することができるということを意味している。
モノイド M は、M の各元 a がそれぞれ
a = a ・ a-1 ・ a かつ a-1 = a-1 ・ a ・ a-1
となる M の元 a-1 をただひとつ持つとき、M を逆モノイド (inverse monoid) あるいは山田モノイドという[注釈 5]。逆モノイドが消約的ならばそれは群を成す。
つづく
つづき
M の任意の元 a, b, c に対し、a ・ b = a ・ c が成り立つならば、常に b = c を帰結することができる
という条件を満たすときにいう。消約的可換モノイドは常にグロタンディーク構成によって群に埋め込むことができる。これは、整数全体の成す加法群(加法演算 "+" に関する群)を自然数全体の成す加法モノイド(加法演算 "+" に関する消約的可換モノイド)から構成する方法の一般化である。しかし、非可換消約的モノイドは必ずしも群に埋め込み可能でない。
消約的モノイドが有限ならば、実は群になる。実際、モノイドの元 x を一つ選べば、有限性より適当な m > n > 0 をとって xn = xm とすることができるが、これは消約律により xm-n = e(e はモノイドの単位元)となり、xm-n-1 が x の逆元となる。
モノイドの右消約元の全体あるいは左消約元の全体は部分モノイドを成す(単位元を含むのは明らかだが、演算が閉じていることはそれほど明らかではない)。これは、任意の可換モノイドの消約元の全体はかならず群に延長することができるということを意味している。
モノイド M は、M の各元 a がそれぞれ
a = a ・ a-1 ・ a かつ a-1 = a-1 ・ a ・ a-1
となる M の元 a-1 をただひとつ持つとき、M を逆モノイド (inverse monoid) あるいは山田モノイドという[注釈 5]。逆モノイドが消約的ならばそれは群を成す。
つづく
286現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/14(金) 18:36:13.46ID:OxWPj/ry >>285
つづき
圏論との関係
モノイドは圏の特別なクラスと看做すことができる。実際、モノイドにおいて二項演算に課される公理は、圏において(与えられたただ一つの対象を始域および終域とする射の集合だけで考えれば)射の合成に課される公理と同じである。すなわち、
モノイドはただひとつの対象をもつ圏(単一対象圏)と本質的に同じものである。
もっとはっきり述べれば、モノイド (M, ・) はただひとつの対象をもち、M の元を射として小さい圏を成す(射の合成はモノイド演算 ・ で与えられる)。
これと平行して、モノイド準同型は単一対象圏の間の函手とみなされる。ゆえに、今考えている圏の構成は(小さい)モノイドの圏 Mon と(小さい)圏の圏 Cat のある充満部分圏との間の圏同値を与えるものになっている。同様に、(小さい)群の圏は、Cat の(モノイドの圏とは別の)ある充満部分圏に同値である。
この意味では、圏論をモノイドの概念の一般化であると考えることができ、モノイドに関する定義や定理の多くを(ひとつまたはそれ以上の対象を持つ)小さい圏に対して一般化することができる。例えば、単一対象圏の商圏とは、剰余モノイドのことである。
モノイドの全体は(他の代数的構造がそうであるのと同様に)、モノイドを対象としモノイド準同型を射とする圏 Mon を成す。
また、抽象的な定義によって、各圏における「モノイド」としてモノイド対象の概念が定まる。通常のモノイドは(小さい)集合の圏 Set におけるモノイド対象である。
(引用終り)
以上
つづき
圏論との関係
モノイドは圏の特別なクラスと看做すことができる。実際、モノイドにおいて二項演算に課される公理は、圏において(与えられたただ一つの対象を始域および終域とする射の集合だけで考えれば)射の合成に課される公理と同じである。すなわち、
モノイドはただひとつの対象をもつ圏(単一対象圏)と本質的に同じものである。
もっとはっきり述べれば、モノイド (M, ・) はただひとつの対象をもち、M の元を射として小さい圏を成す(射の合成はモノイド演算 ・ で与えられる)。
これと平行して、モノイド準同型は単一対象圏の間の函手とみなされる。ゆえに、今考えている圏の構成は(小さい)モノイドの圏 Mon と(小さい)圏の圏 Cat のある充満部分圏との間の圏同値を与えるものになっている。同様に、(小さい)群の圏は、Cat の(モノイドの圏とは別の)ある充満部分圏に同値である。
この意味では、圏論をモノイドの概念の一般化であると考えることができ、モノイドに関する定義や定理の多くを(ひとつまたはそれ以上の対象を持つ)小さい圏に対して一般化することができる。例えば、単一対象圏の商圏とは、剰余モノイドのことである。
モノイドの全体は(他の代数的構造がそうであるのと同様に)、モノイドを対象としモノイド準同型を射とする圏 Mon を成す。
また、抽象的な定義によって、各圏における「モノイド」としてモノイド対象の概念が定まる。通常のモノイドは(小さい)集合の圏 Set におけるモノイド対象である。
(引用終り)
以上
287132人目の素数さん
2020/08/14(金) 18:36:37.34ID:OOQfjZEv http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-kisosuri/ev6-ccf.gif
実際に応用する際には、こんな感じの疎行列に対して適用されるんですね。
実際に応用する際には、こんな感じの疎行列に対して適用されるんですね。
288132人目の素数さん
2020/08/14(金) 18:38:09.65ID:OOQfjZEv http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-ouyousurigaku/dm050410.pdf
DM分解が何の役に立つのか正直言って分かりませんが、連立1次方程式がたしかにキレイになりますね。
DM分解が何の役に立つのか正直言って分かりませんが、連立1次方程式がたしかにキレイになりますね。
289現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/14(金) 18:39:00.26ID:OxWPj/ry >>284
>Dulmage - Mendelsohn分解を実装しようと思っていますが、まずは2部グラフの最大マッチングを求めるHopcroft - Karpのアルゴリズムから
>実装しないといけないので大変です。
どうも
ご苦労さまです
”Dulmage - Mendelsohn分解を実装”は、すでに(既存の)実装があると思うので
そちらを参考にされるのが良いと思います
(多分、英文資料なら多くあるのでは?)
機械翻訳使えば、多少楽でしょう
>Dulmage - Mendelsohn分解を実装しようと思っていますが、まずは2部グラフの最大マッチングを求めるHopcroft - Karpのアルゴリズムから
>実装しないといけないので大変です。
どうも
ご苦労さまです
”Dulmage - Mendelsohn分解を実装”は、すでに(既存の)実装があると思うので
そちらを参考にされるのが良いと思います
(多分、英文資料なら多くあるのでは?)
機械翻訳使えば、多少楽でしょう
290現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/14(金) 18:40:17.49ID:OxWPj/ry291132人目の素数さん
2020/08/14(金) 18:40:41.07ID:OOQfjZEv DM分解を検索するとなぜか伊理正夫系の人たちばかりがヒットします。
実はあまり役に立たない?伊理正夫がDM分解を好きだったというだけ?
実はあまり役に立たない?伊理正夫がDM分解を好きだったというだけ?
292132人目の素数さん
2020/08/14(金) 19:04:15.25ID:tstI7/Nb293132人目の素数さん
2020/08/14(金) 19:30:47.93ID:tstI7/Nb >>286
>モノイドは圏の特別なクラスと看做すことができる。
>実際、モノイドにおいて二項演算に課される公理は、
>圏において(与えられたただ一つの対象を始域および終域とする
>射の集合だけで考えれば)射の合成に課される公理と同じである。
さらに、射を同型射だけに制限すれば、群になる
射 (圏論)
https://ja.wikipedia.org/wiki/%E5%B0%84_(%E5%9C%8F%E8%AB%96)
単射: 射 f: X → Y が単射 (mono-morphism) であるとは、
f ∘ g1 = f ∘ g2 ならば g1 = g2 が
任意の射 g1, g2: Z → X に対して成り立つこと。
全射: 双対的に、f: X → Y が全射 (epi-morphism) であるとは、
g1 ∘ f = g2 ∘ f ならば g1 = g2 が
任意の射 g1, g2: Y → Z に対して成り立つこと。
単射でも全射でもあるような射は
全単射あるいは双射 (bimorphism) と呼ばれる。
同型射: 射 f: X → Y に対して射 g: Y → X が存在し、
f ∘ g = idY かつ g ∘ f = idX が
成り立つものを同型射であると言う。
射 f が左逆射と右逆射をともに持つとき、
両者は一致して f は同型射であり、
g は単に f の逆射 (inverse) と呼ばれる。
逆射は、それが存在すれば一意である。
逆射 g もやはり同型射であり、逆射として f を持つ。
二つの対象がその間に同型射を持つとき、
それら二つは互いに同型あるいは同値であるという。
注意すべきは、任意の同型射は双射だが、
双射は必ずしも同型射ではないことである。
>モノイドは圏の特別なクラスと看做すことができる。
>実際、モノイドにおいて二項演算に課される公理は、
>圏において(与えられたただ一つの対象を始域および終域とする
>射の集合だけで考えれば)射の合成に課される公理と同じである。
さらに、射を同型射だけに制限すれば、群になる
射 (圏論)
https://ja.wikipedia.org/wiki/%E5%B0%84_(%E5%9C%8F%E8%AB%96)
単射: 射 f: X → Y が単射 (mono-morphism) であるとは、
f ∘ g1 = f ∘ g2 ならば g1 = g2 が
任意の射 g1, g2: Z → X に対して成り立つこと。
全射: 双対的に、f: X → Y が全射 (epi-morphism) であるとは、
g1 ∘ f = g2 ∘ f ならば g1 = g2 が
任意の射 g1, g2: Y → Z に対して成り立つこと。
単射でも全射でもあるような射は
全単射あるいは双射 (bimorphism) と呼ばれる。
同型射: 射 f: X → Y に対して射 g: Y → X が存在し、
f ∘ g = idY かつ g ∘ f = idX が
成り立つものを同型射であると言う。
射 f が左逆射と右逆射をともに持つとき、
両者は一致して f は同型射であり、
g は単に f の逆射 (inverse) と呼ばれる。
逆射は、それが存在すれば一意である。
逆射 g もやはり同型射であり、逆射として f を持つ。
二つの対象がその間に同型射を持つとき、
それら二つは互いに同型あるいは同値であるという。
注意すべきは、任意の同型射は双射だが、
双射は必ずしも同型射ではないことである。
294132人目の素数さん
2020/08/14(金) 19:33:58.13ID:OOQfjZEv295132人目の素数さん
2020/08/14(金) 19:39:29.83ID:tstI7/Nb 正方行列の全体M_n(K)は、
線形空間K^nの自己射の全体であるから
モノイドではあるが群ではない
正則行列の全体GL_n(K)は、
線形空間K^nの自己同型射の全体であるから
群である
線形空間K^nの自己射の全体であるから
モノイドではあるが群ではない
正則行列の全体GL_n(K)は、
線形空間K^nの自己同型射の全体であるから
群である
296132人目の素数さん
2020/08/14(金) 20:01:05.91ID:tstI7/Nb ちなみに対象が複数ある圏で、
射が全て同型射の場合、
亜群(groupoid)となる
射が全て同型射の場合、
亜群(groupoid)となる
297現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/14(金) 21:04:11.93ID:w35QJuJk >>291
>DM分解を検索するとなぜか伊理正夫系の人たちばかりがヒットします。
実はあまり役に立たない?伊理正夫がDM分解を好きだったというだけ?
伊理正夫か、懐かしいな
数値解析のレジェンドですよね
”伊理正夫がDM分解を好きだった”ではなく、あの人は、数値解析については
なんでもやった人です。DM分解も、彼の業績の一分野にすぎないでしょう
あと、DM分解は、学問的には下火のような気がする
(学問的には終わっているのでは?)
https://ja.wikipedia.org/wiki/%E4%BC%8A%E7%90%86%E6%AD%A3%E5%A4%AB
伊理正夫
伊理 正夫(いり まさお、1933年(昭和8年) - 2018年(平成30年)8月13日)は、日本の数学者・工学者。東京大学名誉教授、元同大学工学部長・中央大学理工学研究所所長。工学博士(東京大学)。専門は数理工学、応用数学(例えば数値解析、線形計画法、マトロイド理論、計算幾何学など)。
来歴
1955年3月、東京大学工学部応用物理学科(数理工学専修コース)を卒業。1960年3月、東京大学大学院数物系研究科応用物理学専門課程博士課程を修了し、同年工学博士号を取得。
1960年4月より九州大学工学部通信工学科助手に就任し、同年12月、助教授となる。1962年10月、東京大学工学部計数工学科助教授に転任。1973年4月に教授に就任し、1993年3月まで務める。1993年5月、東京大学名誉教授となる。
1987年4月、東京大学工学部長に就任(1989年3月まで)。1989年4月より1991年3月まで東京大学総長特別補佐(副学長)を務めた。この間、1991年10月に西安電子科技大学から名誉教授の称号を授与されている。
1991年には日本応用数理学会・計算の品質研究部会(精度保証付き数値計算を扱う部会)の主査を務める(その後、大石進一に引き継がれる)[1]。
1992年から1994年まで日本オペレーションズ・リサーチ学会会長[2]。
>DM分解を検索するとなぜか伊理正夫系の人たちばかりがヒットします。
実はあまり役に立たない?伊理正夫がDM分解を好きだったというだけ?
伊理正夫か、懐かしいな
数値解析のレジェンドですよね
”伊理正夫がDM分解を好きだった”ではなく、あの人は、数値解析については
なんでもやった人です。DM分解も、彼の業績の一分野にすぎないでしょう
あと、DM分解は、学問的には下火のような気がする
(学問的には終わっているのでは?)
https://ja.wikipedia.org/wiki/%E4%BC%8A%E7%90%86%E6%AD%A3%E5%A4%AB
伊理正夫
伊理 正夫(いり まさお、1933年(昭和8年) - 2018年(平成30年)8月13日)は、日本の数学者・工学者。東京大学名誉教授、元同大学工学部長・中央大学理工学研究所所長。工学博士(東京大学)。専門は数理工学、応用数学(例えば数値解析、線形計画法、マトロイド理論、計算幾何学など)。
来歴
1955年3月、東京大学工学部応用物理学科(数理工学専修コース)を卒業。1960年3月、東京大学大学院数物系研究科応用物理学専門課程博士課程を修了し、同年工学博士号を取得。
1960年4月より九州大学工学部通信工学科助手に就任し、同年12月、助教授となる。1962年10月、東京大学工学部計数工学科助教授に転任。1973年4月に教授に就任し、1993年3月まで務める。1993年5月、東京大学名誉教授となる。
1987年4月、東京大学工学部長に就任(1989年3月まで)。1989年4月より1991年3月まで東京大学総長特別補佐(副学長)を務めた。この間、1991年10月に西安電子科技大学から名誉教授の称号を授与されている。
1991年には日本応用数理学会・計算の品質研究部会(精度保証付き数値計算を扱う部会)の主査を務める(その後、大石進一に引き継がれる)[1]。
1992年から1994年まで日本オペレーションズ・リサーチ学会会長[2]。
298現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/14(金) 21:10:16.19ID:w35QJuJk >>297 補足
ご参考まで
https://jom.jsiam.org/?article=K1809A
JSIAM Online Magazine
学会ノート
伊理正夫先生追悼特集(1):伊理正夫先生を偲ぶ ―ご経歴とご業績を中心に―土谷 隆 (Published Date: 2018/10/20)
(抜粋)
伊理先生のご研究は数理工学・応用数理の広範な範囲に渡ります.
1960年代から1970年代には,電気回路方程式の表現法の研究から出発して
代数的位相幾何学や線形計画的手法も用いたグラフ・ネットワーク解析, 大規模システム分割の理論を展開され,
さらにそれを受けて発展させる形でマトロイド理論とその工学的応用についての研究を進められる一方,
高性能の積分公式である IMT (Iri-Moriguti-Takasawa) 公式なども提案されました.
1980年代から1990年代にかけては計算幾何学のための種々のアルゴリズムの開発と地理情報処理への展開,可変指数部を持つ浮動小数点数値表現である伊理−松井方式,
線形計画問題に対する内点法の伊理−今井法,高速自動微分法の提案と実用化などの研究を進められました.
このように,先生の諸分野におけるご業績は枚挙にいとまがありません.
先生はこれらのご研究を200編以上の論文として出版されました.
ご参考まで
https://jom.jsiam.org/?article=K1809A
JSIAM Online Magazine
学会ノート
伊理正夫先生追悼特集(1):伊理正夫先生を偲ぶ ―ご経歴とご業績を中心に―土谷 隆 (Published Date: 2018/10/20)
(抜粋)
伊理先生のご研究は数理工学・応用数理の広範な範囲に渡ります.
1960年代から1970年代には,電気回路方程式の表現法の研究から出発して
代数的位相幾何学や線形計画的手法も用いたグラフ・ネットワーク解析, 大規模システム分割の理論を展開され,
さらにそれを受けて発展させる形でマトロイド理論とその工学的応用についての研究を進められる一方,
高性能の積分公式である IMT (Iri-Moriguti-Takasawa) 公式なども提案されました.
1980年代から1990年代にかけては計算幾何学のための種々のアルゴリズムの開発と地理情報処理への展開,可変指数部を持つ浮動小数点数値表現である伊理−松井方式,
線形計画問題に対する内点法の伊理−今井法,高速自動微分法の提案と実用化などの研究を進められました.
このように,先生の諸分野におけるご業績は枚挙にいとまがありません.
先生はこれらのご研究を200編以上の論文として出版されました.
