【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、xを有理数とするとzは無理数となり、解は整数比とならない。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)のrは、有理数となる場合があるが、解は、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
探検
フェルマーの最終定理の簡単な証明その2
レス数が1000を超えています。これ以上書き込みはできません。
1日高
2020/06/07(日) 08:24:03.98ID:/RronFw42日高
2020/06/07(日) 08:25:17.58ID:/RronFw4 【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
2020/06/07(日) 08:25:42.54ID:QIn4ol8X
糞スレ
4日高
2020/06/07(日) 08:27:19.49ID:/RronFw4 >3
糞スレ
どうしてでしょうか?
糞スレ
どうしてでしょうか?
2020/06/07(日) 08:34:02.45ID:QIn4ol8X
>>4
自明です。
自明です。
2020/06/07(日) 08:34:58.24ID:i03eLlIx
妄想がただひたすら繰り返し主張されるクソスレ。
2020/06/07(日) 08:35:26.86ID:i03eLlIx
迷惑老人の棲家
8日高
2020/06/07(日) 09:28:29.66ID:/RronFw4 >5
自明です。
どうしてでしょうか?
自明です。
どうしてでしょうか?
9日高
2020/06/07(日) 09:34:12.66ID:/RronFw4 >6
妄想がただひたすら繰り返し主張されるクソスレ。
どの部分のことでしょうか?
妄想がただひたすら繰り返し主張されるクソスレ。
どの部分のことでしょうか?
10日高
2020/06/07(日) 09:35:31.64ID:/RronFw4 >7
迷惑老人の棲家
なぜ、迷惑なのでしょうか?
迷惑老人の棲家
なぜ、迷惑なのでしょうか?
11日高
2020/06/07(日) 09:36:15.47ID:/RronFw4 【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
2020/06/07(日) 09:50:15.47ID:t7r4YAV2
前スレ>984一部訂正の上再掲
前スレ>976 日高
> >969
> > xが無理数の場合は、(5)で、考察しては、駄目でしょうか?
>
> だったらそれが言えるまで「x,y,zは自然数比とならない」とは言えないだろ。
>
> xが無理数の場合も、x,y,zの比は、かわりません。
それは誤り。
p=3の場合で書くと、フェルマーの最終定理に反例A^3+B^3=C^3があるとしたら、
(C-A)^3で両辺を割ることにより有理数a',b'に対しa'^3+b'^3=(a'+1)^3を得る。
(a'√3)^3+(b'√3)^3=(a'√3+√3)^3となってx^3+y^3=(x+√3)には有理数比をなす無理数解がある。
前スレ>976 日高
> >969
> > xが無理数の場合は、(5)で、考察しては、駄目でしょうか?
>
> だったらそれが言えるまで「x,y,zは自然数比とならない」とは言えないだろ。
>
> xが無理数の場合も、x,y,zの比は、かわりません。
それは誤り。
p=3の場合で書くと、フェルマーの最終定理に反例A^3+B^3=C^3があるとしたら、
(C-A)^3で両辺を割ることにより有理数a',b'に対しa'^3+b'^3=(a'+1)^3を得る。
(a'√3)^3+(b'√3)^3=(a'√3+√3)^3となってx^3+y^3=(x+√3)には有理数比をなす無理数解がある。
13日高
2020/06/07(日) 10:29:05.52ID:/RronFw4 >12
(a'√3)^3+(b'√3)^3=(a'√3+√3)^3
これは、有理数比をなす無理数解では、ありません。
(a'√3)^3+(b'√3)^3=(a'√3+√3)^3
これは、有理数比をなす無理数解では、ありません。
2020/06/07(日) 11:24:44.09ID:QIn4ol8X
15日高
2020/06/07(日) 11:33:26.00ID:/RronFw4 >14
自明とは、
証明したり説明したりしなくても、すでにそれ自体ではっきりしていること。
をいいます。
なにが、自明でしょうか?
自明とは、
証明したり説明したりしなくても、すでにそれ自体ではっきりしていること。
をいいます。
なにが、自明でしょうか?
2020/06/07(日) 11:39:12.37ID:QIn4ol8X
>>15
このスレが糞スレであることです。
このスレが糞スレであることです。
2020/06/07(日) 12:00:53.84ID:t7r4YAV2
> 13 日高
> >12
> (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
>
> これは、有理数比をなす無理数解では、ありません。
なぜですか?
> >12
> (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
>
> これは、有理数比をなす無理数解では、ありません。
なぜですか?
18日高
2020/06/07(日) 12:17:32.02ID:/RronFw4 >16
このスレが糞スレであることです。
どうしてでしょうか?
このスレが糞スレであることです。
どうしてでしょうか?
19日高
2020/06/07(日) 12:21:25.27ID:/RronFw4 >17
> (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
>
> これは、有理数比をなす無理数解では、ありません。
なぜですか?
有理数比をなしますが、両辺が、等しくなりません。
> (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
>
> これは、有理数比をなす無理数解では、ありません。
なぜですか?
有理数比をなしますが、両辺が、等しくなりません。
2020/06/07(日) 12:24:25.32ID:QIn4ol8X
>>18
自明です。
自明です。
2020/06/07(日) 12:32:22.86ID:GziL6h75
前スレ
627 名前:日高[] 投稿日:2020/05/30(土) 16:50:57.17 ID:vaCddZD8 [34/51]
>624
C^3+D^3=(C+1)^3 (C,Dは自然数)
が成り立ちます。
C,Dが自然数で成り立ちます。
C,Dが自然数のとき、両辺は、等しくなりません。
627 名前:日高[] 投稿日:2020/05/30(土) 16:50:57.17 ID:vaCddZD8 [34/51]
>624
C^3+D^3=(C+1)^3 (C,Dは自然数)
が成り立ちます。
C,Dが自然数で成り立ちます。
C,Dが自然数のとき、両辺は、等しくなりません。
2020/06/07(日) 13:19:10.55ID:t7r4YAV2
>>19 日高
> >17
> > (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
> >
> > これは、有理数比をなす無理数解では、ありません。
>
> なぜですか?
>
> 有理数比をなしますが、両辺が、等しくなりません。
なぜ等しくなりませんか?
> >17
> > (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
> >
> > これは、有理数比をなす無理数解では、ありません。
>
> なぜですか?
>
> 有理数比をなしますが、両辺が、等しくなりません。
なぜ等しくなりませんか?
23日高
2020/06/07(日) 13:50:45.43ID:/RronFw4 >22
> > (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
なぜ等しくなりませんか?
(a'√3)^3+(b'√3)^3=(a'√3+√3)^3は、
(a')^3+(b')^3=(a'+1)^3となります。
(5)により、
r=1のとき、a',b'が、整数比とならないからです。
> > (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
なぜ等しくなりませんか?
(a'√3)^3+(b'√3)^3=(a'√3+√3)^3は、
(a')^3+(b')^3=(a'+1)^3となります。
(5)により、
r=1のとき、a',b'が、整数比とならないからです。
24日高
2020/06/07(日) 13:52:26.14ID:/RronFw4 【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
2020/06/07(日) 13:57:42.95ID:t7r4YAV2
>>23 日高
> >22
> > > (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
> なぜ等しくなりませんか?
>
> (a'√3)^3+(b'√3)^3=(a'√3+√3)^3は、
> (a')^3+(b')^3=(a'+1)^3となります。
> (5)により、
> r=1のとき、a',b'が、整数比とならないからです。
(5)は式です。この式からなぜ整数比とならないことが言えますか?
> >22
> > > (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
> なぜ等しくなりませんか?
>
> (a'√3)^3+(b'√3)^3=(a'√3+√3)^3は、
> (a')^3+(b')^3=(a'+1)^3となります。
> (5)により、
> r=1のとき、a',b'が、整数比とならないからです。
(5)は式です。この式からなぜ整数比とならないことが言えますか?
26日高
2020/06/07(日) 14:41:54.42ID:/RronFw4 >25
(5)は式です。この式からなぜ整数比とならないことが言えますか?
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)のrは、有理数となる場合があるが、解は、整数比とならない。
からです。
(5)は式です。この式からなぜ整数比とならないことが言えますか?