299現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/14(金) 21:12:51.76ID:w35QJuJk300現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/14(金) 21:23:54.29ID:w35QJuJk >>281 補足
(引用開始)
行列では、AX = E のとき,XAを考えると
XA=XEA=X(AX)A=X(AX)A=(XA)(XA)=(XA)^2
これから
(XA)^2-XA=0(零行列)
(XA)(XA-E)=0
Xが零因子でなく、従って、XAが零因子でないことを認めると、
XA-E=0より
XA=E 成立(途中、結合則と分配則などを使った)
(引用終り)
ここ”左逆元 XA = E から出発しても、同様の議論で、AX=E が成立する”
の一行を追加します
追伸
これ、院試などを受けるつもりなら、要注意点です
つまり、”逆もまた同様に成立”とか、”逆元の右左を逆にしても同様に成立つ”とか
必要な一言を、書き漏らさないよう
試験の採点では、「書いていないことには、点を出せない」ってこと
普通の定期試験なら、「こいつは分かっているんだな」と斟酌してくれるかもしれないが
院試になると、答案の名前は伏せられるので、採点者にはだれの答案か基本分からないし
採点基準通りに採点されるだろうから、普段の定期試験より、採点は厳しいだろう
(私ら関係ないけどね(^^ )
(引用開始)
行列では、AX = E のとき,XAを考えると
XA=XEA=X(AX)A=X(AX)A=(XA)(XA)=(XA)^2
これから
(XA)^2-XA=0(零行列)
(XA)(XA-E)=0
Xが零因子でなく、従って、XAが零因子でないことを認めると、
XA-E=0より
XA=E 成立(途中、結合則と分配則などを使った)
(引用終り)
ここ”左逆元 XA = E から出発しても、同様の議論で、AX=E が成立する”
の一行を追加します
追伸
これ、院試などを受けるつもりなら、要注意点です
つまり、”逆もまた同様に成立”とか、”逆元の右左を逆にしても同様に成立つ”とか
必要な一言を、書き漏らさないよう
試験の採点では、「書いていないことには、点を出せない」ってこと
普通の定期試験なら、「こいつは分かっているんだな」と斟酌してくれるかもしれないが
院試になると、答案の名前は伏せられるので、採点者にはだれの答案か基本分からないし
採点基準通りに採点されるだろうから、普段の定期試験より、採点は厳しいだろう
(私ら関係ないけどね(^^ )
301132人目の素数さん
2020/08/14(金) 22:20:21.30ID:tstI7/Nb302132人目の素数さん
2020/08/14(金) 23:20:37.06ID:YSkG5ywK >>214
>群・環・体
>この文脈で
>「零因子」と、「逆元を持つ」は密接な関係があります
>「逆元が存在するかどうかを論じてる
>たまたまそれが零因子でないという性質と同値である
>だから関係大ありだとほざきたいらしいが・・・」(>>178)
>なんて、”たまたま”でないことは、ちょっと群・環・体(蟹江)を読めば、すぐ分かること(^^;
たまたまですねー
「単元は非零因子」は自明に成立しますが、「非零因子は単元」は一般には不成立ですからー
当たり前です。もし成立するなら「整域は体」が成立してしまいますよー
群・環・体(蟹江)をどう読んだら分かったんですかー?
>抽象代数学に、無知ってことですねWWWWW(^^;
無知はあなたですねー
>群・環・体
>この文脈で
>「零因子」と、「逆元を持つ」は密接な関係があります
>「逆元が存在するかどうかを論じてる
>たまたまそれが零因子でないという性質と同値である
>だから関係大ありだとほざきたいらしいが・・・」(>>178)
>なんて、”たまたま”でないことは、ちょっと群・環・体(蟹江)を読めば、すぐ分かること(^^;
たまたまですねー
「単元は非零因子」は自明に成立しますが、「非零因子は単元」は一般には不成立ですからー
当たり前です。もし成立するなら「整域は体」が成立してしまいますよー
群・環・体(蟹江)をどう読んだら分かったんですかー?
>抽象代数学に、無知ってことですねWWWWW(^^;
無知はあなたですねー
303132人目の素数さん
2020/08/14(金) 23:43:54.23ID:YSkG5ywK 瀬田に問題
有限環においては「非零因子は単元」が成立することを証明せよ
有限環においては「非零因子は単元」が成立することを証明せよ
304132人目の素数さん
2020/08/15(土) 06:09:08.14ID:SNsaKEgj305現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/15(土) 06:38:04.77ID:lDTZxP5F (>>154 再録)
自分の大失言を、取り繕うため、必死に他人のあら探ししてる〜w
意図が見え見えで、笑えるわ(^^
だがな、他人を攻撃しても、自分の失言は、どうしようもないよね
「自然数Nが、群の例?」
アホじゃん。おれと良い勝負だよw(^^;
(引用開始)
「例えば群の例で、自然数しか思いつかないようなもん
で唯一の例を根拠に「群の演算は可換!」とか言いきったら馬鹿」
って、自然数Nが、群の例?
ああ、wikipedia 「自然数(しぜんすう、英: natural number)とは、個数、もしくは順番を表す一群の数のことである」
を誤読したか?
スポポポポポポーン!!!
。 。
。 。 。 。 ゚
。 。゚。゜。 ゚。 。
/ // / /
( Д ) Д)Д))
自分の大失言を、取り繕うため、必死に他人のあら探ししてる〜w
意図が見え見えで、笑えるわ(^^
だがな、他人を攻撃しても、自分の失言は、どうしようもないよね
「自然数Nが、群の例?」
アホじゃん。おれと良い勝負だよw(^^;
(引用開始)
「例えば群の例で、自然数しか思いつかないようなもん
で唯一の例を根拠に「群の演算は可換!」とか言いきったら馬鹿」
って、自然数Nが、群の例?
ああ、wikipedia 「自然数(しぜんすう、英: natural number)とは、個数、もしくは順番を表す一群の数のことである」
を誤読したか?
スポポポポポポーン!!!
。 。
。 。 。 。 ゚
。 。゚。゜。 ゚。 。
/ // / /
( Д ) Д)Д))
306現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/15(土) 06:56:39.68ID:lDTZxP5F >>281 補足
”群環と零因子問題
群 G と体 K に対して、群環 R :=K[G] は域となるかを考える。恒等式
(1-g)(1+g+・・・ +g^(n-1)=1-g^n
から有限な位数 n を持つ元 g から R の零因子 1 ? g が得られる。
零因子問題(カプランスキーの零因子予想)とはこれ以外の方法で零因子が得られないかどうかを問うものである。即ち、
零因子問題
与えられた体 K と捩れのない群 G に対して、「群環 K[G] は零因子を含まない」という主張は真であるか
今のところ反例は知られていないが、問題は一般には未解決のままである(2007年現在)。”
英語版では、”No counterexamples are known, but the problem remains open in general (as of 2017).”
(参考)
https://ja.wikipedia.org/wiki/%E9%9D%9E%E5%8F%AF%E6%8F%9B%E6%95%B4%E5%9F%9F
非可換整域
(抜粋)
環論と呼ばれる抽象代数学の一分野における(非可換[注釈 1])整域あるいは域(いき、英: domain)とは、右または左零因子を持たない(つまり ab = 0 ならば a = 0 または b = 0 が成り立つ[2]、零積律(英語版)を満たすとも言われる)環のことを言う。
(https://en.wikipedia.org/wiki/Zero-product_property
In algebra, the zero-product property states that the product of two nonzero elements is nonzero.
In other words, it is the following assertion:
If ab=0, then a=0 or b=0.)
しばしば自明でない(一つよりも多くの元を持つ)ことを仮定する[3]が、域が乗法単位元を持つならば、この仮定は 1 ≠ 0 と同値[4]であり、この場合の域は「左または右零因子を持たない非自明な環」のことになる。1(≠ 0) を持つ可換域は(可換)整域と呼ばれる[5][注釈 1]。
定理 (Wedderburn)
有限域は自動的に有限体になる。
つづく
”群環と零因子問題
群 G と体 K に対して、群環 R :=K[G] は域となるかを考える。恒等式
(1-g)(1+g+・・・ +g^(n-1)=1-g^n
から有限な位数 n を持つ元 g から R の零因子 1 ? g が得られる。
零因子問題(カプランスキーの零因子予想)とはこれ以外の方法で零因子が得られないかどうかを問うものである。即ち、
零因子問題
与えられた体 K と捩れのない群 G に対して、「群環 K[G] は零因子を含まない」という主張は真であるか
今のところ反例は知られていないが、問題は一般には未解決のままである(2007年現在)。”
英語版では、”No counterexamples are known, but the problem remains open in general (as of 2017).”
(参考)
https://ja.wikipedia.org/wiki/%E9%9D%9E%E5%8F%AF%E6%8F%9B%E6%95%B4%E5%9F%9F
非可換整域
(抜粋)
環論と呼ばれる抽象代数学の一分野における(非可換[注釈 1])整域あるいは域(いき、英: domain)とは、右または左零因子を持たない(つまり ab = 0 ならば a = 0 または b = 0 が成り立つ[2]、零積律(英語版)を満たすとも言われる)環のことを言う。
(https://en.wikipedia.org/wiki/Zero-product_property
In algebra, the zero-product property states that the product of two nonzero elements is nonzero.
In other words, it is the following assertion:
If ab=0, then a=0 or b=0.)
しばしば自明でない(一つよりも多くの元を持つ)ことを仮定する[3]が、域が乗法単位元を持つならば、この仮定は 1 ≠ 0 と同値[4]であり、この場合の域は「左または右零因子を持たない非自明な環」のことになる。1(≠ 0) を持つ可換域は(可換)整域と呼ばれる[5][注釈 1]。
定理 (Wedderburn)
有限域は自動的に有限体になる。
つづく
307現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/15(土) 06:58:17.00ID:lDTZxP5F >>306
つづき
零因子について(少なくとも可換環の場合には)位相幾何学的な解釈をすることができる。環 R が可換整域となるための必要十分条件は、R が被約環(つまり冪零元を持たない環)であり、かつそのスペクトル Spec R が既約位相空間となることである。前者の性質はある種の無限小の情報を保有しているとしばしば考えられ、対して後者はより幾何学的な情報を与えている。例えば、体 k 上の環 k[x, y]/(xy) は整域でない(x および y の属する類が零因子を与える)が、これは幾何学的にはこの環のスペクトルが既約でない(実際に、二つの既約成分である直線 x = 0 と y = 0 の和となる)ことに対応する。
群環と零因子問題
群 G と体 K に対して、群環 R :=K[G] は域となるかを考える。恒等式
(1-g)(1+g+・・・ +g^(n-1)=1-g^n
から有限な位数 n を持つ元 g から R の零因子 1 ? g が得られる。
零因子問題(カプランスキーの零因子予想)とはこれ以外の方法で零因子が得られないかどうかを問うものである。即ち、
零因子問題
与えられた体 K と捩れのない群 G に対して、「群環 K[G] は零因子を含まない」という主張は真であるか
今のところ反例は知られていないが、問題は一般には未解決のままである(2007年現在)。
様々な特定の群のクラスについては肯定的に解決されている。Farkas & Snider (1976)は「G が捩れの無い多重巡回×有限(英語版)群 (polycyclic-by-finite group) で K が標数 char?K = 0 の体ならば群環 K[G] は域を成す」ことを証明した。後に Cliff (1980) が体の標数に関する制限を取り除いている。Kropholler, Linnell & Moody (1988) はこれらの結果を捩れの無い可解群および可解×有限群の場合にまで一般化している。それより早く Lazard (1965) の成した研究は(その重要性は20年もの間この分野の専門家に省みられることは無かったが)、K が p-進整数環で G が GL(n, Z) の p-次合同部分群(英語版)である場合を扱っていた。
(英語版)
https://en.wikipedia.org/wiki/Domain_(ring_theory)
Domain (ring theory)
Group rings and the zero divisor problem
No counterexamples are known, but the problem remains open in general (as of 2017).
(引用終り)
以上
つづき
零因子について(少なくとも可換環の場合には)位相幾何学的な解釈をすることができる。環 R が可換整域となるための必要十分条件は、R が被約環(つまり冪零元を持たない環)であり、かつそのスペクトル Spec R が既約位相空間となることである。前者の性質はある種の無限小の情報を保有しているとしばしば考えられ、対して後者はより幾何学的な情報を与えている。例えば、体 k 上の環 k[x, y]/(xy) は整域でない(x および y の属する類が零因子を与える)が、これは幾何学的にはこの環のスペクトルが既約でない(実際に、二つの既約成分である直線 x = 0 と y = 0 の和となる)ことに対応する。
群環と零因子問題
群 G と体 K に対して、群環 R :=K[G] は域となるかを考える。恒等式
(1-g)(1+g+・・・ +g^(n-1)=1-g^n
から有限な位数 n を持つ元 g から R の零因子 1 ? g が得られる。
零因子問題(カプランスキーの零因子予想)とはこれ以外の方法で零因子が得られないかどうかを問うものである。即ち、
零因子問題
与えられた体 K と捩れのない群 G に対して、「群環 K[G] は零因子を含まない」という主張は真であるか
今のところ反例は知られていないが、問題は一般には未解決のままである(2007年現在)。
様々な特定の群のクラスについては肯定的に解決されている。Farkas & Snider (1976)は「G が捩れの無い多重巡回×有限(英語版)群 (polycyclic-by-finite group) で K が標数 char?K = 0 の体ならば群環 K[G] は域を成す」ことを証明した。後に Cliff (1980) が体の標数に関する制限を取り除いている。Kropholler, Linnell & Moody (1988) はこれらの結果を捩れの無い可解群および可解×有限群の場合にまで一般化している。それより早く Lazard (1965) の成した研究は(その重要性は20年もの間この分野の専門家に省みられることは無かったが)、K が p-進整数環で G が GL(n, Z) の p-次合同部分群(英語版)である場合を扱っていた。
(英語版)
https://en.wikipedia.org/wiki/Domain_(ring_theory)
Domain (ring theory)
Group rings and the zero divisor problem
No counterexamples are known, but the problem remains open in general (as of 2017).
(引用終り)
以上
308132人目の素数さん
2020/08/15(土) 07:20:06.25ID:SNsaKEgj309132人目の素数さん
2020/08/15(土) 07:55:42.12ID:SNsaKEgj ◆yH25M02vWFhPのトンデモ発言
・任意の正方行列は正則行列(正方行列全体は群を成す)
・detA=0なるAが零行列でなければ、余因子行列A~も零行列でない
(detA=0なるAが零行列でなければ零因子のニセ証明)
結局逆行列を持つ条件(行列式が0でない)も知らず
余因子の性質すら理解していない
ほんとに大学出たの? 線形代数全く知らないよね?
・任意の正方行列は正則行列(正方行列全体は群を成す)
・detA=0なるAが零行列でなければ、余因子行列A~も零行列でない
(detA=0なるAが零行列でなければ零因子のニセ証明)
結局逆行列を持つ条件(行列式が0でない)も知らず
余因子の性質すら理解していない
ほんとに大学出たの? 線形代数全く知らないよね?
310132人目の素数さん
2020/08/15(土) 08:14:03.44ID:SNsaKEgj T大シラバス
線型代数学@
線型代数学の萌芽である行列は多変数の連立一次方程式を効率的,統一的に扱う手法として発明された.
また,行列式は方程式の解がただ一つ存在するための条件として発見された.
ベクトルの概念の起こりは古典力学にあり,その意味で線型代数学の歴史は古い.
しかし行列の本質である線型性概念の真の威力が認識され,数学の一分野と
して線型代数学が確立したのは新しく,20 世紀にはいってのことであった.
自然界や社会科学における現象は一般には複雑で一次方程式で表せることはまれだが,
一次近似によりその本質的な部分をとらえることは常套手段であり,
線型代数学の考え方は非常に有効である.
また,量子力学や,フーリエ解析などに現れる無限次元のベクトル空間を扱うための基礎ともなっており,
線型代数学の応用については枚挙にいとまがない.
このように,線型代数学の考え方は現代数学や理論物理学においてはもちろんのこと,
工学,農学,医学,経済学などにおいても基本的な考え方として浸透しており,応用範囲も広い.
線型代数学は理論的には単純で明快であるが,その反面,抽象的な概念操作にある程度慣れないと理解しにくい面もある.
線型代数学を身につけるには,演習などのさまざまな問題にあたり,理解を深めることが必要である.
「数理科学基礎」において学んだ線型代数に関する知識を前提とする.
S2 タームの「線型代数学@」で以下の項目 1, 2 を扱い,
A セメスターの「線形代数学A」で項目 3〜6 を扱うことを目安とするが,
担当教員によって,順序や内容に一部変更が加えられる場合がある.
1. ベクトル空間,線型写像
2. 生成系,一次独立性,基底
3. 内積
4. 行列式
5. 固有値,固有ベクトル
6. 対称行列の対角化と二次形式
---
ホラ!!! 全部大学1年でやることじゃん
しかもこれ理T、U、V共通だから
数学科だけじゃない理学部・工学部・農学部・薬学部・医学部共通の常識
知らない奴は・・・大卒じゃなぁぁぁぁぁい!
線型代数学@
線型代数学の萌芽である行列は多変数の連立一次方程式を効率的,統一的に扱う手法として発明された.
また,行列式は方程式の解がただ一つ存在するための条件として発見された.
ベクトルの概念の起こりは古典力学にあり,その意味で線型代数学の歴史は古い.
しかし行列の本質である線型性概念の真の威力が認識され,数学の一分野と
して線型代数学が確立したのは新しく,20 世紀にはいってのことであった.
自然界や社会科学における現象は一般には複雑で一次方程式で表せることはまれだが,
一次近似によりその本質的な部分をとらえることは常套手段であり,
線型代数学の考え方は非常に有効である.
また,量子力学や,フーリエ解析などに現れる無限次元のベクトル空間を扱うための基礎ともなっており,
線型代数学の応用については枚挙にいとまがない.
このように,線型代数学の考え方は現代数学や理論物理学においてはもちろんのこと,
工学,農学,医学,経済学などにおいても基本的な考え方として浸透しており,応用範囲も広い.
線型代数学は理論的には単純で明快であるが,その反面,抽象的な概念操作にある程度慣れないと理解しにくい面もある.
線型代数学を身につけるには,演習などのさまざまな問題にあたり,理解を深めることが必要である.
「数理科学基礎」において学んだ線型代数に関する知識を前提とする.
S2 タームの「線型代数学@」で以下の項目 1, 2 を扱い,
A セメスターの「線形代数学A」で項目 3〜6 を扱うことを目安とするが,
担当教員によって,順序や内容に一部変更が加えられる場合がある.
1. ベクトル空間,線型写像
2. 生成系,一次独立性,基底
3. 内積
4. 行列式
5. 固有値,固有ベクトル
6. 対称行列の対角化と二次形式
---
ホラ!!! 全部大学1年でやることじゃん
しかもこれ理T、U、V共通だから
数学科だけじゃない理学部・工学部・農学部・薬学部・医学部共通の常識
知らない奴は・・・大卒じゃなぁぁぁぁぁい!
311現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/15(土) 10:54:14.98ID:I4zLJ0eW >>300 補足
モノイドの場合は、下記 花木章秀 信州大 問題 22で
二つの元 fとgzで
gz・f = idS (単位元。 問題では idN と書いてあるが、解答と不一致となっているのは、ご愛敬です(^^; )
一方、 f・gz ≠ idS (解答記載の通り)
なるほど、なるほど(^^
(参考)
http://math.shinshu-u.ac.jp/~hanaki/edu/
代数入門 (代数入門演習) 花木章秀 信州大
問題集
version 20120704
http://math.shinshu-u.ac.jp/~hanaki/edu/intro/intro_mondai_20120704.pdf
代数入門問題集 [20120704]
1 二項演算、半群、モノイド
P2
(問題)
22. A を 1 を単位元とするモノイドとする。
a ∈ A に対して、b ∈ A が a の 左逆元であるとは、ba = 1 となることとする。
また b が a の 右逆元であるとは、ab = 1 となることとする。
A を N から N への写像全体の集合とする。
A は写像の合成を演算として、恒等写像 idN を単位元とするモノイドになる。
f ∈ A を f(a) = a + 1 で定める。
f は左逆元をもつが、右逆元をもたないことを示せ。
また、z ∈ N に対して gz ∈ A を
gz(a)
=a - 1 (a >= 2)
or
=z (a = 1)
で定める。
gz は右逆元をもつが、左逆元をもたないことを示せ。
(解答)
代数入門問題集・解答例と解説 [20120704]
1 二項演算、半群、モノイド
P15
22. h が f の右逆元であるとすると fh = f ・ h = idS である。しかし f は全射ではないので、これは矛盾である。
よって f は右逆元をもたない。
k が gz の左逆元であるとすると kgz = k ・ gz = idS である。しかし gz は単射ではないので、これは矛盾である。
よって gz は左逆元をもたない。
すぐに分かるように gzf = idS が成り立ち、よって gz は f の左逆元、f は gz の右逆元である。
これによって左 (右) 逆元は、存在しても一意的ではないことも分かる。
(引用終り)
以上
モノイドの場合は、下記 花木章秀 信州大 問題 22で
二つの元 fとgzで
gz・f = idS (単位元。 問題では idN と書いてあるが、解答と不一致となっているのは、ご愛敬です(^^; )
一方、 f・gz ≠ idS (解答記載の通り)
なるほど、なるほど(^^
(参考)
http://math.shinshu-u.ac.jp/~hanaki/edu/
代数入門 (代数入門演習) 花木章秀 信州大
問題集
version 20120704
http://math.shinshu-u.ac.jp/~hanaki/edu/intro/intro_mondai_20120704.pdf
代数入門問題集 [20120704]
1 二項演算、半群、モノイド
P2
(問題)
22. A を 1 を単位元とするモノイドとする。
a ∈ A に対して、b ∈ A が a の 左逆元であるとは、ba = 1 となることとする。
また b が a の 右逆元であるとは、ab = 1 となることとする。
A を N から N への写像全体の集合とする。
A は写像の合成を演算として、恒等写像 idN を単位元とするモノイドになる。
f ∈ A を f(a) = a + 1 で定める。
f は左逆元をもつが、右逆元をもたないことを示せ。
また、z ∈ N に対して gz ∈ A を
gz(a)
=a - 1 (a >= 2)
or
=z (a = 1)
で定める。
gz は右逆元をもつが、左逆元をもたないことを示せ。
(解答)
代数入門問題集・解答例と解説 [20120704]
1 二項演算、半群、モノイド
P15
22. h が f の右逆元であるとすると fh = f ・ h = idS である。しかし f は全射ではないので、これは矛盾である。
よって f は右逆元をもたない。
k が gz の左逆元であるとすると kgz = k ・ gz = idS である。しかし gz は単射ではないので、これは矛盾である。
よって gz は左逆元をもたない。
すぐに分かるように gzf = idS が成り立ち、よって gz は f の左逆元、f は gz の右逆元である。
これによって左 (右) 逆元は、存在しても一意的ではないことも分かる。
(引用終り)
以上
312現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/15(土) 11:15:07.05ID:I4zLJ0eW >>300 補足
>>311のように、モノイドでは
gz・f = idS (idSは単位元)
でも
f・gz ≠ idS (解答記載の通り)となる
例が存在する。
では、群ではどうか?
>>300より
AX = E のとき,XAを考えると
XA=XEA=X(AX)A=X(AX)A=(XA)(XA)
において
群では、最低限、右又は左逆元の存在が保障されているから
例えば、XAの右逆元をXA^-1R として、これを右からかけると
上記左辺は、(XA)(XA^-1R)=E
上記右辺は、(XA)(XA)(XA^-1R)=(XA){(XA)(XA^-1R)}=XA
よって、E=XA (即ち、XA=E )
よって、Aの右逆元Xが存在すれば、それは左逆元でもある
同様に、(群の場合)左逆元Xから、それが右逆元であることも、導ける
以上
>>311のように、モノイドでは
gz・f = idS (idSは単位元)
でも
f・gz ≠ idS (解答記載の通り)となる
例が存在する。
では、群ではどうか?
>>300より
AX = E のとき,XAを考えると
XA=XEA=X(AX)A=X(AX)A=(XA)(XA)
において
群では、最低限、右又は左逆元の存在が保障されているから
例えば、XAの右逆元をXA^-1R として、これを右からかけると
上記左辺は、(XA)(XA^-1R)=E
上記右辺は、(XA)(XA)(XA^-1R)=(XA){(XA)(XA^-1R)}=XA
よって、E=XA (即ち、XA=E )
よって、Aの右逆元Xが存在すれば、それは左逆元でもある
同様に、(群の場合)左逆元Xから、それが右逆元であることも、導ける
以上
313現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/15(土) 11:41:41.02ID:I4zLJ0eW314現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/15(土) 17:41:47.43ID:I4zLJ0eW >>311 トリビア蛇足
花木章秀 信州大より
モノイドの場合
gz・f = idS (単位元)
f・gz ≠ idS (解答記載の通り)
1)まず
A は写像の合成を演算としてモノイドで、恒等写像 idS を単位元とする
f ∈ A を f(a) = a + 1
z ∈ N に対して gz ∈ A を
gz(a)
=a - 1 (a >= 2)
or
=z (a = 1)
で定めている
2)22の解答にある 「h が f の右逆元であるとすると fh = f ・ h = idS である。しかし f は全射ではないので、これは矛盾である。よって f は右逆元をもたない」
これ、分かる人には分かるが、まず、恒等写像 idS :N→Nで は、1を1に、2は2に・・・と写す恒等写像で、”全単射”です。これ言われてみれば自明
3)さて、f(a) = a + 1は、何をしているかというと、f:N→N+1に移す
ここで、Nは1から始まる自然数を考えていて、N+1には、1は含まれないので、全射ではない
gz(a) =a - 1 (a >= 2) or =z (a = 1) 、これは何をしているかというと、gz:N+1→Nなのです(但し、N+1には、a = 1は含まれていない)
つまり、gzは、N+1→Nで、N+1をNに引き戻すことができます
(なお、gz:N→Nの場合には、Nには、a = 1が含まれるので、gz:1→z となって、zのところがダブりで、単射性が崩れている写像です
4)で、上記2)で、ある写像h:N→N(Nの部分集合の場合もあり)があって、その像はN全体かNの部分集合かです。そのいずれにせよ、 f は全射ではない。写像の合成fhも全射にはならない。よって、合成fhは恒等写像 idSではない!
5)同じ論法で、>>311の「k が gz の左逆元であるとすると kgz = k ・ gz = idS である。しかし gz は単射ではないので、これは矛盾である」も言える
6)花木解答に記載の「gz・f = idS」は、上記3)で述べた通りです
f・gzはどうかと言えば、gz:N→Nでzのところがダブりですが、像はNそのものなのです。そして、f:N→N+1で、その像は 1 は集合N+1に含まれないので、「f・gz ≠ idS」という花木解答です
トリビア蛇足でした
これは、自分では思いつかないね
(実際、gz・f = idS → f・gz = idS が証明できないかを(モノイドなどにおいて)考えてみたが、出来なかった。反例があるんだね。思いつかなかったな)
(^^;
花木章秀 信州大より
モノイドの場合
gz・f = idS (単位元)
f・gz ≠ idS (解答記載の通り)
1)まず
A は写像の合成を演算としてモノイドで、恒等写像 idS を単位元とする
f ∈ A を f(a) = a + 1
z ∈ N に対して gz ∈ A を
gz(a)
=a - 1 (a >= 2)
or
=z (a = 1)
で定めている
2)22の解答にある 「h が f の右逆元であるとすると fh = f ・ h = idS である。しかし f は全射ではないので、これは矛盾である。よって f は右逆元をもたない」
これ、分かる人には分かるが、まず、恒等写像 idS :N→Nで は、1を1に、2は2に・・・と写す恒等写像で、”全単射”です。これ言われてみれば自明
3)さて、f(a) = a + 1は、何をしているかというと、f:N→N+1に移す
ここで、Nは1から始まる自然数を考えていて、N+1には、1は含まれないので、全射ではない
gz(a) =a - 1 (a >= 2) or =z (a = 1) 、これは何をしているかというと、gz:N+1→Nなのです(但し、N+1には、a = 1は含まれていない)
つまり、gzは、N+1→Nで、N+1をNに引き戻すことができます
(なお、gz:N→Nの場合には、Nには、a = 1が含まれるので、gz:1→z となって、zのところがダブりで、単射性が崩れている写像です
4)で、上記2)で、ある写像h:N→N(Nの部分集合の場合もあり)があって、その像はN全体かNの部分集合かです。そのいずれにせよ、 f は全射ではない。写像の合成fhも全射にはならない。よって、合成fhは恒等写像 idSではない!
5)同じ論法で、>>311の「k が gz の左逆元であるとすると kgz = k ・ gz = idS である。しかし gz は単射ではないので、これは矛盾である」も言える
6)花木解答に記載の「gz・f = idS」は、上記3)で述べた通りです
f・gzはどうかと言えば、gz:N→Nでzのところがダブりですが、像はNそのものなのです。そして、f:N→N+1で、その像は 1 は集合N+1に含まれないので、「f・gz ≠ idS」という花木解答です
トリビア蛇足でした
これは、自分では思いつかないね
(実際、gz・f = idS → f・gz = idS が証明できないかを(モノイドなどにおいて)考えてみたが、出来なかった。反例があるんだね。思いつかなかったな)
(^^;
315現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 06:45:48.04ID:0IMtsn2Y >>311 トリビア蛇足の追加
>花木章秀 信州大 問題 22
>すぐに分かるように gzf = idS が成り立ち、よって gz は f の左逆元、f は gz の右逆元である。
>これによって左 (右) 逆元は、存在しても一意的ではないことも分かる。
"gz(a)
=a - 1 (a >= 2)
or
=z (a = 1)
で定める"
で、”=z (a = 1)”で、変数zを導入しています
つまり、zは、自然数であれば、なんでも良いわけです
なので、これが「一意的ではないことも分かる」に、つながります
そして、gz(a)は、群の元には成れない
f(a)も、群の元には成れない
この例は、秀逸ですね
覚えておくと良いと思います
ちょっと自慢できそう
>花木章秀 信州大 問題 22
>すぐに分かるように gzf = idS が成り立ち、よって gz は f の左逆元、f は gz の右逆元である。
>これによって左 (右) 逆元は、存在しても一意的ではないことも分かる。
"gz(a)
=a - 1 (a >= 2)
or
=z (a = 1)
で定める"
で、”=z (a = 1)”で、変数zを導入しています
つまり、zは、自然数であれば、なんでも良いわけです
なので、これが「一意的ではないことも分かる」に、つながります
そして、gz(a)は、群の元には成れない
f(a)も、群の元には成れない
この例は、秀逸ですね
覚えておくと良いと思います
ちょっと自慢できそう
316132人目の素数さん
2020/08/16(日) 06:54:03.99ID:2xkr/j04317132人目の素数さん
2020/08/16(日) 06:57:09.06ID:2xkr/j04 A は n×n 行列
A の ij 成分を aij と書く
行列式は以下の式で定義される
「行列式1」
detA=買ミ∈Snsgn(σ)∏i=1naiσ(i)=買ミ∈Snsgn(σ)a1σ(1)a2σ(2)⋯anσ(n)
σ は 1 から n の置換(順列)を表す。
買ミ∈Sn は,「n 次の全ての置換に関して和を取る」ことを表す。
sgn(σ) は置換の符号を表す。
奇置換なら−1,偶置換なら+1 。
A の ij 成分を aij と書く
行列式は以下の式で定義される
「行列式1」
detA=買ミ∈Snsgn(σ)∏i=1naiσ(i)=買ミ∈Snsgn(σ)a1σ(1)a2σ(2)⋯anσ(n)
σ は 1 から n の置換(順列)を表す。
買ミ∈Sn は,「n 次の全ての置換に関して和を取る」ことを表す。
sgn(σ) は置換の符号を表す。
奇置換なら−1,偶置換なら+1 。
318132人目の素数さん
2020/08/16(日) 06:58:39.77ID:2xkr/j04 >>317のように行列式を定義すると,
以下の3つの性質が成立する。
「行列式2」
性質1:単位行列 I に関して detI=1
性質2(交代性):i 列と j 列を交換すると行列式は−1 倍される
性質3(多重線形性):一つの列以外固定して一つの列の関数と見たときに線形性が成立する。
逆に上記の3つの性質を満たす関数は行列式のみ。
つまり行列式とは上記の3つの性質を満たすものと定義することもできる。
以下の3つの性質が成立する。
「行列式2」
性質1:単位行列 I に関して detI=1
性質2(交代性):i 列と j 列を交換すると行列式は−1 倍される
性質3(多重線形性):一つの列以外固定して一つの列の関数と見たときに線形性が成立する。
逆に上記の3つの性質を満たす関数は行列式のみ。
つまり行列式とは上記の3つの性質を満たすものと定義することもできる。
319現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 07:53:53.39ID:0IMtsn2Y >>251 補足
(>>214-215より、引用開始)
群・環・体
この文脈で
「零因子」と、「逆元を持つ」は密接な関係があります
(おサルが)「逆元が存在するかどうかを論じてる
たまたまそれが零因子でないという性質と同値である
だから関係大ありだとほざきたいらしいが・・・」(>>178)
なんて、”たまたま”でないことは、ちょっと群・環・体(蟹江など)を読めば、すぐ分かること(^^;
抽象代数学に、無知ってことですねWWWWW(^^;
知る人ぞ知る
常識と言えば、常識かもね
wwwww(^^;
(引用終り)
<さて、もう一度纏める>
1)下記零因子の定義より、aが左零因子で(a≠0で) ax=0 となる x≠0 が存在するとして
もし、aが左逆元 a^-1L を有し、(a^-1L)(a)=I(単位元)となれば、左から(a^-1L)を ax=0に掛けて
x=0が得られ、x≠0に矛盾する。よって、「aが左零因子」と「aが左逆元 a^-1L を有す」は、両立しない
(同様、「aが右零因子」と「aが右逆元 a^-1R を有す」は、両立しない)
2)さて、積演算が可換な場合は、左右の区別がなく、「aが零因子」と「aが左逆元 a^-1L 又は右逆元 a^-1R を有す」は、(左右どちらも)両立しない
3)さらに、群では、逆元には左右の区別がないので(逆元は左右どちらも同じ)、従って、aの逆元の存在と、「aが左零因子」又は「aが右零因子」とは、(左右どちらも)両立しない(>>312-313)
4)モノイドや、マグマになると、群とは異なる現象がおきる(下記松本、花木)
5)正方行列の場合も、3)同様である。それらは、行列や行列式の理論から、諸結果を導くことも可能だが、多くの部分は抽象代数学の一般的な群、環、体の理論から導くことも可能である(>>281)
6)なお、下記「非可換整域 wikipedia」の”群環と零因子問題(カプランスキーの零因子予想)”というのがあって、「様々な特定の群のクラスについては肯定的に解決されている」、「今のところ反例は知られていないが、問題は一般には未解決のままである(2017年現在)」です
まあ結局、”「零因子」と、「逆元を持つ」とは、密接な関係がありま〜す”!!