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)のrは、有理数となる場合があるが、解は、整数比とならない。
からです。
2020/06/07(日) 15:27:27.32ID:i03eLlIx
28日高
2020/06/07(日) 15:33:15.10ID:/RronFw4 >27
迷惑だと言われた書き込みを繰り返すから。
あなた以外には、言われていないと、思います。
迷惑だと言われた書き込みを繰り返すから。
あなた以外には、言われていないと、思います。
2020/06/07(日) 15:37:52.56ID:t7r4YAV2
>>26 日高
いま、x^3+y^3=(x+√3)^3…(3)に自然数比をなす無理数解があるかどうかを論じている。
日高の主張は、これを満たす自然数比をなす有理数解がないことをもってそれが言えたとし、
自然数比の無理数解の場合は(5)にゆだねる。そして(5)の証明は(3)に帰着させるという。
見え透いた循環論法です。
私があげた例はフェルマーの最終定理に反例があったと仮定して構成したものですが、
これにまったく反論できていません。
いま、x^3+y^3=(x+√3)^3…(3)に自然数比をなす無理数解があるかどうかを論じている。
日高の主張は、これを満たす自然数比をなす有理数解がないことをもってそれが言えたとし、
自然数比の無理数解の場合は(5)にゆだねる。そして(5)の証明は(3)に帰着させるという。
見え透いた循環論法です。
私があげた例はフェルマーの最終定理に反例があったと仮定して構成したものですが、
これにまったく反論できていません。
30日高
2020/06/07(日) 15:55:19.20ID:/RronFw4 >29
見え透いた循環論法です。
なぜ、循環論法になるのでしょうか?
見え透いた循環論法です。
なぜ、循環論法になるのでしょうか?
2020/06/07(日) 16:05:16.69ID:t7r4YAV2
2020/06/07(日) 16:08:20.65ID:wPkBREoq
http://rio2016.5ch.net/test/read.cgi/math/1589674835/の977について
> x,y,zの比が、同じときに成り立ちます。
p=2,x=5,y=12,z=13のとき: r^(p-1)=pは成り立ちません
p=2,x=5,y=12,z=13のとき: a=2のとき、r^(p-1)=apが成り立ちません。
p=2,x=10,y=24,z=26のとき: r^(p-1)=pは成り立ちません
p=2,x=10,y=24,z=26のとき: a=2のとき、r^(p-1)=apが成り立ちません。
p=2,x=5π,y=12π,z=13πのとき: r^(p-1)=pは成り立ちません
p=2,x=5π,y=12π,z=13πのとき: a=2のとき、r^(p-1)=apが成り立ちません。
以上より、「x,y,zの比が、同じときに必ず成り立つ」、は間違いです。
また、「x,y,zの比が、同じで、さらにほかの条件が満たされた時、成り立つ」としても
他の条件について何も書いていないので、証明として間違いです。
r^(p-1)=pもr^(p-1)=apも成り立たないときのことが書いていないので、
>>1-2の証明は間違いです。
> x,y,zの比が、同じときに成り立ちます。
p=2,x=5,y=12,z=13のとき: r^(p-1)=pは成り立ちません
p=2,x=5,y=12,z=13のとき: a=2のとき、r^(p-1)=apが成り立ちません。
p=2,x=10,y=24,z=26のとき: r^(p-1)=pは成り立ちません
p=2,x=10,y=24,z=26のとき: a=2のとき、r^(p-1)=apが成り立ちません。
p=2,x=5π,y=12π,z=13πのとき: r^(p-1)=pは成り立ちません
p=2,x=5π,y=12π,z=13πのとき: a=2のとき、r^(p-1)=apが成り立ちません。
以上より、「x,y,zの比が、同じときに必ず成り立つ」、は間違いです。
また、「x,y,zの比が、同じで、さらにほかの条件が満たされた時、成り立つ」としても
他の条件について何も書いていないので、証明として間違いです。
r^(p-1)=pもr^(p-1)=apも成り立たないときのことが書いていないので、
>>1-2の証明は間違いです。
33日高
2020/06/07(日) 16:26:59.62ID:/RronFw4 >31
まずはそのようにして証明を書き直してください。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、xを有理数とするとzは無理数となり、解は整数比とならない。
xが、無理数で、整数比となる場合は、以下のようになる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)のrは、有理数となる場合があるが、解は、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
まずはそのようにして証明を書き直してください。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、xを有理数とするとzは無理数となり、解は整数比とならない。
xが、無理数で、整数比となる場合は、以下のようになる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)のrは、有理数となる場合があるが、解は、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
2020/06/07(日) 16:37:41.94ID:t7r4YAV2
35日高
2020/06/07(日) 16:46:20.29ID:/RronFw4 >32
以上より、「x,y,zの比が、同じときに必ず成り立つ」、は間違いです。
p=2,x=5,y=12,z=13のとき: r^(p-1)=pは成り立ちません
p=2,x=5,y=12,z=13のとき: a=2のとき、r^(p-1)=apが成り立ちません。
p=2,x=5/4,y=12/4,z=13/4のとき: r^(p-1)=pは成り立ちます。
p=2,x=5/2,y=12/2,z=13/2のとき:a=2のとき、r^(p-1)=apが成り立ちます。
x,y,zの比は、同じです。
以上より、「x,y,zの比が、同じときに必ず成り立つ」、は間違いです。
p=2,x=5,y=12,z=13のとき: r^(p-1)=pは成り立ちません
p=2,x=5,y=12,z=13のとき: a=2のとき、r^(p-1)=apが成り立ちません。
p=2,x=5/4,y=12/4,z=13/4のとき: r^(p-1)=pは成り立ちます。
p=2,x=5/2,y=12/2,z=13/2のとき:a=2のとき、r^(p-1)=apが成り立ちます。
x,y,zの比は、同じです。
36日高
2020/06/07(日) 16:53:11.45ID:/RronFw4 >34
書き足してないじゃありませんか。
「以下の行」を読めばわかると思います。
書き足してないじゃありませんか。
「以下の行」を読めばわかると思います。
2020/06/07(日) 16:58:11.47ID:t7r4YAV2
2020/06/07(日) 17:07:24.32ID:wPkBREoq
>>35
数学の証明の中で何の断りもなく3つの数の組5,12,13を別の数の組5/4,12/4,13/4に変えてはいけません。
数学のルールを守る気がないのなら、数学をやる気がないのなら、掲示板に書くのをやめてください。
迷惑です。
数学の証明の中で何の断りもなく3つの数の組5,12,13を別の数の組5/4,12/4,13/4に変えてはいけません。
数学のルールを守る気がないのなら、数学をやる気がないのなら、掲示板に書くのをやめてください。
迷惑です。
2020/06/07(日) 17:27:30.46ID:3ZDM3c+P
2020/06/07(日) 17:42:49.72ID:i03eLlIx
41日高
2020/06/07(日) 18:23:38.20ID:/RronFw4 >37
そうやって自分をごまかしているから循環論法に気づかないんですよ。
循環論法になっている部分は、どこでしょうか?
そうやって自分をごまかしているから循環論法に気づかないんですよ。
循環論法になっている部分は、どこでしょうか?
42日高
2020/06/07(日) 18:26:43.25ID:/RronFw4 >38
数学の証明の中で何の断りもなく3つの数の組5,12,13を別の数の組5/4,12/4,13/4に変えてはいけません。
比が、同じということを、言っています。変えているわけでは、ありません。
数学の証明の中で何の断りもなく3つの数の組5,12,13を別の数の組5/4,12/4,13/4に変えてはいけません。
比が、同じということを、言っています。変えているわけでは、ありません。
43日高
2020/06/07(日) 18:28:26.59ID:/RronFw4 >39
完全に証明?した人が現れたぞ
なにを、証明したのでしょうか?
完全に証明?した人が現れたぞ
なにを、証明したのでしょうか?
44日高
2020/06/07(日) 18:30:23.36ID:/RronFw4 【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
2020/06/07(日) 18:40:43.78ID:wPkBREoq
46日高
2020/06/07(日) 19:56:45.64ID:/RronFw4 >45
しかし証明にはr^(p-1)=pもr^(p-1)=apも成り立たない時のことが書いてない
必要でしょうか?
証明には、持つと、書いているので、持たない場合もあります。
しかし証明にはr^(p-1)=pもr^(p-1)=apも成り立たない時のことが書いてない
必要でしょうか?
証明には、持つと、書いているので、持たない場合もあります。
2020/06/07(日) 20:13:31.38ID:wPkBREoq
2020/06/07(日) 20:19:41.67ID:vzeOkDia
>>41 日高
> 循環論法になっている部分は、どこでしょうか?
不要な部分はカッコに入れます。二重カギカッコが補った部分です。
>>33 日高
> 【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(> (1)の両辺をr^pで割って、両辺を積の形にすると、)
(> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。)
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
> (3)はrが無理数なので、xを有理数とするとzは無理数となり、解は整数比とならない。
「(3)はrが無理数なので、xを有理数とするとzは無理数となり、『xが有理数ならば』解は整数比とならない」が正しいです。
> xが、無理数で、整数比となる場合は、以下のようになる。
> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
> (5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
ここで「(3)の解の」と書いていますが「(3)の無理数解の」です。
なぜならa^{1/(p-1)}=r/p^{1/(p-1)}は無理数だから。
だから整数比とならないかどうかはわかりません。
(循環論法というよりは、不完全な論法でした。)
以下、引用は略します。
ゆえに証明は大間違いです。
> 循環論法になっている部分は、どこでしょうか?
不要な部分はカッコに入れます。二重カギカッコが補った部分です。
>>33 日高
> 【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(> (1)の両辺をr^pで割って、両辺を積の形にすると、)
(> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。)
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
> (3)はrが無理数なので、xを有理数とするとzは無理数となり、解は整数比とならない。
「(3)はrが無理数なので、xを有理数とするとzは無理数となり、『xが有理数ならば』解は整数比とならない」が正しいです。
> xが、無理数で、整数比となる場合は、以下のようになる。
> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
> (5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
ここで「(3)の解の」と書いていますが「(3)の無理数解の」です。
なぜならa^{1/(p-1)}=r/p^{1/(p-1)}は無理数だから。
だから整数比とならないかどうかはわかりません。
(循環論法というよりは、不完全な論法でした。)
以下、引用は略します。
ゆえに証明は大間違いです。
49日高
2020/06/07(日) 21:03:09.07ID:/RronFw42020/06/07(日) 21:11:55.60ID:wPkBREoq
2020/06/07(日) 21:28:23.19ID:t7r4YAV2
52日高
2020/06/07(日) 21:31:18.82ID:/RronFw4 >48
なぜならa^{1/(p-1)}=r/p^{1/(p-1)}は無理数だから。
意味を、教えて下さい。
p=3,a=3,r=3のとき、両辺は、等しくなります。
なぜならa^{1/(p-1)}=r/p^{1/(p-1)}は無理数だから。
意味を、教えて下さい。
p=3,a=3,r=3のとき、両辺は、等しくなります。
2020/06/07(日) 21:40:36.14ID:vzeOkDia
>>52 日高
> >48
> なぜならa^{1/(p-1)}=r/p^{1/(p-1)}は無理数だから。
>
> 意味を、教えて下さい。
> p=3,a=3,r=3のとき、両辺は、等しくなります。
無理数の意味がわからないのですか?
> >48
> なぜならa^{1/(p-1)}=r/p^{1/(p-1)}は無理数だから。
>
> 意味を、教えて下さい。
> p=3,a=3,r=3のとき、両辺は、等しくなります。
無理数の意味がわからないのですか?
54日高
2020/06/07(日) 21:50:34.26ID:/RronFw4 >50
証明にはr^(p-1)=pもr^(p-1)=apも成り立たない時のことが書いてない
r^(p-1)=pもr^(p-1)=apも成り立たない時、とはどういう意味でしょうか?
証明にはr^(p-1)=pもr^(p-1)=apも成り立たない時のことが書いてない
r^(p-1)=pもr^(p-1)=apも成り立たない時、とはどういう意味でしょうか?
55日高
2020/06/07(日) 21:52:32.63ID:/RronFw4 >51
そういう割には、指摘されてもいっこうに直さないね。
どの部分を、直せば、良いのでしょうか?
そういう割には、指摘されてもいっこうに直さないね。
どの部分を、直せば、良いのでしょうか?
56日高
2020/06/07(日) 21:54:20.12ID:/RronFw4 >53
無理数の意味がわからないのですか?
どういう意味でしょうか?
無理数の意味がわからないのですか?
どういう意味でしょうか?
57日高
2020/06/07(日) 21:56:09.74ID:/RronFw4 【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
2020/06/07(日) 22:07:25.56ID:vzeOkDia
>>54 日高
> >50
> 証明にはr^(p-1)=pもr^(p-1)=apも成り立たない時のことが書いてない
>
> r^(p-1)=pもr^(p-1)=apも成り立たない時、とはどういう意味でしょうか?
r^(p-1)=apと書いたらこの式でaを定義すると思い込んでいやしないかい?
> >50
> 証明にはr^(p-1)=pもr^(p-1)=apも成り立たない時のことが書いてない
>
> r^(p-1)=pもr^(p-1)=apも成り立たない時、とはどういう意味でしょうか?
r^(p-1)=apと書いたらこの式でaを定義すると思い込んでいやしないかい?
2020/06/07(日) 22:09:37.24ID:wPkBREoq
>>54
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の32に書きました。
もう一度同じことを書きますが、同じことを何度も何度も書く行為は掲示板への嫌がらせ行為なので、次からは自分でみてください。
他人に、掲示板への嫌がらせ行為を強要するようなことをしないでください。
> p=2,x=5,y=12,z=13のとき: r^(p-1)=pは成り立ちません
> p=2,x=5,y=12,z=13のとき: a=2のとき、r^(p-1)=apが成り立ちません。
> p=2,x=10,y=24,z=26のとき: r^(p-1)=pは成り立ちません
> p=2,x=10,y=24,z=26のとき: a=2のとき、r^(p-1)=apが成り立ちません。
> p=2,x=5π,y=12π,z=13πのとき: r^(p-1)=pは成り立ちません
> p=2,x=5π,y=12π,z=13πのとき: a=2のとき、r^(p-1)=apが成り立ちません。
x^p+y^p=z^pの解には、r^(p-1)=pもr^(p-1)=apも成り立たないものがある。
r^(p-1)=pもr^(p-1)=apも成り立たない場合を調べていないので、>>1-2の証明は間違いです。
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の32に書きました。
もう一度同じことを書きますが、同じことを何度も何度も書く行為は掲示板への嫌がらせ行為なので、次からは自分でみてください。
他人に、掲示板への嫌がらせ行為を強要するようなことをしないでください。
> p=2,x=5,y=12,z=13のとき: r^(p-1)=pは成り立ちません
> p=2,x=5,y=12,z=13のとき: a=2のとき、r^(p-1)=apが成り立ちません。
> p=2,x=10,y=24,z=26のとき: r^(p-1)=pは成り立ちません
> p=2,x=10,y=24,z=26のとき: a=2のとき、r^(p-1)=apが成り立ちません。
> p=2,x=5π,y=12π,z=13πのとき: r^(p-1)=pは成り立ちません
> p=2,x=5π,y=12π,z=13πのとき: a=2のとき、r^(p-1)=apが成り立ちません。
x^p+y^p=z^pの解には、r^(p-1)=pもr^(p-1)=apも成り立たないものがある。
r^(p-1)=pもr^(p-1)=apも成り立たない場合を調べていないので、>>1-2の証明は間違いです。
2020/06/08(月) 01:58:48.96ID:erANaZPD
2020/06/08(月) 02:02:55.73ID:erANaZPD
>>52 日高
> >48
> なぜならa^{1/(p-1)}=r/p^{1/(p-1)}は無理数だから。
>
> 意味を、教えて下さい。
> p=3,a=3,r=3のとき、両辺は、等しくなります。
と書いているでしょう? 等しくなるかどうかではなく両辺が無理数であることを指摘しました。
もしかして「式1=式2は無理数」という言い方が初めてですか?
「式1=式2」であることと,その値が無理数であることを同時に言うやり方です。
> >48
> なぜならa^{1/(p-1)}=r/p^{1/(p-1)}は無理数だから。
>
> 意味を、教えて下さい。
> p=3,a=3,r=3のとき、両辺は、等しくなります。
と書いているでしょう? 等しくなるかどうかではなく両辺が無理数であることを指摘しました。
もしかして「式1=式2は無理数」という言い方が初めてですか?
「式1=式2」であることと,その値が無理数であることを同時に言うやり方です。
2020/06/08(月) 02:58:04.41ID:+qlIDWgG
63日高
2020/06/08(月) 08:13:42.72ID:xGk2X4i7 修正1
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
64132人目の素数さん
2020/06/08(月) 08:22:49.08ID:JOfKqjXc まだやってんのかよw
もう2年たったか?w
もう2年たったか?w
65日高
2020/06/08(月) 08:29:10.50ID:xGk2X4i7 >58
r^(p-1)=apと書いたらこの式でaを定義すると思い込んでいやしないかい?
r^(p-1)=apから、aは、定義できます。
r^(p-1)=apと書いたらこの式でaを定義すると思い込んでいやしないかい?
r^(p-1)=apから、aは、定義できます。
66日高
2020/06/08(月) 08:30:50.61ID:xGk2X4i7 >59
他人に、掲示板への嫌がらせ行為を強要するようなことをしないでください。
どういう意味でしょうか?
他人に、掲示板への嫌がらせ行為を強要するようなことをしないでください。
どういう意味でしょうか?