つづく
(>>214-215より、引用開始)
群・環・体
この文脈で
「零因子」と、「逆元を持つ」は密接な関係があります
(おサルが)「逆元が存在するかどうかを論じてる
たまたまそれが零因子でないという性質と同値である
だから関係大ありだとほざきたいらしいが・・・」(>>178)
なんて、”たまたま”でないことは、ちょっと群・環・体(蟹江など)を読めば、すぐ分かること(^^;
抽象代数学に、無知ってことですねWWWWW(^^;
知る人ぞ知る
常識と言えば、常識かもね
wwwww(^^;
(引用終り)
<さて、もう一度纏める>
1)下記零因子の定義より、aが左零因子で(a≠0で) ax=0 となる x≠0 が存在するとして
もし、aが左逆元 a^-1L を有し、(a^-1L)(a)=I(単位元)となれば、左から(a^-1L)を ax=0に掛けて
x=0が得られ、x≠0に矛盾する。よって、「aが左零因子」と「aが左逆元 a^-1L を有す」は、両立しない
(同様、「aが右零因子」と「aが右逆元 a^-1R を有す」は、両立しない)
2)さて、積演算が可換な場合は、左右の区別がなく、「aが零因子」と「aが左逆元 a^-1L 又は右逆元 a^-1R を有す」は、(左右どちらも)両立しない
3)さらに、群では、逆元には左右の区別がないので(逆元は左右どちらも同じ)、従って、aの逆元の存在と、「aが左零因子」又は「aが右零因子」とは、(左右どちらも)両立しない(>>312-313)
4)モノイドや、マグマになると、群とは異なる現象がおきる(下記松本、花木)
5)正方行列の場合も、3)同様である。それらは、行列や行列式の理論から、諸結果を導くことも可能だが、多くの部分は抽象代数学の一般的な群、環、体の理論から導くことも可能である(>>281)
6)なお、下記「非可換整域 wikipedia」の”群環と零因子問題(カプランスキーの零因子予想)”というのがあって、「様々な特定の群のクラスについては肯定的に解決されている」、「今のところ反例は知られていないが、問題は一般には未解決のままである(2017年現在)」です
まあ結局、”「零因子」と、「逆元を持つ」とは、密接な関係がありま〜す”!!
つづく
320現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 07:54:36.71ID:0IMtsn2Y >>319
つづき
(参考)
https://ja.wikipedia.org/wiki/%E9%9B%B6%E5%9B%A0%E5%AD%90
零因子
(抜粋)
環 R の元 a は、ax=0 となる x≠0 が存在するとき、左零因子(英: left zero divisor)と呼ばれる[1]。
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/daisu-nyumon.pdf
代数系への入門 松本 眞 広島大 平成 25 年 8 月 26 日
P45
2.4 群
2.4.1 逆元と群
定義 2.4.1. (S, ・) を単位元 eS を持つマグマとする。(単位元はあれば一つであること、すなわち問題 2.12 に注意。)
g ∈ S の(e に関する)左逆元 a とは、
a ・ g = eS
を満たす a ∈ S のことをいう。
g ∈ S の右逆元 b とは、
g ・ b = eS
を満たす b ∈ S のことをいう。
g の左逆元であって、かつ右逆元であるような元を g の逆元という。すなわち、
a ・ g = eS, g ・ a = eS
となるような a のことである。
逆元を持つ元を可逆元という。
命題 2.4.2. (S, ・, eS) をモノイドとする。g に左逆元 a と右逆元 b が存在するならば、それら
は一致する。特に、g の逆元は存在すれば唯一つ。これを g-1 で表す。
証明.
a = a ・ eS = a ・ (g ・ b) = (a ・ g) ・ b = eS ・ b = b.
よって左逆元と右逆元は、両方存在すれば一致する。
特に、逆元が二つあったとしよう。それらを a, b とすれば、a は左逆元でもあるし、b は右
逆元でもあるから、上の事実より一致せざるを得ない。
問題 2.20. モノイドの代わりに、条件を弱めて「単位元をもつマグマ」に対しても、逆元が
存在すれば唯一つであることが証明できるか?
ヒント:実は、反例がたくさんあり、当然証明はできない。例えば (R, *) を
x * y = x + y + x^2y^2
で定義するとこれはマグマであり、0 が単位元となっている。
x * y = 0
を二次方程式の解の公式を用いて解くと、逆元が二つ存在することがあることがわかる。
つづく
つづき
(参考)
https://ja.wikipedia.org/wiki/%E9%9B%B6%E5%9B%A0%E5%AD%90
零因子
(抜粋)
環 R の元 a は、ax=0 となる x≠0 が存在するとき、左零因子(英: left zero divisor)と呼ばれる[1]。
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/daisu-nyumon.pdf
代数系への入門 松本 眞 広島大 平成 25 年 8 月 26 日
P45
2.4 群
2.4.1 逆元と群
定義 2.4.1. (S, ・) を単位元 eS を持つマグマとする。(単位元はあれば一つであること、すなわち問題 2.12 に注意。)
g ∈ S の(e に関する)左逆元 a とは、
a ・ g = eS
を満たす a ∈ S のことをいう。
g ∈ S の右逆元 b とは、
g ・ b = eS
を満たす b ∈ S のことをいう。
g の左逆元であって、かつ右逆元であるような元を g の逆元という。すなわち、
a ・ g = eS, g ・ a = eS
となるような a のことである。
逆元を持つ元を可逆元という。
命題 2.4.2. (S, ・, eS) をモノイドとする。g に左逆元 a と右逆元 b が存在するならば、それら
は一致する。特に、g の逆元は存在すれば唯一つ。これを g-1 で表す。
証明.
a = a ・ eS = a ・ (g ・ b) = (a ・ g) ・ b = eS ・ b = b.
よって左逆元と右逆元は、両方存在すれば一致する。
特に、逆元が二つあったとしよう。それらを a, b とすれば、a は左逆元でもあるし、b は右
逆元でもあるから、上の事実より一致せざるを得ない。
問題 2.20. モノイドの代わりに、条件を弱めて「単位元をもつマグマ」に対しても、逆元が
存在すれば唯一つであることが証明できるか?
ヒント:実は、反例がたくさんあり、当然証明はできない。例えば (R, *) を
x * y = x + y + x^2y^2
で定義するとこれはマグマであり、0 が単位元となっている。
x * y = 0
を二次方程式の解の公式を用いて解くと、逆元が二つ存在することがあることがわかる。
つづく
321現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 07:55:35.78ID:0IMtsn2Y >>320
つづき
(>>314-315も、ご参照)
http://math.shinshu-u.ac.jp/~hanaki/edu/
代数入門 (代数入門演習) 花木章秀 信州大
問題集
version 20120704
http://math.shinshu-u.ac.jp/~hanaki/edu/intro/intro_mondai_20120704.pdf
代数入門問題集 [20120704]
1 二項演算、半群、モノイド
P2
(問題)
22.など
https://ja.wikipedia.org/wiki/%E9%9D%9E%E5%8F%AF%E6%8F%9B%E6%95%B4%E5%9F%9F
非可換整域
(抜粋)
環論と呼ばれる抽象代数学の一分野における(非可換[注釈 1])整域あるいは域(いき、英: domain)とは、右または左零因子を持たない(つまり ab = 0 ならば a = 0 または b = 0 が成り立つ[2]、零積律(英語版)を満たすとも言われる)環のことを言う。
群環と零因子問題
群 G と体 K に対して、群環 R :=K[G] は域となるかを考える。恒等式
(1-g)(1+g+・・・ +g^(n-1)=1-g^n
から有限な位数 n を持つ元 g から R の零因子 1 - g が得られる。
零因子問題(カプランスキーの零因子予想)とはこれ以外の方法で零因子が得られないかどうかを問うものである。即ち、
零因子問題
与えられた体 K と捩れのない群 G に対して、「群環 K[G] は零因子を含まない」という主張は真であるか
今のところ反例は知られていないが、問題は一般には未解決のままである(2007年現在)。
様々な特定の群のクラスについては肯定的に解決されている。Farkas & Snider (1976)は「G が捩れの無い多重巡回×有限(英語版)群 (polycyclic-by-finite group) で K が標数 char?K = 0 の体ならば群環 K[G] は域を成す」ことを証明した。後に Cliff (1980) が体の標数に関する制限を取り除いている。Kropholler, Linnell & Moody (1988) はこれらの結果を捩れの無い可解群および可解×有限群の場合にまで一般化している。それより早く Lazard (1965) の成した研究は(その重要性は20年もの間この分野の専門家に省みられることは無かったが)、K が p-進整数環で G が GL(n, Z) の p-次合同部分群(英語版)である場合を扱っていた。
つづく
つづき
(>>314-315も、ご参照)
http://math.shinshu-u.ac.jp/~hanaki/edu/
代数入門 (代数入門演習) 花木章秀 信州大
問題集
version 20120704
http://math.shinshu-u.ac.jp/~hanaki/edu/intro/intro_mondai_20120704.pdf
代数入門問題集 [20120704]
1 二項演算、半群、モノイド
P2
(問題)
22.など
https://ja.wikipedia.org/wiki/%E9%9D%9E%E5%8F%AF%E6%8F%9B%E6%95%B4%E5%9F%9F
非可換整域
(抜粋)
環論と呼ばれる抽象代数学の一分野における(非可換[注釈 1])整域あるいは域(いき、英: domain)とは、右または左零因子を持たない(つまり ab = 0 ならば a = 0 または b = 0 が成り立つ[2]、零積律(英語版)を満たすとも言われる)環のことを言う。
群環と零因子問題
群 G と体 K に対して、群環 R :=K[G] は域となるかを考える。恒等式
(1-g)(1+g+・・・ +g^(n-1)=1-g^n
から有限な位数 n を持つ元 g から R の零因子 1 - g が得られる。
零因子問題(カプランスキーの零因子予想)とはこれ以外の方法で零因子が得られないかどうかを問うものである。即ち、
零因子問題
与えられた体 K と捩れのない群 G に対して、「群環 K[G] は零因子を含まない」という主張は真であるか
今のところ反例は知られていないが、問題は一般には未解決のままである(2007年現在)。
様々な特定の群のクラスについては肯定的に解決されている。Farkas & Snider (1976)は「G が捩れの無い多重巡回×有限(英語版)群 (polycyclic-by-finite group) で K が標数 char?K = 0 の体ならば群環 K[G] は域を成す」ことを証明した。後に Cliff (1980) が体の標数に関する制限を取り除いている。Kropholler, Linnell & Moody (1988) はこれらの結果を捩れの無い可解群および可解×有限群の場合にまで一般化している。それより早く Lazard (1965) の成した研究は(その重要性は20年もの間この分野の専門家に省みられることは無かったが)、K が p-進整数環で G が GL(n, Z) の p-次合同部分群(英語版)である場合を扱っていた。
つづく
322現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 07:56:02.99ID:0IMtsn2Y >>321
つづき
(英語版)
https://en.wikipedia.org/wiki/Domain_(ring_theory)
Domain (ring theory)
Group rings and the zero divisor problem
No counterexamples are known, but the problem remains open in general (as of 2017).
(引用終り)
以上
つづき
(英語版)
https://en.wikipedia.org/wiki/Domain_(ring_theory)
Domain (ring theory)
Group rings and the zero divisor problem
No counterexamples are known, but the problem remains open in general (as of 2017).
(引用終り)
以上
323132人目の素数さん
2020/08/16(日) 08:48:06.53ID:2xkr/j04 なんか、素人って**の一つ覚えで「群・環・体」とかいうけど
たかが線形代数すらロクに理解できないレベルで
そんな呪文唱えても意味ないだろw
現に
「detA=0でAが零行列でないなら、
余因子行列A~ も零行列でない!」
とトンデモ発言してるし
行列式そして余因子の計算が分かってたら
反例なんか速攻三秒で思いつくぞw
たかが線形代数すらロクに理解できないレベルで
そんな呪文唱えても意味ないだろw
現に
「detA=0でAが零行列でないなら、
余因子行列A~ も零行列でない!」
とトンデモ発言してるし
行列式そして余因子の計算が分かってたら
反例なんか速攻三秒で思いつくぞw
324132人目の素数さん
2020/08/16(日) 08:51:31.33ID:2xkr/j04 整数全体は環であり整域である
一方で、乗法における可逆元は1とー1だけである
つまり一般の環において、
「可逆元でないから零因子である」
とはいえない(ビシっ)
一方で、乗法における可逆元は1とー1だけである
つまり一般の環において、
「可逆元でないから零因子である」
とはいえない(ビシっ)
325132人目の素数さん
2020/08/16(日) 08:58:02.62ID:2xkr/j04 >>324
せいぜいいえるのは、一般の環では
「零因子なら可逆元ではない」
という程度である
もし、一般の環で
「可逆元でないなら零因子である」
がいえるなら、以下が成り立つ
「整域は体である」(ドヤ顔)
うひょー!整数って体なのか!
2x=1となる整数xってあるんだ!
大発見だ、ぜひ教えてくれ!!!
せいぜいいえるのは、一般の環では
「零因子なら可逆元ではない」
という程度である
もし、一般の環で
「可逆元でないなら零因子である」
がいえるなら、以下が成り立つ
「整域は体である」(ドヤ顔)
うひょー!整数って体なのか!
2x=1となる整数xってあるんだ!
大発見だ、ぜひ教えてくれ!!!
326現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 09:26:30.37ID:0IMtsn2Y (>>214-215より、引用開始)
群・環・体
この文脈で
「零因子」と、「逆元を持つ」は密接な関係があります
(おサルが)「逆元が存在するかどうかを論じてる
たまたまそれが零因子でないという性質と同値である
だから関係大ありだとほざきたいらしいが・・・」(>>178)
スポポポポポポーン!!!
。 。
。 。 。 。 ゚
。 。゚。゜。 ゚。 。
/ // / /
( Д ) Д)Д))
それって、”たまたま”でないことは、ちょっと群・環・体(蟹江など)を読めば、すぐ分かること(^^;
知る人ぞ知る
常識と言えば、常識かもね
この人は、抽象代数学に、無知ってことですね〜 WWWWW(^^;
wwwww(^^;
アホじゃん。おれと良い勝負だよなw(^^;
群・環・体
この文脈で
「零因子」と、「逆元を持つ」は密接な関係があります
(おサルが)「逆元が存在するかどうかを論じてる
たまたまそれが零因子でないという性質と同値である
だから関係大ありだとほざきたいらしいが・・・」(>>178)
スポポポポポポーン!!!
。 。
。 。 。 。 ゚
。 。゚。゜。 ゚。 。
/ // / /
( Д ) Д)Д))
それって、”たまたま”でないことは、ちょっと群・環・体(蟹江など)を読めば、すぐ分かること(^^;
知る人ぞ知る
常識と言えば、常識かもね
この人は、抽象代数学に、無知ってことですね〜 WWWWW(^^;
wwwww(^^;
アホじゃん。おれと良い勝負だよなw(^^;
327132人目の素数さん
2020/08/16(日) 09:34:43.58ID:2xkr/j04 >それって、”たまたま”でないことは、
>ちょっと群・環・体(蟹江など)を読めば、すぐ分かること
いや分からないよw
だって「零因子でなければ可逆元」って反例あるじゃん
整数環という実に基本的な反例がw
>この人は、抽象代数学に、無知ってことですね〜 WWWWW
いやいや 抽象代数学に無知なのは君だよ、き・み
たまたま行列で成り立つからって、
一般の環でも成り立つと思うのがアホw
>ちょっと群・環・体(蟹江など)を読めば、すぐ分かること
いや分からないよw
だって「零因子でなければ可逆元」って反例あるじゃん
整数環という実に基本的な反例がw
>この人は、抽象代数学に、無知ってことですね〜 WWWWW
いやいや 抽象代数学に無知なのは君だよ、き・み
たまたま行列で成り立つからって、
一般の環でも成り立つと思うのがアホw
328現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 09:40:38.63ID:0IMtsn2Y (>>131より)
(引用開始)
「例えば群の例で、自然数しか思いつかないようなもん
で唯一の例を根拠に「群の演算は可換!」とか言いきったら馬鹿」
って、自然数Nが、群の例?
ああ、wikipedia 「自然数(しぜんすう、英: natural number)とは、個数、もしくは順番を表す一群の数のことである」
を誤読したか?
スポポポポポポーン!!!
。 。
。 。 。 。 ゚
。 。゚。゜。 ゚。 。
/ // / /
( Д ) Д)Д))
アホじゃん。おれと良い勝負だよなw(^^;
(引用開始)
「例えば群の例で、自然数しか思いつかないようなもん
で唯一の例を根拠に「群の演算は可換!」とか言いきったら馬鹿」
って、自然数Nが、群の例?
ああ、wikipedia 「自然数(しぜんすう、英: natural number)とは、個数、もしくは順番を表す一群の数のことである」
を誤読したか?
スポポポポポポーン!!!
。 。
。 。 。 。 ゚
。 。゚。゜。 ゚。 。
/ // / /
( Д ) Д)Д))
アホじゃん。おれと良い勝負だよなw(^^;
329132人目の素数さん
2020/08/16(日) 09:46:21.01ID:2xkr/j04 >>328
誰?w
あのな、なんでみんなコテハン&トリップ使わないか分かってないだろ
おまえみたいな馬鹿はどうせ次から次へと間違うだろ?
そのときおまえみたいにコテハン&トリップ使ってるとこういわれるんだよ
「ああ、あの馬鹿また間違ったwww」
おまえさあ、もう微積分も線形代数も分かってないんだから
いいかげん最先端の数学にむやみに食いつくのはやめて
地道に大学1年の微積分と線形代数からやり直せよ
誰?w
あのな、なんでみんなコテハン&トリップ使わないか分かってないだろ
おまえみたいな馬鹿はどうせ次から次へと間違うだろ?
そのときおまえみたいにコテハン&トリップ使ってるとこういわれるんだよ
「ああ、あの馬鹿また間違ったwww」
おまえさあ、もう微積分も線形代数も分かってないんだから
いいかげん最先端の数学にむやみに食いつくのはやめて
地道に大学1年の微積分と線形代数からやり直せよ
330132人目の素数さん
2020/08/16(日) 12:07:24.85ID:faNNmqdx >>326
>群・環・体
>この文脈で
>「零因子」と、「逆元を持つ」は密接な関係があります
一般の環で
・「単元は非零因子」は成立
・「非零因子は単元」は不成立
は理解できましたかー?
キミの云う「密接な関係」とは具体的にはどんな関係?
そこが曖昧だと有るとも無いとも言えない、つまり今回もキミの主張はナンセンスってことですねー
>群・環・体
>この文脈で
>「零因子」と、「逆元を持つ」は密接な関係があります
一般の環で
・「単元は非零因子」は成立
・「非零因子は単元」は不成立
は理解できましたかー?
キミの云う「密接な関係」とは具体的にはどんな関係?
そこが曖昧だと有るとも無いとも言えない、つまり今回もキミの主張はナンセンスってことですねー
331132人目の素数さん
2020/08/16(日) 13:20:52.20ID:FmVE4ps5 Euler Maclaurin formulaをやさしく説明したサイトを紹介してください。
332現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 13:24:31.22ID:0IMtsn2Y >>330
>キミの云う「密接な関係」とは具体的にはどんな関係?
説明しましょう(^^
そもそも、私が>>149で、下記を発言したのです
(引用開始)
下記旧高校数学Cでは、行列を教えていた
後は、自学自習して下さい
http://www.geisya.or.jp/~mwm48961/kou2/matrix_mul1.html
高校数学 >> 旧高校数学C
*** 行列 ***
■零因子
https://ja.wikipedia.org/wiki/%E9%9B%B6%E5%9B%A0%E5%AD%90
零因子
(引用終り)
そこで、おサルが、>>160で下記発言
(引用開始)
なんかまたトンチンカンなこといってるな
零因子の話なんかまったくしてないぞ
おまえさあ、零因子とか関係ないことばっかり読んで、
重要な可逆元のところ読み飛ばすなよ
(引用終り)
で、私は>>169で下記反論をした
(引用開始)
>>160
>おまえさあ、零因子とか関係ないことばっかり読んで、
笑える
「Aが正則ならば、Aは零因子ではない
と
Aが零因子ならば、Aは正則ではない」
”正則”と”零因子”は、関係あり(^^;
(引用終り)
まとめると、出発は、行列の零因子と正則(逆元の存在)との関係だよ
で、この時点で、おサルは、行列の零因子と正則(逆元の存在)との関係を知らなかった
(”なんかまたトンチンカンなこといってるな 零因子の話なんかまったくしてないぞ”でしたねw)
でも、両者は同値(>>200ご参照)
で、この話は、抽象代数学 群・環・体(下記蟹江など)でも成立します(^^
(参考)
http://kanielabo.org/essay/
エッセイの部屋
http://kanielabo.org/essay/daisu.pdf
代数 / 群・環・体 蟹江幸博 数学セミナー6月号 (2003.6.1), pp.38-43.
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13168979413
数学の代数学について
sun********さん2017/1/9 数学の代数学について yahoo
可逆元と零因子はなぜ同時には成り立たないのでしょうか?
(引用終り)
以上
>キミの云う「密接な関係」とは具体的にはどんな関係?
説明しましょう(^^
そもそも、私が>>149で、下記を発言したのです
(引用開始)
下記旧高校数学Cでは、行列を教えていた
後は、自学自習して下さい
http://www.geisya.or.jp/~mwm48961/kou2/matrix_mul1.html
高校数学 >> 旧高校数学C
*** 行列 ***
■零因子
https://ja.wikipedia.org/wiki/%E9%9B%B6%E5%9B%A0%E5%AD%90
零因子
(引用終り)
そこで、おサルが、>>160で下記発言
(引用開始)
なんかまたトンチンカンなこといってるな
零因子の話なんかまったくしてないぞ
おまえさあ、零因子とか関係ないことばっかり読んで、
重要な可逆元のところ読み飛ばすなよ
(引用終り)
で、私は>>169で下記反論をした
(引用開始)
>>160
>おまえさあ、零因子とか関係ないことばっかり読んで、
笑える
「Aが正則ならば、Aは零因子ではない
と
Aが零因子ならば、Aは正則ではない」
”正則”と”零因子”は、関係あり(^^;
(引用終り)
まとめると、出発は、行列の零因子と正則(逆元の存在)との関係だよ
で、この時点で、おサルは、行列の零因子と正則(逆元の存在)との関係を知らなかった
(”なんかまたトンチンカンなこといってるな 零因子の話なんかまったくしてないぞ”でしたねw)
でも、両者は同値(>>200ご参照)
で、この話は、抽象代数学 群・環・体(下記蟹江など)でも成立します(^^
(参考)
http://kanielabo.org/essay/
エッセイの部屋
http://kanielabo.org/essay/daisu.pdf
代数 / 群・環・体 蟹江幸博 数学セミナー6月号 (2003.6.1), pp.38-43.
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13168979413
数学の代数学について
sun********さん2017/1/9 数学の代数学について yahoo
可逆元と零因子はなぜ同時には成り立たないのでしょうか?
(引用終り)
以上
333現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 13:25:21.04ID:0IMtsn2Y >>329
>誰?w
>あのな、なんでみんなコテハン&トリップ使わないか分かってないだろ
しらばっくれてw
ばれていないつもりか?ww
”誰?”って、お前のことだよ! みんな分かっているんだよ〜!! www(^^;
>誰?w
>あのな、なんでみんなコテハン&トリップ使わないか分かってないだろ
しらばっくれてw
ばれていないつもりか?ww
”誰?”って、お前のことだよ! みんな分かっているんだよ〜!! www(^^;
334現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 13:35:21.12ID:0IMtsn2Y >>331
易しくないかもしれないが
(参考)
https://ja.wikipedia.org/wiki/%E3%82%AA%E3%82%A4%E3%83%A9%E3%83%BC%E3%81%AE%E5%92%8C%E5%85%AC%E5%BC%8F
オイラーの和公式
オイラーの和公式(オイラー・マクローリンの公式、英: Euler?Maclaurin formula)は級数の和を与える公式である[1]。この公式は収束の遅い無限級数の和を求めるときに便利であるが、{\displaystyle f(x)}f(x)が多項式であるような場合を除き、{\displaystyle m\to \infty }{\displaystyle m\to \infty }とすればベルヌーイ数が急速に大きくなって発散する。従って、漸近展開のように発散する前の適当なところで打ち切らなければならない。
https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula
Euler?Maclaurin formula
http://people.csail.mit.edu/kuat/courses/euler-maclaurin.pdf
18.704 Seminar in Algebra and Number Theory Fall 2005
Euler-Maclaurin Formula
Prof. Victor Ka?c Kuat Yessenov
易しくないかもしれないが
(参考)
https://ja.wikipedia.org/wiki/%E3%82%AA%E3%82%A4%E3%83%A9%E3%83%BC%E3%81%AE%E5%92%8C%E5%85%AC%E5%BC%8F
オイラーの和公式
オイラーの和公式(オイラー・マクローリンの公式、英: Euler?Maclaurin formula)は級数の和を与える公式である[1]。この公式は収束の遅い無限級数の和を求めるときに便利であるが、{\displaystyle f(x)}f(x)が多項式であるような場合を除き、{\displaystyle m\to \infty }{\displaystyle m\to \infty }とすればベルヌーイ数が急速に大きくなって発散する。従って、漸近展開のように発散する前の適当なところで打ち切らなければならない。
https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula
Euler?Maclaurin formula
http://people.csail.mit.edu/kuat/courses/euler-maclaurin.pdf
18.704 Seminar in Algebra and Number Theory Fall 2005
Euler-Maclaurin Formula
Prof. Victor Ka?c Kuat Yessenov
335132人目の素数さん
2020/08/16(日) 13:50:41.72ID:faNNmqdx >>332
>でも、両者は同値(>>200ご参照)
>で、この話は、抽象代数学 群・環・体(下記蟹江など)でも成立します(^^
成立しません。分かり易い反例は整数環。
>https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13168979413
>数学の代数学について
>sun********さん2017/1/9 数学の代数学について yahoo
>可逆元と零因子はなぜ同時には成り立たないのでしょうか?
>(引用終り)
>以上
「単元は非零因子」なのだから同時に成り立たないのは当たり前。
しかしそれだけでは逆「非零因子は単元」は言えないことは分かりますかー?
>でも、両者は同値(>>200ご参照)
>で、この話は、抽象代数学 群・環・体(下記蟹江など)でも成立します(^^
成立しません。分かり易い反例は整数環。
>https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13168979413
>数学の代数学について
>sun********さん2017/1/9 数学の代数学について yahoo
>可逆元と零因子はなぜ同時には成り立たないのでしょうか?
>(引用終り)
>以上
「単元は非零因子」なのだから同時に成り立たないのは当たり前。
しかしそれだけでは逆「非零因子は単元」は言えないことは分かりますかー?
336132人目の素数さん
2020/08/16(日) 14:02:06.30ID:FmVE4ps5 >>334
ありがとうございました。
ありがとうございました。
337132人目の素数さん
2020/08/16(日) 14:22:06.02ID:2xkr/j04 >>332
なんだ、このバカ、まだ>>200の証明の誤りに気づけないんだ
>1.逆行列の公式:A^-1=1/|A| t[Aij] (正則行列の場合)
然り
(上記1を式変形して)
>2.A・t[Aij] =|A| E(正則行列を含む全正方行列の場合)
然り
>3.正則行列とは、|A|≠0
>(行列式|A|≠0。これは、逆行列の公式より直ちに出る)
然り
>つまりは、「”Aが正則”と”Aは零因子ではない”は、同値」は、
>上記の3点を理解していれば、直ちに導かれるのです
誤り
まず、行列環の場合(注:一般の環では決して成立しない!)
行列の性質により(注:だから一般の環では成立しない!)
「”Aが正則”と”Aは零因子ではない”は、同値」
し・か・し、|A|=0の場合の
A・t[Aij] =O (Oは零行列)
では、Aが零因子であることの証明にはならない
な・ぜ・な・ら、Aが零行列でなくても
t[Aij]が0行列となる場合があるから
たとえば行列
(1 1 1)
(1 1 1)
(1 1 1)
はどうみたって零行列ではないが
余因子行列を計算すれば零行列になる
ウソだと思うなら計算してみろwww
◆yH25M02vWFhPは線形代数の基礎も分からん馬鹿
大学1年からやり直せ 微積分も線形代数も分からん数盲、いや論理盲め
なんだ、このバカ、まだ>>200の証明の誤りに気づけないんだ
>1.逆行列の公式:A^-1=1/|A| t[Aij] (正則行列の場合)
然り
(上記1を式変形して)
>2.A・t[Aij] =|A| E(正則行列を含む全正方行列の場合)
然り
>3.正則行列とは、|A|≠0
>(行列式|A|≠0。これは、逆行列の公式より直ちに出る)
然り
>つまりは、「”Aが正則”と”Aは零因子ではない”は、同値」は、
>上記の3点を理解していれば、直ちに導かれるのです
誤り
まず、行列環の場合(注:一般の環では決して成立しない!)
行列の性質により(注:だから一般の環では成立しない!)
「”Aが正則”と”Aは零因子ではない”は、同値」
し・か・し、|A|=0の場合の
A・t[Aij] =O (Oは零行列)
では、Aが零因子であることの証明にはならない
な・ぜ・な・ら、Aが零行列でなくても
t[Aij]が0行列となる場合があるから
たとえば行列
(1 1 1)
(1 1 1)
(1 1 1)
はどうみたって零行列ではないが
余因子行列を計算すれば零行列になる
ウソだと思うなら計算してみろwww
◆yH25M02vWFhPは線形代数の基礎も分からん馬鹿
大学1年からやり直せ 微積分も線形代数も分からん数盲、いや論理盲め
338132人目の素数さん
2020/08/16(日) 14:32:31.79ID:2xkr/j04 正則でなくしかも零行列でない行列Aが零因子となることを示すのに
ケイリー・ハミルトンの定理のような高尚な定理を使わなくてもできる
n×n行列Aについて、行および列の入れ替えで、
ランクm(0<m<n)の場合、
0でない成分が、m×m部分にだけ存在する
階段行列に変えられる
上記の行列は、(n−m)×(n−m)部分にだけ
0でない成分が入った行列Bとの積が零行列になる
あとは、Bに対して、Aを階段行列にするのに実行した
行および列の入れ替え操作の行列(どれも正則)の
逆行列を掛ければ
AC=0 DA=0
となるような行列C,Dが構成できる
エレガントさの欠片もないがw 証明としては十分だろう
ケイリー・ハミルトンの定理のような高尚な定理を使わなくてもできる
n×n行列Aについて、行および列の入れ替えで、
ランクm(0<m<n)の場合、
0でない成分が、m×m部分にだけ存在する
階段行列に変えられる
上記の行列は、(n−m)×(n−m)部分にだけ
0でない成分が入った行列Bとの積が零行列になる
あとは、Bに対して、Aを階段行列にするのに実行した
行および列の入れ替え操作の行列(どれも正則)の
逆行列を掛ければ
AC=0 DA=0
となるような行列C,Dが構成できる
エレガントさの欠片もないがw 証明としては十分だろう
339132人目の素数さん
2020/08/16(日) 14:36:06.63ID:2xkr/j04 >>338
追記
線形代数を知ってる人にはいわずもがなのことだが
n×nの正則行列 ランクn
零行列 ランク0
ランクn−2以下の場合、余因子行列が零行列になるものがある
追記
線形代数を知ってる人にはいわずもがなのことだが
n×nの正則行列 ランクn
零行列 ランク0
ランクn−2以下の場合、余因子行列が零行列になるものがある
340132人目の素数さん
2020/08/16(日) 14:42:45.70ID:2xkr/j04 ◆yH25M02vWFhPクンよお
整数環で0、1、−1以外の
2,3,4,5,・・・
−2,−3,−4,−5,・・・に
乗法逆元(もちろん整数、したがって1/2とかはNG!)が
あるというなら示してくれwwwwwww
ホント、自然数が群とかいうのと同じくらい白痴だな
あれもお前の発言だろ、ばぁぁぁぁぁかwww
整数環で0、1、−1以外の
2,3,4,5,・・・
−2,−3,−4,−5,・・・に
乗法逆元(もちろん整数、したがって1/2とかはNG!)が
あるというなら示してくれwwwwwww
ホント、自然数が群とかいうのと同じくらい白痴だな
あれもお前の発言だろ、ばぁぁぁぁぁかwww
341現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 15:11:03.43ID:0IMtsn2Y ピンチになれば、複数id使い分け
分り易いやつだな(^^;
分り易いやつだな(^^;
342現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 15:11:41.38ID:0IMtsn2Y >>336
どういたしまして(^^
どういたしまして(^^
343132人目の素数さん
2020/08/16(日) 15:23:09.56ID:2xkr/j04344現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 17:16:25.87ID:0IMtsn2Y345現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 17:32:27.56ID:0IMtsn2Y (>>274より)
http://kymst.net/index.php?MathDocs
MathDocs 山下弘一郎先生
http://kymst.net/index.php?plugin=attach&pcmd=open&file=mjk01CMb.pdf&refer=MathDocs
New Series, No.A-1. version Mar. 2011. 山下弘一郎先生
行列と可換性
Copy-ultra-Left. All-Rights ReVERSEd.
Article by YAMASHITA, Koichiro. Mar 07 2011
(抜粋)
P16
1858 年の『ロンドン王立協会哲学紀要』(Philosophical Transactions
of Royal Society of London, vol.148) に,Cayley は “A Memoir on the Theory of Matrices” という
論文を発表した8.
行列,matrix (pl. matrices) という用語が使われたのも,この論文が最初である.その中で Cayley
は,後日彼の名を冠せられることになる定理を,(kymst にはそう読めるのだが,かなりハイになって)
... I obtain the remarkable theorem that any matrix whatever satisfies an algebraical
equation of its own order,...
として明らかにする (p.476).ただし,証明は 3 次正方行列で止めて,p.483 で
(... but) I have not thought it necessary to undertake the labour of a formal proof of
the theorem in general case of a matrix of any degree.
としてスッポカス.証明を与えたのが,もう一人の方,Sir William Rowan Hamilton (1805-1865) で
あった ... ということで,ここまでにしておこう.
8The Collected Mathematical Papers of Arthur Cayley, vol.2(1889), pp.475-496 に再録されている.Pdf file が
Michigan 大学の図書館から down load できる (http://quod.lib.umich.edu/). Figure 1 は,その p. 491 から転写した.
(参考:上記と別サイトから(いまどき検索すれば、ヒットする場合多い))
https://www.jstor.org/stable/pdf/108649.pdf
A Memoir on the Theory of Matrices
Author(s): Arthur Cayley
Source: Philosophical Transactions of the Royal Society of London , 1858, Vol. 148 (1858),
pp. 17-37
Published by: Royal Society
http://kymst.net/index.php?MathDocs
MathDocs 山下弘一郎先生
http://kymst.net/index.php?plugin=attach&pcmd=open&file=mjk01CMb.pdf&refer=MathDocs
New Series, No.A-1. version Mar. 2011. 山下弘一郎先生
行列と可換性
Copy-ultra-Left. All-Rights ReVERSEd.
Article by YAMASHITA, Koichiro. Mar 07 2011
(抜粋)
P16
1858 年の『ロンドン王立協会哲学紀要』(Philosophical Transactions
of Royal Society of London, vol.148) に,Cayley は “A Memoir on the Theory of Matrices” という
論文を発表した8.
行列,matrix (pl. matrices) という用語が使われたのも,この論文が最初である.その中で Cayley
は,後日彼の名を冠せられることになる定理を,(kymst にはそう読めるのだが,かなりハイになって)
... I obtain the remarkable theorem that any matrix whatever satisfies an algebraical
equation of its own order,...
として明らかにする (p.476).ただし,証明は 3 次正方行列で止めて,p.483 で
(... but) I have not thought it necessary to undertake the labour of a formal proof of
the theorem in general case of a matrix of any degree.
としてスッポカス.証明を与えたのが,もう一人の方,Sir William Rowan Hamilton (1805-1865) で
あった ... ということで,ここまでにしておこう.
8The Collected Mathematical Papers of Arthur Cayley, vol.2(1889), pp.475-496 に再録されている.Pdf file が
Michigan 大学の図書館から down load できる (http://quod.lib.umich.edu/). Figure 1 は,その p. 491 から転写した.