68日高
2020/06/08(月) 08:36:28.92ID:xGk2X4i7 >61
もしかして「式1=式2は無理数」という言い方が初めてですか?
「式1=式2」であることと,その値が無理数であることを同時に言うやり方です。
よく、わかりません。
もしかして「式1=式2は無理数」という言い方が初めてですか?
「式1=式2」であることと,その値が無理数であることを同時に言うやり方です。
よく、わかりません。
69日高
2020/06/08(月) 08:38:37.45ID:xGk2X4i7 >62
嘘つきが。
どうしてでしょうか?
嘘つきが。
どうしてでしょうか?
70日高
2020/06/08(月) 08:40:29.07ID:xGk2X4i7 >64
まだやってんのかよw
もう2年たったか?w
そうですね。
まだやってんのかよw
もう2年たったか?w
そうですね。
71日高
2020/06/08(月) 08:45:51.40ID:xGk2X4i7 【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
72日高
2020/06/08(月) 08:57:14.50ID:xGk2X4i7 【定理】p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
2020/06/08(月) 11:55:49.77ID:+qlIDWgG
2020/06/08(月) 12:15:26.69ID:YsJhYDYX
>>63 日高
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
直っていませんね。もはや見込み薄。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
直っていませんね。もはや見込み薄。
75日高
2020/06/08(月) 12:49:47.80ID:xGk2X4i7 >74
直っていませんね。もはや見込み薄。
よく、意味がわかりません。
直っていませんね。もはや見込み薄。
よく、意味がわかりません。
76日高
2020/06/08(月) 12:51:49.38ID:xGk2X4i7 修正1
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
77132人目の素数さん
2020/06/08(月) 14:10:01.87ID:JOfKqjXc ここまでくると付き合ってあげてる人は相当な物好きだね
2020/06/08(月) 14:17:09.21ID:YsJhYDYX
何とかして迷いを晴らしてやりたい。その一心だと思う。
2020/06/08(月) 14:44:08.62ID:PKqTqKMn
有理数にはならないですよ
80日高
2020/06/08(月) 14:58:32.48ID:xGk2X4i7 >77
ここまでくると付き合ってあげてる人は相当な物好きだね
どういう意味でしょうか?
ここまでくると付き合ってあげてる人は相当な物好きだね
どういう意味でしょうか?
2020/06/08(月) 14:59:44.33ID:YsJhYDYX
>>79
kwsk
kwsk
82132人目の素数さん
2020/06/08(月) 14:59:49.11ID:JOfKqjXc 高木さんは樹海で植樹してるようなものだと思いますがね
83日高
2020/06/08(月) 14:59:51.77ID:xGk2X4i7 >78
何とかして迷いを晴らしてやりたい。その一心だと思う。
どういう意味でしょうか?
何とかして迷いを晴らしてやりたい。その一心だと思う。
どういう意味でしょうか?
84日高
2020/06/08(月) 15:01:30.16ID:xGk2X4i7 >79
有理数にはならないですよ
どういう意味でしょうか?
有理数にはならないですよ
どういう意味でしょうか?
85日高
2020/06/08(月) 15:02:26.68ID:xGk2X4i7 >81
kwsk
どういう意味でしょうか?
kwsk
どういう意味でしょうか?
86日高
2020/06/08(月) 15:03:30.66ID:xGk2X4i7 >82
高木さんは樹海で植樹してるようなものだと思いますがね
どういう意味でしょうか?
高木さんは樹海で植樹してるようなものだと思いますがね
どういう意味でしょうか?
87日高
2020/06/08(月) 15:05:03.62ID:xGk2X4i7 修正1
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
88日高
2020/06/08(月) 15:06:37.35ID:xGk2X4i7 【定理】p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
2020/06/08(月) 16:43:59.27ID:TOLu1P5E
90日高
2020/06/08(月) 16:54:04.51ID:xGk2X4i7 >89
動画で答えは言ってありますよ
動画は、見ていません。
動画で答えは言ってありますよ
動画は、見ていません。
2020/06/08(月) 19:10:15.26ID:LN2eECBZ
この動画はフェルマーの最終定理とは関係ありません。
2020/06/08(月) 19:43:51.58ID:tgz4tjEB
>>87 日高
> 【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
> (1)の両辺をr^pで割って、両辺を積の形にすると、
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
何度も言っているように、(2)の形に展開して戻すのは無駄。
r^(p-1)=pをみたすrをρと書く。(3)はx^p+y^p=(x+ρ)^p。
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
ここは正しくは
「(3)はxが有理数の場合、r(ρ)が無理数なので、zは無理数となり、『x,y,zが有理数ならば』解は整数比とならない」
である。
> (3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
> 両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
この展開も無駄。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
ここでaの定義がないがr^(p-1)=apで定義するのだとすると(ap)^{1/(p-1)}=rである。
(5)は(1)と何ら変わらない。
> m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
a^{1/(p-1)}=r/p^{1/(p-1)}だから「(5)の解は、(3)の解の1/p^{1/(p-1)}倍」の誤りだろう。すなわち1/ρ倍。
解はただ一つに決まるわけではないので「(5)の解をρ倍すると(3)の解になる」が正しいが。
ここで「整数比とならない」と言えるのはmρ,nρが有理数の場合のみ。
しかしm,nは有理数,ρは無理数だからそういう場合はありえない。何も言えていない。
> ∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
完全な誤りです。
> 【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
> (1)の両辺をr^pで割って、両辺を積の形にすると、
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
何度も言っているように、(2)の形に展開して戻すのは無駄。
r^(p-1)=pをみたすrをρと書く。(3)はx^p+y^p=(x+ρ)^p。
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
ここは正しくは
「(3)はxが有理数の場合、r(ρ)が無理数なので、zは無理数となり、『x,y,zが有理数ならば』解は整数比とならない」
である。
> (3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
> 両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
この展開も無駄。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
ここでaの定義がないがr^(p-1)=apで定義するのだとすると(ap)^{1/(p-1)}=rである。
(5)は(1)と何ら変わらない。
> m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
a^{1/(p-1)}=r/p^{1/(p-1)}だから「(5)の解は、(3)の解の1/p^{1/(p-1)}倍」の誤りだろう。すなわち1/ρ倍。
解はただ一つに決まるわけではないので「(5)の解をρ倍すると(3)の解になる」が正しいが。
ここで「整数比とならない」と言えるのはmρ,nρが有理数の場合のみ。
しかしm,nは有理数,ρは無理数だからそういう場合はありえない。何も言えていない。
> ∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
完全な誤りです。
93日高
2020/06/08(月) 20:12:04.87ID:xGk2X4i7 >92
ここは正しくは
「(3)はxが有理数の場合、r(ρ)が無理数なので、zは無理数となり、『x,y,zが有理数ならば』解は整数比とならない」
である。
この部分の、意味が理解できません。
ここは正しくは
「(3)はxが有理数の場合、r(ρ)が無理数なので、zは無理数となり、『x,y,zが有理数ならば』解は整数比とならない」
である。
この部分の、意味が理解できません。
2020/06/08(月) 20:29:51.98ID:tgz4tjEB
>>93 間違えたので書き直します。すみません。
2020/06/08(月) 20:32:43.50ID:tgz4tjEB
>>92 書き間違えたので書き直します。間違いはわずかですが。
>>87 日高
> 【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
> (1)の両辺をr^pで割って、両辺を積の形にすると、
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
何度も言っているように、(2)の形に展開して戻すのは無駄。
r^(p-1)=pをみたすrをρと書く。(3)はx^p+y^p=(x+ρ)^p。
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
ここは正しくは
「(3)はxが有理数の場合、r(ρ)が無理数なので、zは無理数となり、『xが有理数ならば』解は整数比とならない」
である。
> (3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
> 両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
この展開も無駄。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
ここでaの定義がないがr^(p-1)=apで定義するのだとすると(ap)^{1/(p-1)}=rである。
(5)は(1)と何ら変わらない。
> m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
a^{1/(p-1)}=r/p^{1/(p-1)}だから「(5)の解は、(3)の解の1/p^{1/(p-1)}倍」の誤りだろう。すなわち1/ρ倍。
解はただ一つに決まるわけではないので「(5)の解をρ倍すると(3)の解になる」が正しいが。
ここで「整数比とならない」と言えるのはmρが有理数の場合のみ。
しかしmは有理数,ρは無理数だからそういう場合はありえない。何も言えていない。
> ∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
完全な誤りです。
>>87 日高
> 【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
> (1)の両辺をr^pで割って、両辺を積の形にすると、
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
何度も言っているように、(2)の形に展開して戻すのは無駄。
r^(p-1)=pをみたすrをρと書く。(3)はx^p+y^p=(x+ρ)^p。
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
ここは正しくは
「(3)はxが有理数の場合、r(ρ)が無理数なので、zは無理数となり、『xが有理数ならば』解は整数比とならない」
である。
> (3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
> 両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
この展開も無駄。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
ここでaの定義がないがr^(p-1)=apで定義するのだとすると(ap)^{1/(p-1)}=rである。
(5)は(1)と何ら変わらない。
> m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
a^{1/(p-1)}=r/p^{1/(p-1)}だから「(5)の解は、(3)の解の1/p^{1/(p-1)}倍」の誤りだろう。すなわち1/ρ倍。
解はただ一つに決まるわけではないので「(5)の解をρ倍すると(3)の解になる」が正しいが。
ここで「整数比とならない」と言えるのはmρが有理数の場合のみ。
しかしmは有理数,ρは無理数だからそういう場合はありえない。何も言えていない。
> ∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
完全な誤りです。
2020/06/09(火) 01:58:51.48ID:cGs6Kror
>>87
「条件1:pが奇素数」で、「条件2:r^(p-1)=pが成り立つ」とき、rは必ず無理数である
rが無理数の時、xとzのどちらか、あるいは両方が、必ず無理数である
「条件3:無理数と整数比になる」数は、必ず無理数である
よって、「条件1:pが奇素数」で、「条件2:r^(p-1)=pが成り立つ」とき、「条件3:無理数と整数比になる」数x,y,zは、必ず無理数である
つまり、「条件1:pが奇素数」で、「条件2:r^(p-1)=pが成り立つ」ときで、「条件3:無理数と整数比になる」とき、「(3)はxが有理数の場合」は絶対に起こらないので
(3)は必ず「(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)」になる。
このとき(3)の解はmr,nr,mr+rとなり、定義より整数比である。
よって>>87の証明は間違いです。
「条件1:pが奇素数」で、「条件2:r^(p-1)=pが成り立つ」とき、rは必ず無理数である
rが無理数の時、xとzのどちらか、あるいは両方が、必ず無理数である
「条件3:無理数と整数比になる」数は、必ず無理数である
よって、「条件1:pが奇素数」で、「条件2:r^(p-1)=pが成り立つ」とき、「条件3:無理数と整数比になる」数x,y,zは、必ず無理数である
つまり、「条件1:pが奇素数」で、「条件2:r^(p-1)=pが成り立つ」ときで、「条件3:無理数と整数比になる」とき、「(3)はxが有理数の場合」は絶対に起こらないので
(3)は必ず「(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)」になる。
このとき(3)の解はmr,nr,mr+rとなり、定義より整数比である。
よって>>87の証明は間違いです。
97日高
2020/06/09(火) 07:53:07.72ID:lXNqhqbG >95
a^{1/(p-1)}=r/p^{1/(p-1)}だから「(5)の解は、(3)の解の1/p^{1/(p-1)}倍」の誤りだろう。すなわち1/ρ倍。
この部分が、理解できません。
a^{1/(p-1)}=r/p^{1/(p-1)}だから「(5)の解は、(3)の解の1/p^{1/(p-1)}倍」の誤りだろう。すなわち1/ρ倍。
この部分が、理解できません。
98日高
2020/06/09(火) 07:58:35.89ID:lXNqhqbG >96
このとき(3)の解はmr,nr,mr+rとなり、定義より整数比である。
mr,nr,mr+rは、整数比ですが、(3)の解には、なりません。
このとき(3)の解はmr,nr,mr+rとなり、定義より整数比である。
mr,nr,mr+rは、整数比ですが、(3)の解には、なりません。
99日高
2020/06/09(火) 08:00:08.33ID:lXNqhqbG 修正1
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
100日高
2020/06/09(火) 08:00:52.36ID:lXNqhqbG 【定理】p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
101132人目の素数さん
2020/06/09(火) 08:10:01.06ID:AT0KZLzV 前スレ
598 名前:日高[] 投稿日:2020/05/30(土) 14:07:56.46 ID:vaCddZD8 [16/51]
>594
y=xと置いたんだからx:y=1:1で整数比なのは当然だろうに。
整数比には、なりますが、
x^p+y^p=(x+√3)^pの解には、なりません。
598 名前:日高[] 投稿日:2020/05/30(土) 14:07:56.46 ID:vaCddZD8 [16/51]
>594
y=xと置いたんだからx:y=1:1で整数比なのは当然だろうに。
整数比には、なりますが、
x^p+y^p=(x+√3)^pの解には、なりません。
102日高
2020/06/09(火) 08:19:14.32ID:lXNqhqbG 修正2
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
よって、m^p+n^p=(m+1)^pは、成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
よって、m^p+n^p=(m+1)^pは、成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
103日高
2020/06/09(火) 08:22:10.76ID:lXNqhqbG >101
>594
y=xと置いたんだからx:y=1:1で整数比なのは当然だろうに。
整数比には、なりますが、
x^p+y^p=(x+√3)^pの解には、なりません。
この通りです。
>594
y=xと置いたんだからx:y=1:1で整数比なのは当然だろうに。
整数比には、なりますが、
x^p+y^p=(x+√3)^pの解には、なりません。
この通りです。
104132人目の素数さん
2020/06/09(火) 12:32:17.20ID:kArj3PJy >>103 日高
> y=xと置いたんだからx:y=1:1で整数比なのは当然だろうに。
>
> 整数比には、なりますが、
> x^p+y^p=(x+√3)^pの解には、なりません。
>
> この通りです。
p次方程式x^p+x^p=(x+√3)^pの解になるようxを選ぶのですよ。
> y=xと置いたんだからx:y=1:1で整数比なのは当然だろうに。
>
> 整数比には、なりますが、
> x^p+y^p=(x+√3)^pの解には、なりません。
>
> この通りです。
p次方程式x^p+x^p=(x+√3)^pの解になるようxを選ぶのですよ。
105132人目の素数さん
2020/06/09(火) 12:48:18.68ID:kArj3PJy >>97 日高
> >95
> a^{1/(p-1)}=r/p^{1/(p-1)}だから「(5)の解は、(3)の解の1/p^{1/(p-1)}倍」の誤りだろう。すなわち1/ρ倍。
>
> この部分が、理解できません。
じゃあaっていくつなの? rとpで決まるんでしょ?
> >95
> a^{1/(p-1)}=r/p^{1/(p-1)}だから「(5)の解は、(3)の解の1/p^{1/(p-1)}倍」の誤りだろう。すなわち1/ρ倍。
>
> この部分が、理解できません。
じゃあaっていくつなの? rとpで決まるんでしょ?
106日高
2020/06/09(火) 13:49:33.36ID:lXNqhqbG >104
p次方程式x^p+x^p=(x+√3)^pの解になるようxを選ぶのですよ。
よく、理解できません。
p次方程式x^p+x^p=(x+√3)^pの解になるようxを選ぶのですよ。
よく、理解できません。
107日高
2020/06/09(火) 13:57:27.10ID:lXNqhqbG >105
じゃあaっていくつなの? rとpで決まるんでしょ?
例。
p=3のとき、
(ap)^{1/(p-1)})^p=3ならば、a=3
(ap)^{1/(p-1)})^p=1ならば、a=1/3
です。
じゃあaっていくつなの? rとpで決まるんでしょ?
例。
p=3のとき、
(ap)^{1/(p-1)})^p=3ならば、a=3
(ap)^{1/(p-1)})^p=1ならば、a=1/3
です。
108132人目の素数さん
2020/06/09(火) 14:29:15.52ID:9zHSPMA5 例の一個や百個あっても無意味。
たまたま例だけ出来ているのかもしれないし。
たまたま例だけ出来ているのかもしれないし。
109132人目の素数さん
2020/06/09(火) 15:16:42.49ID:kArj3PJy >>107 日高
aをrとpの式で書いてください、という意味です。
aをrとpの式で書いてください、という意味です。
110132人目の素数さん
2020/06/09(火) 15:18:02.00ID:kArj3PJy111132人目の素数さん
2020/06/09(火) 16:33:40.31ID:kArj3PJy112132人目の素数さん
2020/06/09(火) 16:59:42.59ID:9zHSPMA5113132人目の素数さん
2020/06/09(火) 17:01:09.48ID:9zHSPMA5114日高
2020/06/09(火) 17:19:46.32ID:lXNqhqbG >108
例の一個や百個あっても無意味。
たまたま例だけ出来ているのかもしれないし。
どういう意味でしょうか?
例の一個や百個あっても無意味。
たまたま例だけ出来ているのかもしれないし。
どういう意味でしょうか?