(参考:上記と別サイトから(いまどき検索すれば、ヒットする場合多い))
https://www.jstor.org/stable/pdf/108649.pdf
A Memoir on the Theory of Matrices
Author(s): Arthur Cayley
Source: Philosophical Transactions of the Royal Society of London , 1858, Vol. 148 (1858),
pp. 17-37
Published by: Royal Society
346現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 17:46:46.85ID:0IMtsn2Y >>345 補足
行列式については、日本の和算家たちも、研究しているね(^^
(参考)
https://ja.wikipedia.org/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F
行列式
(抜粋)
歴史
西洋で行列式が考えられるようになったのは16世紀であり、これは19世紀に導入された行列そのものよりも遥かに昔に導入されていたことになる。また、数を表の形に並べたものや、現在ガウス(・ジョルダン)消去法と呼ばれているアルゴリズムは最も古くには中国の数学者たちによって考えられていたことにも注意する必要がある。
行列式に関する最初期の計算
楊輝(中国、1238年?〜1298年)は『詳解九章算術』で数字係数の二元連立一次方程式の解をクラメルの公式の形で、行列式的なものを含んだ形で与えている。 また1545年にジェロラモ・カルダノは、著書 Ars Magna の中で同じく2×2の場合のクラメルの公式を与えている。この公式は regula de modo(ラテン語で「様態に関するの規則」の意味)と呼ばれている。 彼らは「行列式」を定義したわけではないが、その概念の萌芽をみてとることができる。
高階の行列に関する行列式
高階の行列に関する行列式の定義はそれから百年ほどたって日本で和算の関孝和、田中由真、そしてドイツのライプニッツによりほとんど同時にかつ独立に与えられた。
ライプニッツは数多くの線型方程式系を研究していたが、その頃は行列記法がまだなかったので、彼は未知数の係数を、現在のような ai,j のかわりに ij のように添字の対によって表現していた。1678年に彼は3つの未知数に関する3つの方程式に興味を抱き、列に関する行列式の展開式を与えている。同じ年に彼は4次の行列式についても(符号の間違いを別にすれば)正しい式を与えている。
一般的な行列式
関孝和は、最初の手稿からやや後の『大成算成』(建部賢明、建部賢弘と共著、執筆は1683年(天和3年) − 1710年(宝永7年)頃)で、第一列についての余因子展開を一般の場合について正しく与えている。
つづく
行列式については、日本の和算家たちも、研究しているね(^^
(参考)
https://ja.wikipedia.org/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F
行列式
(抜粋)
歴史
西洋で行列式が考えられるようになったのは16世紀であり、これは19世紀に導入された行列そのものよりも遥かに昔に導入されていたことになる。また、数を表の形に並べたものや、現在ガウス(・ジョルダン)消去法と呼ばれているアルゴリズムは最も古くには中国の数学者たちによって考えられていたことにも注意する必要がある。
行列式に関する最初期の計算
楊輝(中国、1238年?〜1298年)は『詳解九章算術』で数字係数の二元連立一次方程式の解をクラメルの公式の形で、行列式的なものを含んだ形で与えている。 また1545年にジェロラモ・カルダノは、著書 Ars Magna の中で同じく2×2の場合のクラメルの公式を与えている。この公式は regula de modo(ラテン語で「様態に関するの規則」の意味)と呼ばれている。 彼らは「行列式」を定義したわけではないが、その概念の萌芽をみてとることができる。
高階の行列に関する行列式
高階の行列に関する行列式の定義はそれから百年ほどたって日本で和算の関孝和、田中由真、そしてドイツのライプニッツによりほとんど同時にかつ独立に与えられた。
ライプニッツは数多くの線型方程式系を研究していたが、その頃は行列記法がまだなかったので、彼は未知数の係数を、現在のような ai,j のかわりに ij のように添字の対によって表現していた。1678年に彼は3つの未知数に関する3つの方程式に興味を抱き、列に関する行列式の展開式を与えている。同じ年に彼は4次の行列式についても(符号の間違いを別にすれば)正しい式を与えている。
一般的な行列式
関孝和は、最初の手稿からやや後の『大成算成』(建部賢明、建部賢弘と共著、執筆は1683年(天和3年) − 1710年(宝永7年)頃)で、第一列についての余因子展開を一般の場合について正しく与えている。
つづく
347現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 17:47:15.94ID:0IMtsn2Y >>346
つづき
ヨーロッパにおいても、行列式の理論は日本の場合と同じく(一次ではなく)高次の代数方程式の変数消去の研究のために発展した。
今日の determinant(決定するもの)に当たる言葉が初めて現れたのはガウスによる1801年の Disquisitiones Arithmeticae である。そこで彼は二次形式の判別式(今日的な意味での行列式の特別な例と見なせる)を用いている。彼はさらに行列式と積の関係についても後少しのところまでいっている。
現代的な行列式の概念の確立
現代的な意味での行列式という用語はコーシーによって初めて導入された。彼はそれまでに得られていた知識を統合し、1812年には積と行列式の関係を発表している(同じ年にビネも独立に証明をあたえていた)。コーシーは平行して準同型の簡約化についての基礎付けの研究も行っている。
1841年に「クレレ誌」で発表されたヤコビの3本の著作によって行列式の概念の重要性が確立された。ヤコビによって初めて行列式の計算の系統的なアルゴリズムが与えられ、またヤコビアンの概念によって写像の行列式も同様に考察できるようになった。行列の枠組みはケイリーとシルベスターによって導入された。ちなみにケイリーは逆行列の公式を確立させており、行列式の記号として縦棒を導入したのも彼である。
行列式の理論は様々な対称性を持つような行列についての行列式の研究や、線型微分方程式系のロンスキー行列式など数学の様々な分野に新たに行列式を持ち込むことが追究されている。
(引用終り)
以上
つづき
ヨーロッパにおいても、行列式の理論は日本の場合と同じく(一次ではなく)高次の代数方程式の変数消去の研究のために発展した。
今日の determinant(決定するもの)に当たる言葉が初めて現れたのはガウスによる1801年の Disquisitiones Arithmeticae である。そこで彼は二次形式の判別式(今日的な意味での行列式の特別な例と見なせる)を用いている。彼はさらに行列式と積の関係についても後少しのところまでいっている。
現代的な行列式の概念の確立
現代的な意味での行列式という用語はコーシーによって初めて導入された。彼はそれまでに得られていた知識を統合し、1812年には積と行列式の関係を発表している(同じ年にビネも独立に証明をあたえていた)。コーシーは平行して準同型の簡約化についての基礎付けの研究も行っている。
1841年に「クレレ誌」で発表されたヤコビの3本の著作によって行列式の概念の重要性が確立された。ヤコビによって初めて行列式の計算の系統的なアルゴリズムが与えられ、またヤコビアンの概念によって写像の行列式も同様に考察できるようになった。行列の枠組みはケイリーとシルベスターによって導入された。ちなみにケイリーは逆行列の公式を確立させており、行列式の記号として縦棒を導入したのも彼である。
行列式の理論は様々な対称性を持つような行列についての行列式の研究や、線型微分方程式系のロンスキー行列式など数学の様々な分野に新たに行列式を持ち込むことが追究されている。
(引用終り)
以上
348現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 19:44:12.28ID:0IMtsn2Y >>200 補強
(引用開始)
1.逆行列の公式:A^-1=1/|A| t[Aij] (正則行列の場合)
(上記1を式変形して)
2.A・t[Aij] =|A| (正則行列を含む全正方行列の場合)
3.正則行列とは、|A|≠0 (行列式|A|≠0。これは、逆行列の公式より直ちに出る)
つまりは、「”Aが正則”と”Aは零因子ではない”は、同値」は、
上記の3点を理解していれば、直ちに導かれるのです
逆に言えば、上記3つの要点を理解せずして、
”正則とは何ぞや”を理解したとは言えない
(>>184より)
https://oguemon.com/study/linear-algebra/inverse-matrix/
大学1年生もバッチリ分かる線形代数入門 oguemon_com
【行列式編】逆行列の求め方を画像付きで解説! 20180722
(引用終り)
追加参考
http://www.rimath.saitama-u.ac.jp/lab.jp/ToshizumiFukui.html
福井 敏純
埼玉大学 大学院理工学研究科
数理電子情報専攻 数学コース
http://www.rimath.saitama-u.ac.jp/lab.jp/Fukui/lectures/
講義関連 福井 敏純
http://www.rimath.saitama-u.ac.jp/lab.jp/Fukui/lectures/Linear_algebra.pdf
線形代数学講義ノート
福井 敏純
2020 年 3 月 23 日
(抜粋)
P20
1.2.4 逆行列
AX = E を満たす行列 X を A の逆行列 (the inverse matrix of A) といい A^-1 で表
す.A^-1 が存在するとき,A は可逆である (invertible) という.Y A = E を満たす行列
Y が存在すればそれは X に等しい.
Y = Y (AX) = (Y A)X = X
A^-1 が存在すれば,AX = E を満たす行列 X は A^-1 でなければならない(逆行列の一意性).
X = EX = (A^-1A)X = A^-1(AX) = A^-1E = A^-1
実は AX = E をみたす行列 X が存在すれば,XA = E を満たす事*3を後で示す.
逆行列をもつ行列を正則行列 (a regular matrix) という.
例 1.2.9. 可逆な行列 Z が冪等性(即ち Z^2 = Z)を満たすならば Z は単位行列である.
Z = (Z^2)Z^-1 = ZZ^-1 = E となるからである.
*3 Z = XA が可逆ならば Z^2 = XAXA = XA = Z なので XA = Z = E がわかる.
つづく
(引用開始)
1.逆行列の公式:A^-1=1/|A| t[Aij] (正則行列の場合)
(上記1を式変形して)
2.A・t[Aij] =|A| (正則行列を含む全正方行列の場合)
3.正則行列とは、|A|≠0 (行列式|A|≠0。これは、逆行列の公式より直ちに出る)
つまりは、「”Aが正則”と”Aは零因子ではない”は、同値」は、
上記の3点を理解していれば、直ちに導かれるのです
逆に言えば、上記3つの要点を理解せずして、
”正則とは何ぞや”を理解したとは言えない
(>>184より)
https://oguemon.com/study/linear-algebra/inverse-matrix/
大学1年生もバッチリ分かる線形代数入門 oguemon_com
【行列式編】逆行列の求め方を画像付きで解説! 20180722
(引用終り)
追加参考
http://www.rimath.saitama-u.ac.jp/lab.jp/ToshizumiFukui.html
福井 敏純
埼玉大学 大学院理工学研究科
数理電子情報専攻 数学コース
http://www.rimath.saitama-u.ac.jp/lab.jp/Fukui/lectures/
講義関連 福井 敏純
http://www.rimath.saitama-u.ac.jp/lab.jp/Fukui/lectures/Linear_algebra.pdf
線形代数学講義ノート
福井 敏純
2020 年 3 月 23 日
(抜粋)
P20
1.2.4 逆行列
AX = E を満たす行列 X を A の逆行列 (the inverse matrix of A) といい A^-1 で表
す.A^-1 が存在するとき,A は可逆である (invertible) という.Y A = E を満たす行列
Y が存在すればそれは X に等しい.
Y = Y (AX) = (Y A)X = X
A^-1 が存在すれば,AX = E を満たす行列 X は A^-1 でなければならない(逆行列の一意性).
X = EX = (A^-1A)X = A^-1(AX) = A^-1E = A^-1
実は AX = E をみたす行列 X が存在すれば,XA = E を満たす事*3を後で示す.
逆行列をもつ行列を正則行列 (a regular matrix) という.
例 1.2.9. 可逆な行列 Z が冪等性(即ち Z^2 = Z)を満たすならば Z は単位行列である.
Z = (Z^2)Z^-1 = ZZ^-1 = E となるからである.
*3 Z = XA が可逆ならば Z^2 = XAXA = XA = Z なので XA = Z = E がわかる.
つづく
349現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 19:45:18.55ID:0IMtsn2Y >>348
つづき
定理 1.2.12 (積の逆行列). 正方行列 A, B に逆行列 A^-1
, B^-1 が存在するとき積 AB に
も逆行列が存在し,それは次で与えられる.
(AB)^-1 = B^-1A^-1
第 2 章 行列式 27
P42
2.3.3 余因子行列
定理 2.3.7
正方行列 A に対し,AA* = A*A = det(A)E を満たす行列 A* が存在する.余因子行列である.
定理 2.3.6. AA* = A*A = det(A)E
証明 略
系 2.3.7 (行列の逆転公式). 正方行列 A が det(A) ?= 0 を満たせば逆行列 A^-1 が存在し
それは次式で与えられる.
A^-1 =1/det(A) A*
証明. AA* = A*A = det(A)E を det(A) で割れば良い.
P44
2.4 積の行列式
2.4.1 積の行列式
行列式に関する次の定理は基本的である.
定理 2.4.1 (積の行列式). n 次正方行列 A = (ai,j ), B = (bj,k) に対し
det(AB) = det(A) det(B).
系 2.4.2. 正方行列 A が逆行列をもつ必要十分条件は det(A)≠ 0.
証明. det(A) ≠ 0 ならば逆行列が存在する事は既に見た(定理 2.3.7).A が逆行列 A^-1
をもてば1 = det(E) = det(AA^-1) = det(A) det(A^-1)
よって,det(A)≠ 0.
この証明より det(A^-1) = 1/det(A) も分かる.
https://ja.wikipedia.org/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F
行列式
(抜粋)
7 行列式の性質
7.1 固有値との関係
https://en.wikipedia.org/wiki/Determinant
Determinant
(引用終り)
以上
つづき
定理 1.2.12 (積の逆行列). 正方行列 A, B に逆行列 A^-1
, B^-1 が存在するとき積 AB に
も逆行列が存在し,それは次で与えられる.
(AB)^-1 = B^-1A^-1
第 2 章 行列式 27
P42
2.3.3 余因子行列
定理 2.3.7
正方行列 A に対し,AA* = A*A = det(A)E を満たす行列 A* が存在する.余因子行列である.
定理 2.3.6. AA* = A*A = det(A)E
証明 略
系 2.3.7 (行列の逆転公式). 正方行列 A が det(A) ?= 0 を満たせば逆行列 A^-1 が存在し
それは次式で与えられる.
A^-1 =1/det(A) A*
証明. AA* = A*A = det(A)E を det(A) で割れば良い.
P44
2.4 積の行列式
2.4.1 積の行列式
行列式に関する次の定理は基本的である.
定理 2.4.1 (積の行列式). n 次正方行列 A = (ai,j ), B = (bj,k) に対し
det(AB) = det(A) det(B).
系 2.4.2. 正方行列 A が逆行列をもつ必要十分条件は det(A)≠ 0.
証明. det(A) ≠ 0 ならば逆行列が存在する事は既に見た(定理 2.3.7).A が逆行列 A^-1
をもてば1 = det(E) = det(AA^-1) = det(A) det(A^-1)
よって,det(A)≠ 0.
この証明より det(A^-1) = 1/det(A) も分かる.
https://ja.wikipedia.org/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F
行列式
(抜粋)
7 行列式の性質
7.1 固有値との関係
https://en.wikipedia.org/wiki/Determinant
Determinant
(引用終り)
以上
350現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 20:22:19.97ID:0IMtsn2Y >>348-349 補足
<行列式の視点から、行列では「可逆元と零因子はなぜ同時には成り立たない」は、簡単に見える>
まず、下記を3点を認めましょう
・det(AB) = det(A) det(B).
・逆行列 A^-1で、det(A^-1) = 1/det(A)
・(逆行列の一意性):A^-1 が存在すれば,AX = E を満たす行列 X は A^-1 でなければならない
この3点を認めると
1)零因子とは、A≠0で AX=0(零行列)、但し X≠0 となるもので
2)逆行列の存在 AA^-1=A^-1A=E(単位行列、1とも書く)
だから、1)と2)とが、同時には成り立つと
・AX=0に、左から逆行列A^-1を掛けて、
・A^-1AX=0→X=0となる。これは、 X≠0に矛盾
・よって、「1)と2)とは、同時には成り立たない」は、ほぼ自明です
そもそも、”零因子AX=0”と、”逆行列の存在 AA^-1=A^-1A=E”とは、水と油みたいなものです(^^
行列Aで、逆行列の存在と、零因子AX=0の成否とが、
密接に関連していることは、
大学の数学教程を学べば常識でしょうね〜ww(^^;
(>>332より)
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13168979413
数学の代数学について
sun********さん2017/1/9 数学の代数学について yahoo
可逆元と零因子はなぜ同時には成り立たないのでしょうか?
<行列式の視点から、行列では「可逆元と零因子はなぜ同時には成り立たない」は、簡単に見える>
まず、下記を3点を認めましょう
・det(AB) = det(A) det(B).
・逆行列 A^-1で、det(A^-1) = 1/det(A)
・(逆行列の一意性):A^-1 が存在すれば,AX = E を満たす行列 X は A^-1 でなければならない
この3点を認めると
1)零因子とは、A≠0で AX=0(零行列)、但し X≠0 となるもので
2)逆行列の存在 AA^-1=A^-1A=E(単位行列、1とも書く)
だから、1)と2)とが、同時には成り立つと
・AX=0に、左から逆行列A^-1を掛けて、
・A^-1AX=0→X=0となる。これは、 X≠0に矛盾
・よって、「1)と2)とは、同時には成り立たない」は、ほぼ自明です
そもそも、”零因子AX=0”と、”逆行列の存在 AA^-1=A^-1A=E”とは、水と油みたいなものです(^^
行列Aで、逆行列の存在と、零因子AX=0の成否とが、
密接に関連していることは、
大学の数学教程を学べば常識でしょうね〜ww(^^;
(>>332より)
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13168979413
数学の代数学について
sun********さん2017/1/9 数学の代数学について yahoo
可逆元と零因子はなぜ同時には成り立たないのでしょうか?