115132人目の素数さん
2020/06/09(火) 17:25:09.07ID:9zHSPMA5116日高
2020/06/09(火) 17:38:05.86ID:lXNqhqbG >109
aをrとpの式で書いてください、という意味です。
r=(ap)^{1/(p-1)}なので、
r=a^{1/(p-1)}*p^{1/(p-1)}
a^{1/(p-1)}=r/p^{1/(p-1)}
a=r^(p-1)/(p^{1/(p-1)})^(p-1)
a=r^(p-1)/p
となります。
aをrとpの式で書いてください、という意味です。
r=(ap)^{1/(p-1)}なので、
r=a^{1/(p-1)}*p^{1/(p-1)}
a^{1/(p-1)}=r/p^{1/(p-1)}
a=r^(p-1)/(p^{1/(p-1)})^(p-1)
a=r^(p-1)/p
となります。
117132人目の素数さん
2020/06/09(火) 17:40:36.50ID:kArj3PJy だったら>>102の(5)は(1)と同じだよね。
118132人目の素数さん
2020/06/09(火) 19:49:56.48ID:hK1EwvEd119日高
2020/06/09(火) 19:58:16.52ID:lXNqhqbG >110
どこが理解できないのか、具体的に書いてください。
p次方程式になるというところですか?
どういう意味でしょうか?
どこが理解できないのか、具体的に書いてください。
p次方程式になるというところですか?
どういう意味でしょうか?
120日高
2020/06/09(火) 20:01:13.16ID:lXNqhqbG121132人目の素数さん
2020/06/09(火) 20:02:34.37ID:hK1EwvEd >>119 日高
> >110
> どこが理解できないのか、具体的に書いてください。
> p次方程式になるというところですか?
>
> どういう意味でしょうか?
質問ではなく、どこが理解できないのかを具体的に書いてください。
> >110
> どこが理解できないのか、具体的に書いてください。
> p次方程式になるというところですか?
>
> どういう意味でしょうか?
質問ではなく、どこが理解できないのかを具体的に書いてください。
122132人目の素数さん
2020/06/09(火) 20:04:09.52ID:hK1EwvEd123日高
2020/06/09(火) 20:04:12.08ID:lXNqhqbG >112
> に「(4)はr^(p-1)=apのとき」と書いているんだから
> a=r^(p-1)/pじゃないんですか?
きっと謎理論でaの値がその時によって変わるのだ。
aは、rに、よって決まります。
> に「(4)はr^(p-1)=apのとき」と書いているんだから
> a=r^(p-1)/pじゃないんですか?
きっと謎理論でaの値がその時によって変わるのだ。
aは、rに、よって決まります。
125日高
2020/06/09(火) 20:11:23.18ID:lXNqhqbG >118
> a=r^(p-1)/p
> となります。
これですっきりした人が多いのでは。aはなんでもよいわけではないのでした。
そうです。aは、rによって、決まります。
> a=r^(p-1)/p
> となります。
これですっきりした人が多いのでは。aはなんでもよいわけではないのでした。
そうです。aは、rによって、決まります。
126132人目の素数さん
2020/06/09(火) 20:12:59.51ID:hK1EwvEd >>123 日高
> >112
> > に「(4)はr^(p-1)=apのとき」と書いているんだから
> > a=r^(p-1)/pじゃないんですか?
> きっと謎理論でaの値がその時によって変わるのだ。
>
> aは、rに、よって決まります。
じゃあ文字aを使うのはやめたら? うっとうしいだけです。
> >112
> > に「(4)はr^(p-1)=apのとき」と書いているんだから
> > a=r^(p-1)/pじゃないんですか?
> きっと謎理論でaの値がその時によって変わるのだ。
>
> aは、rに、よって決まります。
じゃあ文字aを使うのはやめたら? うっとうしいだけです。
127日高
2020/06/09(火) 20:13:23.02ID:lXNqhqbG >121
質問ではなく、どこが理解できないのかを具体的に書いてください。
もう一度最初から、お願いします。
質問ではなく、どこが理解できないのかを具体的に書いてください。
もう一度最初から、お願いします。
128日高
2020/06/09(火) 20:16:32.14ID:lXNqhqbG >122
そんなことでフェルマーの最終定理の証明ができますか?
どういう意味でしょうか?
そんなことでフェルマーの最終定理の証明ができますか?
どういう意味でしょうか?
129日高
2020/06/09(火) 20:18:11.71ID:lXNqhqbG >126
じゃあ文字aを使うのはやめたら? うっとうしいだけです。
なぜでしょうか?
じゃあ文字aを使うのはやめたら? うっとうしいだけです。
なぜでしょうか?
130日高
2020/06/09(火) 20:19:56.40ID:lXNqhqbG 修正2
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
よって、m^p+n^p=(m+1)^pは、成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
よって、m^p+n^p=(m+1)^pは、成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
131日高
2020/06/09(火) 20:20:44.15ID:lXNqhqbG 【定理】p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
132132人目の素数さん
2020/06/09(火) 20:44:57.99ID:9zHSPMA5133132人目の素数さん
2020/06/09(火) 20:45:54.27ID:AT0KZLzV >>127
この流れもう無理だわ
この流れもう無理だわ
134132人目の素数さん
2020/06/09(火) 20:48:50.97ID:hK1EwvEd >>130 日高
書き直してあげよう。
> 【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(> (1)の両辺をr^pで割って、両辺を積の形にすると、)
(> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。)
この2行は余分なので削除。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
p^{1/(p-1)}は後でもでてくるのでρとおいておこう。ρは無理数。
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
これは大ウソ。
「(3)はxが有理数の場合、rが無理数なので、zは無理数となり、『xが有理数の場合』解は整数比とならない」
が正しい。
> (3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
> 両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。)
この1行は余分なので削除。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
変数aを導入するまでもない。「x^p+y^p=(x+r)^p…(5)となる」。(1)に戻っただけ。
> m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
確かにこの式は(5)のタイプ。その解をρ倍すれば(3)の解となるがρが無理数なので有理数解のρ倍は無理数。
(3)の無理数解については何も調べていない。
> よって、m^p+n^p=(m+1)^pは、成り立たない。
こんなことは言えない。
> ∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
大ウソの証明でした。
書き直してあげよう。
> 【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(> (1)の両辺をr^pで割って、両辺を積の形にすると、)
(> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。)
この2行は余分なので削除。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
p^{1/(p-1)}は後でもでてくるのでρとおいておこう。ρは無理数。
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
これは大ウソ。
「(3)はxが有理数の場合、rが無理数なので、zは無理数となり、『xが有理数の場合』解は整数比とならない」
が正しい。
> (3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
> 両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。)
この1行は余分なので削除。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
変数aを導入するまでもない。「x^p+y^p=(x+r)^p…(5)となる」。(1)に戻っただけ。
> m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
確かにこの式は(5)のタイプ。その解をρ倍すれば(3)の解となるがρが無理数なので有理数解のρ倍は無理数。
(3)の無理数解については何も調べていない。
> よって、m^p+n^p=(m+1)^pは、成り立たない。
こんなことは言えない。
> ∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
大ウソの証明でした。
135132人目の素数さん
2020/06/09(火) 20:49:43.52ID:hK1EwvEd136日高
2020/06/09(火) 20:55:55.39ID:lXNqhqbG >132
もう一つ、誤魔化しにしか見えない。
誤魔化しでは、ありません。
もう一つ、誤魔化しにしか見えない。
誤魔化しでは、ありません。
137日高
2020/06/09(火) 20:57:02.64ID:lXNqhqbG >133
この流れもう無理だわ
どういう意味でしょうか?
この流れもう無理だわ
どういう意味でしょうか?
138日高
2020/06/09(火) 20:59:27.43ID:lXNqhqbG >134
(> (1)の両辺をr^pで割って、両辺を積の形にすると、)
(> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。)
この2行は余分なので削除。
どうしてでしょうか?
(> (1)の両辺をr^pで割って、両辺を積の形にすると、)
(> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。)
この2行は余分なので削除。
どうしてでしょうか?
139日高
2020/06/09(火) 21:01:03.28ID:lXNqhqbG >135
> この流れもう無理だわ
だから無視した
どうしてでしょうか?
> この流れもう無理だわ
だから無視した
どうしてでしょうか?
140132人目の素数さん
2020/06/09(火) 21:07:08.48ID:hK1EwvEd >>138 日高
> >134
> (> (1)の両辺をr^pで割って、両辺を積の形にすると、)
> (> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。)
>
> この2行は余分なので削除。
>
> どうしてでしょうか?
「余分なので」と説明しました。
> >134
> (> (1)の両辺をr^pで割って、両辺を積の形にすると、)
> (> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。)
>
> この2行は余分なので削除。
>
> どうしてでしょうか?
「余分なので」と説明しました。
141132人目の素数さん
2020/06/09(火) 21:40:15.83ID:9zHSPMA5142132人目の素数さん
2020/06/09(火) 23:52:40.21ID:cGs6Kror >>127
> もう一度最初から、お願いします。
同じことを何度も書くのは掲示板への嫌がらせ行為です。
あなたが掲示板に嫌がらせ行為をするのはあなたの勝手ですが
他人にまで嫌がらせ行為を強要しないでください。
> もう一度最初から、お願いします。
同じことを何度も書くのは掲示板への嫌がらせ行為です。
あなたが掲示板に嫌がらせ行為をするのはあなたの勝手ですが
他人にまで嫌がらせ行為を強要しないでください。
143132人目の素数さん
2020/06/10(水) 00:13:03.37ID:FG0ATok2144日高
2020/06/10(水) 05:37:49.94ID:jfTp+ISP >140
「余分なので」と説明しました。
どうして、余分なのでしょうか?
「余分なので」と説明しました。
どうして、余分なのでしょうか?
145日高
2020/06/10(水) 05:39:20.80ID:jfTp+ISP >141
本人がどう思ってようが、やっていることは誤魔化し。
責任取れ。
なぜでしょうか?
本人がどう思ってようが、やっていることは誤魔化し。
責任取れ。
なぜでしょうか?
146日高
2020/06/10(水) 05:41:47.61ID:jfTp+ISP >142
> もう一度最初から、お願いします。
同じことを何度も書くのは掲示板への嫌がらせ行為です。
あなたが掲示板に嫌がらせ行為をするのはあなたの勝手ですが
他人にまで嫌がらせ行為を強要しないでください。
強要は、していません。お願いです。
> もう一度最初から、お願いします。
同じことを何度も書くのは掲示板への嫌がらせ行為です。
あなたが掲示板に嫌がらせ行為をするのはあなたの勝手ですが
他人にまで嫌がらせ行為を強要しないでください。
強要は、していません。お願いです。
147日高
2020/06/10(水) 05:46:43.56ID:jfTp+ISP >143
定義よりmr,nr,mr+rは整数比となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
よって>>130の証明は間違いです。
mr,nr,mr+rは整数比となりますが、解には、なりません。
定義よりmr,nr,mr+rは整数比となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
よって>>130の証明は間違いです。
mr,nr,mr+rは整数比となりますが、解には、なりません。
148日高
2020/06/10(水) 05:48:22.11ID:jfTp+ISP 修正2
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
よって、m^p+n^p=(m+1)^pは、成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
よって、m^p+n^p=(m+1)^pは、成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
149日高
2020/06/10(水) 05:49:21.31ID:jfTp+ISP 【定理】p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
150日高
2020/06/10(水) 06:12:20.47ID:jfTp+ISP 修正3
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(r=p^{1/(p-1)})
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)は(ap)^{1/(p-1)}=1のとき、、m^p+n^p=(m+1)^pと同じ形となる。
よって、m^p+n^p=(m+1)^pの、m,nは、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(r=p^{1/(p-1)})
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)は(ap)^{1/(p-1)}=1のとき、、m^p+n^p=(m+1)^pと同じ形となる。
よって、m^p+n^p=(m+1)^pの、m,nは、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
151132人目の素数さん
2020/06/10(水) 06:15:30.19ID:oxmHx/oC152132人目の素数さん
2020/06/10(水) 06:25:43.49ID:oxmHx/oC >>150 日高
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
どうしてそうやって自分で自分に嘘をつき続けるの?
そんなことしている限り永遠に真理にはたどり着けないよ。
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
どうしてそうやって自分で自分に嘘をつき続けるの?
そんなことしている限り永遠に真理にはたどり着けないよ。
153日高
2020/06/10(水) 06:27:44.68ID:jfTp+ISP 修正4
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)は(ap)^{1/(p-1)}=1のとき、、m^p+n^p=(m+1)^pと同じ形となる。
よって、m^p+n^p=(m+1)^pの、m,nは、整数比では、あるが、(5)の解ではない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)は(ap)^{1/(p-1)}=1のとき、、m^p+n^p=(m+1)^pと同じ形となる。
よって、m^p+n^p=(m+1)^pの、m,nは、整数比では、あるが、(5)の解ではない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
154日高
2020/06/10(水) 06:34:26.31ID:jfTp+ISP >151
y=xと置いたんだからx:y=1:1で整数比なのは当然だろうに。
整数比には、なりますが、
x^p+y^p=(x+√3)^pの解には、なりません。
y=xと置いたんだからx:y=1:1で整数比なのは当然だろうに。
整数比には、なりますが、
x^p+y^p=(x+√3)^pの解には、なりません。
155日高
2020/06/10(水) 06:38:20.11ID:jfTp+ISP >152
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
どうしてそうやって自分で自分に嘘をつき続けるの?
そんなことしている限り永遠に真理にはたどり着けないよ。
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
この、どの部分が、嘘でしょうか?
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
どうしてそうやって自分で自分に嘘をつき続けるの?
そんなことしている限り永遠に真理にはたどり着けないよ。
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
この、どの部分が、嘘でしょうか?
156132人目の素数さん
2020/06/10(水) 06:41:39.23ID:FBLXt+/k157132人目の素数さん
2020/06/10(水) 06:49:47.25ID:oxmHx/oC158132人目の素数さん
2020/06/10(水) 06:51:50.05ID:oxmHx/oC159日高
2020/06/10(水) 07:54:38.63ID:jfTp+ISP >158
> よって、m^p+n^p=(m+1)^pは、成り立たない。
こんなことは言えない。
どうしてでしょうか?
> よって、m^p+n^p=(m+1)^pは、成り立たない。
こんなことは言えない。
どうしてでしょうか?
160日高
2020/06/10(水) 08:07:14.69ID:jfTp+ISP 修正5
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)は(ap)^{1/(p-1)}=1のとき、、m^p+n^p=(m+1)^pと同じ形となる。
しかし、m^p+n^p=(m+1)^pの、m,nは、整数比なので、(5)の解x,yとならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)は(ap)^{1/(p-1)}=1のとき、、m^p+n^p=(m+1)^pと同じ形となる。
しかし、m^p+n^p=(m+1)^pの、m,nは、整数比なので、(5)の解x,yとならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
161日高
2020/06/10(水) 08:17:18.76ID:jfTp+ISP 【定理】p=2のとき、x^2+y^2=z^2は、整数比の解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解x,yは整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解x,yは整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解x,y,zを持つ。
162132人目の素数さん
2020/06/10(水) 12:50:17.73ID:oxmHx/oC163日高
2020/06/10(水) 13:02:02.60ID:jfTp+ISP >162
> (3)はxが有理数の場合、rが無理数なので、解x,yは整数比とならない。
これは間違いです。さっき書きました。
理由を、教えて下さい。どの部分に、書いてあるのでしょうか?
> (3)はxが有理数の場合、rが無理数なので、解x,yは整数比とならない。
これは間違いです。さっき書きました。
理由を、教えて下さい。どの部分に、書いてあるのでしょうか?
164132人目の素数さん
2020/06/10(水) 13:07:42.35ID:oxmHx/oC >>104を読んでください。
165132人目の素数さん
2020/06/10(水) 13:22:59.10ID:oxmHx/oC >>162
すみません、間違いでした。取り消します。
すみません、間違いでした。取り消します。
166132人目の素数さん
2020/06/10(水) 13:39:06.19ID:g7VUn+0X 数学掲示板群 ttp://x0000.net/forum.aspx?id=1
学術の巨大掲示板群 - アルファ・ラボ ttp://x0000.net
数学 物理学 化学 生物学 天文学 地理地学
IT 電子 工学 言語学 国語 方言 など
PS 連続と離散を統一した!
ttp://x0000.net/topic.aspx?id=3709-0
微分幾何学入門
ttp://x0000.net/topic.aspx?id=3694-0
学術の巨大掲示板群 - アルファ・ラボ ttp://x0000.net
数学 物理学 化学 生物学 天文学 地理地学
IT 電子 工学 言語学 国語 方言 など
PS 連続と離散を統一した!
ttp://x0000.net/topic.aspx?id=3709-0
微分幾何学入門
ttp://x0000.net/topic.aspx?id=3694-0
167日高
2020/06/10(水) 14:23:00.58ID:jfTp+ISP >166
数学掲示板群 ttp://x0000.net/forum.aspx?id=1
どういう意味でしょうか?
数学掲示板群 ttp://x0000.net/forum.aspx?id=1
どういう意味でしょうか?