351現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 20:29:43.63ID:0IMtsn2Y >>349 コピーミス訂正
(まあ、原文 http://www.rimath.saitama-u.ac.jp/lab.jp/Fukui/lectures/Linear_algebra.pdf 線形代数学講義ノート を見て下さい)
誤:
P42
2.3.3 余因子行列
定理 2.3.7
正方行列 A に対し,AA* = A*A = det(A)E を満たす行列 A* が存在する.余因子行列である.
定理 2.3.6. AA* = A*A = det(A)E
証明 略
系 2.3.7 (行列の逆転公式). 正方行列 A が det(A) ?= 0 を満たせば逆行列 A^-1 が存在し
それは次式で与えられる.
A^-1 =1/det(A) A*
証明. AA* = A*A = det(A)E を det(A) で割れば良い.
↓
正:
P42
2.3.3 余因子行列
正方行列 A に対し,AA* = A*A = det(A)E を満たす行列 A* が存在する.余因子行列である.
定理 2.3.6. AA* = A*A = det(A)E
証明 略
系 2.3.7 (行列の逆転公式). 正方行列 A が det(A) ≠ 0 を満たせば逆行列 A^-1 が存在し
それは次式で与えられる.
A^-1 =1/det(A) A*
証明. AA* = A*A = det(A)E を det(A) で割れば良い.
(まあ、原文 http://www.rimath.saitama-u.ac.jp/lab.jp/Fukui/lectures/Linear_algebra.pdf 線形代数学講義ノート を見て下さい)
誤:
P42
2.3.3 余因子行列
定理 2.3.7
正方行列 A に対し,AA* = A*A = det(A)E を満たす行列 A* が存在する.余因子行列である.
定理 2.3.6. AA* = A*A = det(A)E
証明 略
系 2.3.7 (行列の逆転公式). 正方行列 A が det(A) ?= 0 を満たせば逆行列 A^-1 が存在し
それは次式で与えられる.
A^-1 =1/det(A) A*
証明. AA* = A*A = det(A)E を det(A) で割れば良い.
↓
正:
P42
2.3.3 余因子行列
正方行列 A に対し,AA* = A*A = det(A)E を満たす行列 A* が存在する.余因子行列である.
定理 2.3.6. AA* = A*A = det(A)E
証明 略
系 2.3.7 (行列の逆転公式). 正方行列 A が det(A) ≠ 0 を満たせば逆行列 A^-1 が存在し
それは次式で与えられる.
A^-1 =1/det(A) A*
証明. AA* = A*A = det(A)E を det(A) で割れば良い.
352現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 21:43:38.57ID:0IMtsn2Y >>350 補足
そうそう、行列式でしたね(^^;
1)零因子とは、A≠0で AX=0(零行列)、但し X≠0 となるもので
2)逆行列の存在 AA^-1=A^-1A=E(単位行列、1とも書く)
↓
これを、行列式で書くと
1)零因子なら、|A||X|=0(数の零)、但し A≠0、X≠0
2)逆行列 |A||A^-1|=1(数の1)
で
・|A||X|=0より、|A|=0 又は|X|=0 (両方0もある)
・|A||A^-1|=1 より、|A|≠0であり、上記より|X|=0
が出ます
さて、”|A|≠0なら、Aは逆行列を持つ”を認めると
>>350で示した通り
AX=0に、左から逆行列A^-1を掛けて、(A^-1A)X=0→X=0となり、これは、 X≠0に矛盾
一方、AX=0(零行列)、但し X≠0 を認めるなら
行列Aは逆行列を持てず、即ち、|A|=0にならざるを得ない
つまり、「零因子、A≠0で AX=0(零行列)、但し X≠0」 なら、|A|=|X|=0 成立です
たったこれだけのことですが、
”行列式”というメガネを通すと、すっきり見えてくる部分が多いのです
そして、正方行列Aで、行列式|A|=0なら、逆行列を持つことができず(∵”|A||A^-1|=1”が不成立だから)
逆行列を持てば、|A|≠0であり、”零因子、A≠0で AX=0(零行列)、但し X≠0” には、成れないず、よって零因子も持てない&成れない
が、すっきり見えてくるでしょう! (^^
そうそう、行列式でしたね(^^;
1)零因子とは、A≠0で AX=0(零行列)、但し X≠0 となるもので
2)逆行列の存在 AA^-1=A^-1A=E(単位行列、1とも書く)
↓
これを、行列式で書くと
1)零因子なら、|A||X|=0(数の零)、但し A≠0、X≠0
2)逆行列 |A||A^-1|=1(数の1)
で
・|A||X|=0より、|A|=0 又は|X|=0 (両方0もある)
・|A||A^-1|=1 より、|A|≠0であり、上記より|X|=0
が出ます
さて、”|A|≠0なら、Aは逆行列を持つ”を認めると
>>350で示した通り
AX=0に、左から逆行列A^-1を掛けて、(A^-1A)X=0→X=0となり、これは、 X≠0に矛盾
一方、AX=0(零行列)、但し X≠0 を認めるなら
行列Aは逆行列を持てず、即ち、|A|=0にならざるを得ない
つまり、「零因子、A≠0で AX=0(零行列)、但し X≠0」 なら、|A|=|X|=0 成立です
たったこれだけのことですが、
”行列式”というメガネを通すと、すっきり見えてくる部分が多いのです
そして、正方行列Aで、行列式|A|=0なら、逆行列を持つことができず(∵”|A||A^-1|=1”が不成立だから)
逆行列を持てば、|A|≠0であり、”零因子、A≠0で AX=0(零行列)、但し X≠0” には、成れないず、よって零因子も持てない&成れない
が、すっきり見えてくるでしょう! (^^
353現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/16(日) 21:46:52.31ID:0IMtsn2Y >>352 タイポ訂正
逆行列を持てば、|A|≠0であり、”零因子、A≠0で AX=0(零行列)、但し X≠0” には、成れないず、よって零因子も持てない&成れない
↓
逆行列を持てば、|A|≠0であり、”零因子、A≠0で AX=0(零行列)、但し X≠0” には、成れず、よって零因子も持てない&成れない
分かると思うが(^^;
逆行列を持てば、|A|≠0であり、”零因子、A≠0で AX=0(零行列)、但し X≠0” には、成れないず、よって零因子も持てない&成れない
↓
逆行列を持てば、|A|≠0であり、”零因子、A≠0で AX=0(零行列)、但し X≠0” には、成れず、よって零因子も持てない&成れない
分かると思うが(^^;
354132人目の素数さん
2020/08/17(月) 06:59:49.07ID:lbRpX4Uh >>348-353
肝心なことが分かってませんね
今、あなたに対して指摘されているのは
「逆行列を持てば零因子ではない」ではなく
「逆行列を持たなければ零因子」に対する
あなたの証明の誤りです
つまり行列Aについて
A≠O かつ |A|=0
というだけでは、余因子行列~Aについて
A~≠O
とはいえない、ということ
これ 余因子が分かっていたら明らかですよ
肝心なことが分かってませんね
今、あなたに対して指摘されているのは
「逆行列を持てば零因子ではない」ではなく
「逆行列を持たなければ零因子」に対する
あなたの証明の誤りです
つまり行列Aについて
A≠O かつ |A|=0
というだけでは、余因子行列~Aについて
A~≠O
とはいえない、ということ
これ 余因子が分かっていたら明らかですよ
355132人目の素数さん
2020/08/17(月) 07:03:50.08ID:lbRpX4Uh356132人目の素数さん
2020/08/17(月) 07:14:23.37ID:lbRpX4Uh357132人目の素数さん
2020/08/17(月) 07:27:42.32ID:lbRpX4Uh 馬鹿「一つの例で群が分かったと思うのはアサハカ
自然数の全体が群とか言って喜んでるのはアホ」
阿呆「バカ、0以外の自然数には加法逆元がないだろw
ところで、乗法逆元は零因子でないことと同値
環論から証明できる」
馬鹿「アホ、整数には零因子はないが、逆元があるのは1と−1だけだぞ
整数を自然数と云い間違えるのとはわけが違うよ
思い込みで口から出まかせ行ったらトンデモになりさがるぞ」
自然数の全体が群とか言って喜んでるのはアホ」
阿呆「バカ、0以外の自然数には加法逆元がないだろw
ところで、乗法逆元は零因子でないことと同値
環論から証明できる」
馬鹿「アホ、整数には零因子はないが、逆元があるのは1と−1だけだぞ
整数を自然数と云い間違えるのとはわけが違うよ
思い込みで口から出まかせ行ったらトンデモになりさがるぞ」
358現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/17(月) 07:37:56.32ID:TRrMkJI/ >>311 >>314 補足
(引用開始)
http://math.shinshu-u.ac.jp/~hanaki/edu/
代数入門 (代数入門演習) 花木章秀 信州大
問題集
version 20120704
http://math.shinshu-u.ac.jp/~hanaki/edu/intro/intro_mondai_20120704.pdf
代数入門問題集 [20120704]
1 二項演算、半群、モノイド
(抜粋)
A を N から N への写像全体の集合とする。
A は写像の合成を演算として、恒等写像 idN を単位元とするモノイドになる。
f ∈ A を f(a) = a + 1 で定める。
f は左逆元をもつが、右逆元をもたないことを示せ。
また、z ∈ N に対して gz ∈ A を
gz(a)
=a - 1 (a >= 2)
or
=z (a = 1)
で定める。
gz は右逆元をもつが、左逆元をもたないことを示せ。
(解答)
略
(引用終り)
さて、この(解答)を少しひねって、
”右逆元も左逆元も、もたない例”を考えてみた
z ∈ N に対して hz ∈ A を
hz(a)
=a + 1 (a >= 2)
or
=z (a = 1 但し、zは、z>2なるある自然数 )
で定める
hz は、右逆元も左逆元も、もたない
∵ 花木解答の通り、hzは全射でもなく、単射でもないから。詳細は、>>311 >>314をご参照
(引用開始)
http://math.shinshu-u.ac.jp/~hanaki/edu/
代数入門 (代数入門演習) 花木章秀 信州大
問題集
version 20120704
http://math.shinshu-u.ac.jp/~hanaki/edu/intro/intro_mondai_20120704.pdf
代数入門問題集 [20120704]
1 二項演算、半群、モノイド
(抜粋)
A を N から N への写像全体の集合とする。
A は写像の合成を演算として、恒等写像 idN を単位元とするモノイドになる。
f ∈ A を f(a) = a + 1 で定める。
f は左逆元をもつが、右逆元をもたないことを示せ。
また、z ∈ N に対して gz ∈ A を
gz(a)
=a - 1 (a >= 2)
or
=z (a = 1)
で定める。
gz は右逆元をもつが、左逆元をもたないことを示せ。
(解答)
略
(引用終り)
さて、この(解答)を少しひねって、
”右逆元も左逆元も、もたない例”を考えてみた
z ∈ N に対して hz ∈ A を
hz(a)
=a + 1 (a >= 2)
or
=z (a = 1 但し、zは、z>2なるある自然数 )
で定める
hz は、右逆元も左逆元も、もたない
∵ 花木解答の通り、hzは全射でもなく、単射でもないから。詳細は、>>311 >>314をご参照
359132人目の素数さん
2020/08/17(月) 07:42:48.06ID:lbRpX4Uh360現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/17(月) 07:42:52.12ID:TRrMkJI/ >>354
(引用開始)
つまり行列Aについて
A≠O かつ |A|=0
というだけでは、余因子行列~Aについて
A~≠O
とはいえない、ということ
(引用終り)
同意ですけど
常識ですけど
「言える」なんて
一言も言っていません
あなたの脳内の幻聴ですよ
お薬が不足していたようですね
飲み忘れに気を付けましょう〜!!www(^^
(引用開始)
つまり行列Aについて
A≠O かつ |A|=0
というだけでは、余因子行列~Aについて
A~≠O
とはいえない、ということ
(引用終り)
同意ですけど
常識ですけど
「言える」なんて
一言も言っていません
あなたの脳内の幻聴ですよ
お薬が不足していたようですね
飲み忘れに気を付けましょう〜!!www(^^
361132人目の素数さん
2020/08/17(月) 07:44:46.84ID:lbRpX4Uh 整数環であきらかなように、乗法逆元もないが零因子もない元(例えば2)はある
362132人目の素数さん
2020/08/17(月) 07:49:10.42ID:lbRpX4Uh363現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/17(月) 10:35:16.03ID:YzHCxD9t この話、元々は、>>129の
日曜数学者 tsujimotter 氏
数学ガールの有名なキャッチフレーズ 《例示は理解の試金石》
有名なキャッチフレーズ 《例示は理解の試金石》
”抽象 ←→ 具体例 ”
から始まったのです
(>>130-131より)
(引用開始)
「例が1つだけだと確実に間違う
例えば群の例で、自然数しか思いつかないようなもん
で唯一の例を根拠に「群の演算は可換!」とか言いきったら馬鹿」(>>130)
って、自然数Nが、群の例?
ああ、wikipedia 「自然数(しぜんすう、英: natural number)とは、個数、もしくは順番を表す一群の数のことである」
を誤読したか?
スポポポポポポーン!!!
。 。
。 。 。 。 ゚
。 。゚。゜。 ゚。 。
/ // / /
( Д ) Д)Д))
アホじゃん。おれと良い勝負だよなw(^^;
ってこと
おサルは、群の具体例で、自然数→”「群の演算は可換!」とか言いきったら馬鹿”と言い出したのです
それをからかったら、むきになって、誤魔化そうと、他人を攻撃してきたのですww
だが、ディベートは知らず
数学では、他人を攻撃しても、自分の失言を帳消しにすることはできない(これは古代ギリシャからの教えですw)
日曜数学者 tsujimotter 氏
数学ガールの有名なキャッチフレーズ 《例示は理解の試金石》
有名なキャッチフレーズ 《例示は理解の試金石》
”抽象 ←→ 具体例 ”
から始まったのです
(>>130-131より)
(引用開始)
「例が1つだけだと確実に間違う
例えば群の例で、自然数しか思いつかないようなもん
で唯一の例を根拠に「群の演算は可換!」とか言いきったら馬鹿」(>>130)
って、自然数Nが、群の例?
ああ、wikipedia 「自然数(しぜんすう、英: natural number)とは、個数、もしくは順番を表す一群の数のことである」
を誤読したか?
スポポポポポポーン!!!
。 。
。 。 。 。 ゚
。 。゚。゜。 ゚。 。
/ // / /
( Д ) Д)Д))
アホじゃん。おれと良い勝負だよなw(^^;
ってこと
おサルは、群の具体例で、自然数→”「群の演算は可換!」とか言いきったら馬鹿”と言い出したのです
それをからかったら、むきになって、誤魔化そうと、他人を攻撃してきたのですww
だが、ディベートは知らず
数学では、他人を攻撃しても、自分の失言を帳消しにすることはできない(これは古代ギリシャからの教えですw)
364132人目の素数さん
2020/08/17(月) 11:40:19.14ID:lbRpX4Uh >>363
そもそも、その自称数学者の工学馬鹿が
層の説明でただの張り合わせの話を
「解析接続だ!」と誤解してるのを
真に受けた同類の工学馬鹿が得意顔で
コピペしたのがはじまり
それにして複素関数論も勉強したことない馬鹿が
なんでもかんでも「解析接続」というのは実に悪い癖だね
>数学では、自分の失言を帳消しにすることはできない
君はちょっとつつくと簡単に発狂して
失言の連鎖反応で臨界に達するから面白い
正真正銘の自己愛性人格障害なんだな
どんだけ自分が天才だと自惚れてるんだよ
そもそも、その自称数学者の工学馬鹿が
層の説明でただの張り合わせの話を
「解析接続だ!」と誤解してるのを
真に受けた同類の工学馬鹿が得意顔で
コピペしたのがはじまり
それにして複素関数論も勉強したことない馬鹿が
なんでもかんでも「解析接続」というのは実に悪い癖だね
>数学では、自分の失言を帳消しにすることはできない
君はちょっとつつくと簡単に発狂して
失言の連鎖反応で臨界に達するから面白い
正真正銘の自己愛性人格障害なんだな
どんだけ自分が天才だと自惚れてるんだよ
365132人目の素数さん
2020/08/17(月) 12:03:30.86ID:zkD81yCI >>364
顔パンパンに腫れ上がったメガネヲタが何言うどんねん。工学様々やないか。
顔パンパンに腫れ上がったメガネヲタが何言うどんねん。工学様々やないか。
366132人目の素数さん
2020/08/17(月) 14:21:09.41ID:6YtilH3B 関西弁ディスに反応してアンチが…
367132人目の素数さん
2020/08/17(月) 14:55:38.56ID:lbRpX4Uh 維ソ新!!!w
368132人目の素数さん
2020/08/17(月) 15:47:56.17ID:lbRpX4Uh ◆yH25M02vWFhPのトンデモ発言
任意の正方行列Aについて、A~/|A|は逆行列
→|A|=0だと逆行列でなかった
しかしAが零行列でなければ、A~/|A|も零行列でなく、零因子
→Aが零行列でなくてもA~/|A|が零行列になる場合があった
しかし、環では、可逆元でなければ零因子になるから正しい
→整数環では反例アリ (今ココ)
もう三つも嘘ついた ほんまアホやな
任意の正方行列Aについて、A~/|A|は逆行列
→|A|=0だと逆行列でなかった
しかしAが零行列でなければ、A~/|A|も零行列でなく、零因子
→Aが零行列でなくてもA~/|A|が零行列になる場合があった
しかし、環では、可逆元でなければ零因子になるから正しい
→整数環では反例アリ (今ココ)
もう三つも嘘ついた ほんまアホやな
369132人目の素数さん
2020/08/17(月) 15:50:09.97ID:lbRpX4Uh >>368 修正
◆yH25M02vWFhPのトンデモ発言
任意の正方行列Aについて、A~/|A|は逆行列
→|A|=0だと逆行列でなかった
しかし、Aが零行列でなければ、A~も零行列でなく、零因子
→Aが零行列でなくてもA~が零行列になる場合があった
しかし、環では、可逆元でなければ零因子になるから正しい
→整数環では反例アリ (今ココ)
もう三つも嘘ついた ほんまアホやな
◆yH25M02vWFhPのトンデモ発言
任意の正方行列Aについて、A~/|A|は逆行列
→|A|=0だと逆行列でなかった
しかし、Aが零行列でなければ、A~も零行列でなく、零因子
→Aが零行列でなくてもA~が零行列になる場合があった
しかし、環では、可逆元でなければ零因子になるから正しい
→整数環では反例アリ (今ココ)
もう三つも嘘ついた ほんまアホやな
370現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/17(月) 17:02:41.97ID:YzHCxD9t >>363 補足
必死に、失言を誤魔化そうと、他人を攻撃するおサルさん、哀れw
>>133で、群の例で、非可換のものを挙げてくれと言い出したのは、おサルです
私が、>>134で「折角だから書いておくと、正方行列とか多元数あたりな
群は基本的に非可換だよ」と書いた
(補足説明も、>>134-136に書いてある)
おサルは、何を勘違いしたのか、これを「全ての正方行列が群を成す」と曲解して、騒ぐのです(^^
(”全て”とか、言ってないんだよね、私は。おサルの妄想・幻聴です。
>>145-146に、(行列による)「群の表現」の話もしている(明らかに「全て」でなく”部分”群も可です))
ほんと、バカですね。正方行列と言っても、これだけでは何も決まっていない。数学では、デフォルトの部分も多い
普通は、nxn次元(nは2以上)の行列だとか、nを固定する
というか、今の場合は、普通にnを固定して、n有限次元で考えますよね(これ(n固定)、デフォルトです)
で、群と言えば、逆元。いろんな代数系で、群は(積の)「逆元の存在が保障されている代数系」の一つです
逆元は普通に、デフォルトです(言わないが合意事項)。群の公理を仮定しているのに、いちいち、「群に逆元が存在する」などと、いうことはありません
群の表現論で使うnxn行列で、わざわざ「群に逆元が存在する」などとは、ド素人w
で、うるさいから、正方行列で、>>149で”零因子 高校数学 >> 旧高校数学C 、行列環や零因子(wikipedia)などを自学自習して下さい”と言った
ところがところが、おサルは怒り狂って「なんかまたトンチンカンなこといってるな、零因子の話なんかまったくしてないぞ」という(>>160)
やれやれですなw(^^;
以上
必死に、失言を誤魔化そうと、他人を攻撃するおサルさん、哀れw
>>133で、群の例で、非可換のものを挙げてくれと言い出したのは、おサルです
私が、>>134で「折角だから書いておくと、正方行列とか多元数あたりな
群は基本的に非可換だよ」と書いた
(補足説明も、>>134-136に書いてある)
おサルは、何を勘違いしたのか、これを「全ての正方行列が群を成す」と曲解して、騒ぐのです(^^
(”全て”とか、言ってないんだよね、私は。おサルの妄想・幻聴です。
>>145-146に、(行列による)「群の表現」の話もしている(明らかに「全て」でなく”部分”群も可です))
ほんと、バカですね。正方行列と言っても、これだけでは何も決まっていない。数学では、デフォルトの部分も多い
普通は、nxn次元(nは2以上)の行列だとか、nを固定する
というか、今の場合は、普通にnを固定して、n有限次元で考えますよね(これ(n固定)、デフォルトです)
で、群と言えば、逆元。いろんな代数系で、群は(積の)「逆元の存在が保障されている代数系」の一つです
逆元は普通に、デフォルトです(言わないが合意事項)。群の公理を仮定しているのに、いちいち、「群に逆元が存在する」などと、いうことはありません
群の表現論で使うnxn行列で、わざわざ「群に逆元が存在する」などとは、ド素人w
で、うるさいから、正方行列で、>>149で”零因子 高校数学 >> 旧高校数学C 、行列環や零因子(wikipedia)などを自学自習して下さい”と言った
ところがところが、おサルは怒り狂って「なんかまたトンチンカンなこといってるな、零因子の話なんかまったくしてないぞ」という(>>160)
やれやれですなw(^^;
以上
371現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/17(月) 17:11:49.44ID:YzHCxD9t >>370 追加
(引用開始)
ところがところが、おサルは怒り狂って
「なんかまたトンチンカンなこといってるな、零因子の話なんかまったくしてないぞ」
「おまえさあ、零因子とか関係ないことばっかり読んで、重要な可逆元のところ読み飛ばすなよ」という(>>160)
(引用終り)
スポポポポポポーン!!!
。 。
。 。 。 。 ゚
。 。゚。゜。 ゚。 。
/ // / /
( Д ) Д)Д))
正則行列Aにおいて、Aに逆行列が存在することと、Aが零因子でないことは、同値
つまり、Aが零因子であることと、Aに逆行列が存在しないことは、同値
無知にも、これを知らないから、「おまえさあ、零因子とか関係ないことばっかり読んで、重要な可逆元のところ読み飛ばすなよ」という(>>160)
アホじゃん。おれと良い勝負だよなw(^^;
(引用開始)
ところがところが、おサルは怒り狂って
「なんかまたトンチンカンなこといってるな、零因子の話なんかまったくしてないぞ」
「おまえさあ、零因子とか関係ないことばっかり読んで、重要な可逆元のところ読み飛ばすなよ」という(>>160)
(引用終り)
スポポポポポポーン!!!
。 。
。 。 。 。 ゚
。 。゚。゜。 ゚。 。
/ // / /
( Д ) Д)Д))
正則行列Aにおいて、Aに逆行列が存在することと、Aが零因子でないことは、同値
つまり、Aが零因子であることと、Aに逆行列が存在しないことは、同値
無知にも、これを知らないから、「おまえさあ、零因子とか関係ないことばっかり読んで、重要な可逆元のところ読み飛ばすなよ」という(>>160)
アホじゃん。おれと良い勝負だよなw(^^;
372132人目の素数さん
2020/08/17(月) 17:38:52.58ID:lbRpX4Uh >>370
必死に失言を否定しようと詭弁を弄する哀れな◆yH25M02vWFhP
正方行列でなく正則行列といえば問題なかった
しかし◆yH25M02vWFhPは正則行列の意味すら知らず
正方行列Aには逆行列A~/|A|が存在すると思い込んでた
これが第一の誤り
いまだに表現論とかトンチンカンなこといってるが
線形写像の行列表現と聞いて脊髄反射してるだけだろう
n×n行列は、n次元線形空間の自己線形写像の全体だが
残念ながら、全単射となる自己同型写像とは限らない
自己同型写像となる条件が|A|が0でないというもの
線形代数を学んだ人間なら必ず知ってること
必死に失言を否定しようと詭弁を弄する哀れな◆yH25M02vWFhP
正方行列でなく正則行列といえば問題なかった
しかし◆yH25M02vWFhPは正則行列の意味すら知らず
正方行列Aには逆行列A~/|A|が存在すると思い込んでた
これが第一の誤り
いまだに表現論とかトンチンカンなこといってるが
線形写像の行列表現と聞いて脊髄反射してるだけだろう
n×n行列は、n次元線形空間の自己線形写像の全体だが
残念ながら、全単射となる自己同型写像とは限らない
自己同型写像となる条件が|A|が0でないというもの
線形代数を学んだ人間なら必ず知ってること
373132人目の素数さん
2020/08/17(月) 17:45:03.16ID:lbRpX4Uh >>370
◆yH25M02vWFhPは
「逆行列が存在しない正方行列が存在する」
と指摘された時点で
「ああ、正則行列、つまり|A|が0でない正方行列、と書くべきでしたね」
と書けば問題なかった
しかし、なにをトチ狂ったのかここで「零因子でない」とかいいだした
それだけならまあただ粋がってるだけといってよかったが、愚かにも
「|A|=0なら、AA~=Oで、零因子と証明できる」
といってしまった
これが第二の誤り
「AがOでなければ、A~もOでない筈」と
何の根拠もなく思い込んでたんだろうが、実はここが落とし穴
AがOでないのに、A~がOになる行列はいくらもある
だからそれだけでは零因子になることの証明にならない
◆yH25M02vWFhPは
「逆行列が存在しない正方行列が存在する」
と指摘された時点で
「ああ、正則行列、つまり|A|が0でない正方行列、と書くべきでしたね」
と書けば問題なかった
しかし、なにをトチ狂ったのかここで「零因子でない」とかいいだした
それだけならまあただ粋がってるだけといってよかったが、愚かにも
「|A|=0なら、AA~=Oで、零因子と証明できる」
といってしまった
これが第二の誤り
「AがOでなければ、A~もOでない筈」と
何の根拠もなく思い込んでたんだろうが、実はここが落とし穴
AがOでないのに、A~がOになる行列はいくらもある
だからそれだけでは零因子になることの証明にならない
374132人目の素数さん
2020/08/17(月) 17:56:06.70ID:lbRpX4Uh >>370
◆yH25M02vWFhPは
「|A|=0でAがOでないのに、A~がOになる行列はいくらもあるから
それだけでは零因子になることの証明にならない」
といわれて誤りを認めればよかったのに、愚かにも
「一般的な環論で、可逆元以外の元は0でなければ零因子」
と言い切ってしまった
これが第三の誤り
もちろん、反例がある 整数環であるw
例えば2は可逆元ではないが、零因子でもない
行列環の場合、可逆元でなければ、0でない元は零因子だが
それは論理的に細かい分析が必要
しかし◆yH25M02vWFhPは粗雑な奴なので細かいことが考えられない
だからA~とかいう公式に食いつきたがる
要するに式より細かいものは理解できない
AB=OとなるBはもちろん具体的に構成できるが面倒くさい
ケイリー・ハミルトンの定理を使えば式でも表せるが、
正直言って◆yH25M02vWFhPには
ケイリー・ハミルトンの定理だけ教えるのは有害
どうせ式だけ見てトンチンカンな妄想誤解をするから
公式馬鹿は数学を理解しているように見えても
所詮はナントカを覚えたサルと同じ
人間としての理性はない
◆yH25M02vWFhPは
「|A|=0でAがOでないのに、A~がOになる行列はいくらもあるから
それだけでは零因子になることの証明にならない」
といわれて誤りを認めればよかったのに、愚かにも
「一般的な環論で、可逆元以外の元は0でなければ零因子」
と言い切ってしまった
これが第三の誤り
もちろん、反例がある 整数環であるw
例えば2は可逆元ではないが、零因子でもない
行列環の場合、可逆元でなければ、0でない元は零因子だが
それは論理的に細かい分析が必要
しかし◆yH25M02vWFhPは粗雑な奴なので細かいことが考えられない
だからA~とかいう公式に食いつきたがる
要するに式より細かいものは理解できない
AB=OとなるBはもちろん具体的に構成できるが面倒くさい
ケイリー・ハミルトンの定理を使えば式でも表せるが、
正直言って◆yH25M02vWFhPには
ケイリー・ハミルトンの定理だけ教えるのは有害
どうせ式だけ見てトンチンカンな妄想誤解をするから
公式馬鹿は数学を理解しているように見えても
所詮はナントカを覚えたサルと同じ
人間としての理性はない
375132人目の素数さん
2020/08/17(月) 18:06:00.98ID:lbRpX4Uh ちなみにケイリー・ハミルトンの定理というが
・ハミルトンは四元数として表せる行列の場合に証明した
・ケイリーは2次および3次の行列の場合のみ証明した
・一般のn次行列について証明したのはフロベニウスである
・ハミルトンは四元数として表せる行列の場合に証明した
・ケイリーは2次および3次の行列の場合のみ証明した
・一般のn次行列について証明したのはフロベニウスである
376現代数学の系譜 雑談 ◆yH25M02vWFhP
2020/08/17(月) 21:36:00.08ID:TRrMkJI/ おっさん、大学で抽象代数が苦手だったみたいだな〜〜ww
書いていることを見ると、よく分かるわw(^^;
理解が浅いな〜〜!
下記でもよめ!(^^
(参考)
https://blog.goo.ne.jp/lemonwater2017/e/97265ec6b82b00b2b8d26d62263a2d75
象が転んだ
いまさら聞けない?群と体と環の関係とは(2020/4/18更新)?代数に憑かれた男たちと代数に疲れた私と?
2019年06月08日 06時44分07秒 | 数学のお話
(抜粋)
数学ブログでは、”ガロア群”や「ABC予想」をテーマにしたブログを立てましたが。群と体と環の関係をしっかりと理解しとかないと、このテーマに付いてくのはキツイかと。
そこで今日は、群と体と環の基本の基を紹介します。これが理解出来るだけでも、代数学の苦手意識が消えるかもです。
実は私も、この代数学(群論)の基礎が理解できなくて、大学の数学を頓挫しました。今から思うと、非常に惜しい事をしたと思います。
これを後悔先に立たずというか、代数に疲れた男というか。
”体”と”群”の微妙な関係
”体”ですが。内部構造に関する限り、”群”よりも複雑です。故に、代数の教科書では群を紹介し、その後に体へ進みますが、大半が群の抽象性にウンザリし、体に進む前にヤラれてしまいます。見方によっては、体の方が群よりもありふれてて、理解しやすい所もある。
環は、加法にて群になるが、乗法にては群にならない(逆元が存在しない)。故に、”環は加法にて可換群、乗法にて半群”と覚えときましょう。
上述した様に、有理数と実数と複素数は全て”体”をなすが、整数は割り算では閉じず、”体”にはならない。しかし、整数は加法に関して”群”になる。また乗法にて閉じており、結合則と単位元を満たすので、整数全体Zは”環”になる。これを”整数環”と呼びます。
群と体と環の関係を判り易く言えば、ある性質を満たす代数系を群と呼び、その中で更に特定の性質を満たす代数系を環と呼び、環の中で更に特定の性質を満たすものを体と。故に、群⊃アーベル群⊃環⊃可換環⊃整域⊃体と纏めておけば間違いないです(イラスト参照)。
つづく
書いていることを見ると、よく分かるわw(^^;
理解が浅いな〜〜!
下記でもよめ!(^^
(参考)
https://blog.goo.ne.jp/lemonwater2017/e/97265ec6b82b00b2b8d26d62263a2d75
象が転んだ
いまさら聞けない?群と体と環の関係とは(2020/4/18更新)?代数に憑かれた男たちと代数に疲れた私と?
2019年06月08日 06時44分07秒 | 数学のお話
(抜粋)
数学ブログでは、”ガロア群”や「ABC予想」をテーマにしたブログを立てましたが。群と体と環の関係をしっかりと理解しとかないと、このテーマに付いてくのはキツイかと。
そこで今日は、群と体と環の基本の基を紹介します。これが理解出来るだけでも、代数学の苦手意識が消えるかもです。
実は私も、この代数学(群論)の基礎が理解できなくて、大学の数学を頓挫しました。今から思うと、非常に惜しい事をしたと思います。
これを後悔先に立たずというか、代数に疲れた男というか。
”体”と”群”の微妙な関係
”体”ですが。内部構造に関する限り、”群”よりも複雑です。故に、代数の教科書では群を紹介し、その後に体へ進みますが、大半が群の抽象性にウンザリし、体に進む前にヤラれてしまいます。見方によっては、体の方が群よりもありふれてて、理解しやすい所もある。
環は、加法にて群になるが、乗法にては群にならない(逆元が存在しない)。故に、”環は加法にて可換群、乗法にて半群”と覚えときましょう。
上述した様に、有理数と実数と複素数は全て”体”をなすが、整数は割り算では閉じず、”体”にはならない。しかし、整数は加法に関して”群”になる。また乗法にて閉じており、結合則と単位元を満たすので、整数全体Zは”環”になる。これを”整数環”と呼びます。
群と体と環の関係を判り易く言えば、ある性質を満たす代数系を群と呼び、その中で更に特定の性質を満たす代数系を環と呼び、環の中で更に特定の性質を満たすものを体と。故に、群⊃アーベル群⊃環⊃可換環⊃整域⊃体と纏めておけば間違いないです(イラスト参照)。
つづく
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 【川崎・20歳女性死体遺棄】「あさひを返せ!」県警の説明に親族、友人ら90人が署に集まり猛抗議「嘘ばかり、謝れば済むことなのに」 ★2 [ぐれ★]
- 【住宅】退職後も家賃支払う「賃貸」か、住宅ローン見極め「持ち家」か…住居費は手取りの3割が目安 ★2 [ぐれ★]
- 【🌋】富士山噴火で東京に「火山灰」4.9億㎥の戦慄 2時間で都市機能はマヒ、必要な備蓄は「大地震」以上と識者 [ぐれ★]
- 【中国海警局のヘリコプター】中国政府「日本側が先に中国の領空に侵入した」日本大使館幹部を呼び出し逆に抗議 [煮卵★]
- 【🎏】子ども人口、初の1400万人割れ…前年より35万人少ない1366万人 主要国と比べても深刻な少子化 ★2 [ぐれ★]
- 永野芽郁『キャスター』出演継続もドラマ公式インスタから完全に“消えた”! 「二股交際&不倫」報道で視聴者から“降板要求”殺到 ★2 [Ailuropoda melanoleuca★]
- 話題のアニメと初コラボ!オカルト×青春バトルの『ダンダダン』と高幡不動の「肉汁餃子のダンダダン」が夢の融合! [377482965]
- 気付いたら公衆Wi-Fiがサービス終了しまくってるけど、税金大国なのに一種のインフラ崩壊だと思ってる、民間の施設任せで怠慢 [943688309]
- 【悲報】中居正広さん「俺はレイプしてねえ!」と強く訴えたい模様 [354616885]
- ふなふな言ってるうちにGWが終わるのをみんなで感慨深く楽しむお🏡
- 今日、ケンタッキーに
- 【悲報】アメリカの製造業、トランプ関税で終わる「中国製の工作機械が買えない!除外して!😭」 [481941988]