168132人目の素数さん
2020/06/10(水) 15:03:57.26ID:oxmHx/oC >>160 日高
> (3)はxが有理数の場合、rが無理数なので、解x,yは整数比とならない。
推論とわかったことのまとめとは区別して書いた方がよいでしょう。
「すなわち、xが有理数の場合、(3)の解x,yは整数比とならない」のように書き足すことを勧めます。
事実、あとで間違って使っていますから。。
> (3)はxが有理数の場合、rが無理数なので、解x,yは整数比とならない。
推論とわかったことのまとめとは区別して書いた方がよいでしょう。
「すなわち、xが有理数の場合、(3)の解x,yは整数比とならない」のように書き足すことを勧めます。
事実、あとで間違って使っていますから。。
169日高
2020/06/10(水) 15:26:01.83ID:jfTp+ISP >168
事実、あとで間違って使っていますから。。
どの、部分でしょうか?
事実、あとで間違って使っていますから。。
どの、部分でしょうか?
170132人目の素数さん
2020/06/10(水) 16:20:00.72ID:oxmHx/oC171日高
2020/06/10(水) 16:48:56.22ID:jfTp+ISP >170
> (5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
ですね
どの、部分が間違いでしょうか?
> (5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
ですね
どの、部分が間違いでしょうか?
172日高
2020/06/10(水) 16:50:34.70ID:jfTp+ISP 修正5
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)は(ap)^{1/(p-1)}=1のとき、、m^p+n^p=(m+1)^pと同じ形となる。
しかし、m^p+n^p=(m+1)^pの、m,nは、整数比なので、(5)の解x,yとならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)は(ap)^{1/(p-1)}=1のとき、、m^p+n^p=(m+1)^pと同じ形となる。
しかし、m^p+n^p=(m+1)^pの、m,nは、整数比なので、(5)の解x,yとならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
173日高
2020/06/10(水) 16:51:20.15ID:jfTp+ISP 【定理】p=2のとき、x^2+y^2=z^2は、整数比の解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解x,yは整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解x,yは整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解x,y,zを持つ。
174132人目の素数さん
2020/06/10(水) 18:42:30.79ID:oxmHx/oC175132人目の素数さん
2020/06/10(水) 18:45:42.42ID:oxmHx/oC >>174の続き。
x,yが整数比になるだけならpが奇素数でもできるんで、x,y,zが整数比になることを強調した方がよくはないかい。
x,yが整数比になるだけならpが奇素数でもできるんで、x,y,zが整数比になることを強調した方がよくはないかい。
176日高
2020/06/10(水) 19:47:23.03ID:jfTp+ISP 修正6
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yを有理数とすると、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)は(ap)^{1/(p-1)}=1のとき、、m^p+n^p=(m+1)^pと同じ形となる。
しかし、m^p+n^p=(m+1)^pの、m,nは、整数比なので、(5)の解x,yとならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yを有理数とすると、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)は(ap)^{1/(p-1)}=1のとき、、m^p+n^p=(m+1)^pと同じ形となる。
しかし、m^p+n^p=(m+1)^pの、m,nは、整数比なので、(5)の解x,yとならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
177日高
2020/06/10(水) 19:56:19.11ID:jfTp+ISP >174
> (3)はrが有理数なので、yを有理数とするとxは有理数となり、解x,yは整数比となる。
まあ、そうなんだけど、xをyの関数として書いて見せる方が親切だろうね。
そうですね。
> (3)はrが有理数なので、yを有理数とするとxは有理数となり、解x,yは整数比となる。
まあ、そうなんだけど、xをyの関数として書いて見せる方が親切だろうね。
そうですね。
178日高
2020/06/10(水) 20:01:04.14ID:jfTp+ISP >175
x,yが整数比になるだけならpが奇素数でもできるんで、x,y,zが整数比になることを強調した方がよくはないかい。
よく、意味がわからないのですが。
x,yが整数比になるだけならpが奇素数でもできるんで、x,y,zが整数比になることを強調した方がよくはないかい。
よく、意味がわからないのですが。
179132人目の素数さん
2020/06/10(水) 20:05:47.49ID:s3jL4b9P180132人目の素数さん
2020/06/10(水) 20:14:15.35ID:s3jL4b9P >>176 日高
見てあげよう。
> 【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(> (1)の両辺をr^pで割って、両辺を積の形にすると、)
(> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。)
何度も何度も書いてるけどこの二行はまったくの無駄。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
rをそうおきたいならおけばよいだけのこと。
> (3)はrが無理数なので、yを有理数とすると、解x,yは整数比とならない。
ここで要注意。ここまでの結論をはっきりさせるなら
「(3)はrが無理数なので、yを有理数とすると、解x,yは整数比とならない。
すなわちyを有理数とすると解x,yは整数比とならない」
だ。「(3)の解x,yは整数比とならない」は言えていない。
> (3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(r=p^{1/(p-1)}、m,nは有理数)
> 両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。)
この行,全くの無駄。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
aの初出の式から(ap)^{1/(p-1)}はrとわかるので(5)は(1)と全く同じ。
> (5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
a^{1/(p-1)}=r/p^{1/(p-1)}なのでこれは無理数。(3)の解について整数比とならないと分かっているのは有理数のみだった。
(3)の無理数解の定数倍の場合は何もわかっていない。ここで大間違いを犯している。
> (5)は(ap)^{1/(p-1)}=1のとき、、m^p+n^p=(m+1)^pと同じ形となる。
> しかし、m^p+n^p=(m+1)^pの、m,nは、整数比なので、(5)の解x,yとならない。
> ∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
はもちろん証明されていない。
見てあげよう。
> 【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(> (1)の両辺をr^pで割って、両辺を積の形にすると、)
(> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。)
何度も何度も書いてるけどこの二行はまったくの無駄。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
rをそうおきたいならおけばよいだけのこと。
> (3)はrが無理数なので、yを有理数とすると、解x,yは整数比とならない。
ここで要注意。ここまでの結論をはっきりさせるなら
「(3)はrが無理数なので、yを有理数とすると、解x,yは整数比とならない。
すなわちyを有理数とすると解x,yは整数比とならない」
だ。「(3)の解x,yは整数比とならない」は言えていない。
> (3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(r=p^{1/(p-1)}、m,nは有理数)
> 両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。)
この行,全くの無駄。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
aの初出の式から(ap)^{1/(p-1)}はrとわかるので(5)は(1)と全く同じ。
> (5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
a^{1/(p-1)}=r/p^{1/(p-1)}なのでこれは無理数。(3)の解について整数比とならないと分かっているのは有理数のみだった。
(3)の無理数解の定数倍の場合は何もわかっていない。ここで大間違いを犯している。
> (5)は(ap)^{1/(p-1)}=1のとき、、m^p+n^p=(m+1)^pと同じ形となる。
> しかし、m^p+n^p=(m+1)^pの、m,nは、整数比なので、(5)の解x,yとならない。
> ∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
はもちろん証明されていない。
181日高
2020/06/10(水) 20:20:44.68ID:jfTp+ISP >179
「x^p+y^p=(x+p^{1/(p-1)})^p」をみたすx,yならx=yとおいてp次方程式を解けばよい。
(何度も書いてすまん)
xは、どうなりますか?
「x^p+y^p=(x+p^{1/(p-1)})^p」をみたすx,yならx=yとおいてp次方程式を解けばよい。
(何度も書いてすまん)
xは、どうなりますか?
182132人目の素数さん
2020/06/10(水) 20:25:30.24ID:s3jL4b9P >>181 日高
> >179
> 「x^p+y^p=(x+p^{1/(p-1)})^p」をみたすx,yならx=yとおいてp次方程式を解けばよい。
> (何度も書いてすまん)
>
> xは、どうなりますか?
p次方程式2x^p-(x+p^{1/(p-1)})^p=0の実解になります。
> >179
> 「x^p+y^p=(x+p^{1/(p-1)})^p」をみたすx,yならx=yとおいてp次方程式を解けばよい。
> (何度も書いてすまん)
>
> xは、どうなりますか?
p次方程式2x^p-(x+p^{1/(p-1)})^p=0の実解になります。
183日高
2020/06/10(水) 21:26:01.62ID:jfTp+ISP >180
a^{1/(p-1)}=r/p^{1/(p-1)}なのでこれは無理数。
どうしてでしょうか?
a^{1/(p-1)}=r/p^{1/(p-1)}なのでこれは無理数。
どうしてでしょうか?
184日高
2020/06/10(水) 21:28:26.26ID:jfTp+ISP 【定理】p=2のとき、x^2+y^2=z^2は、整数比の解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解x,yは整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解x,yは整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解x,y,zを持つ。
185132人目の素数さん
2020/06/10(水) 21:37:49.30ID:s3jL4b9P186132人目の素数さん
2020/06/10(水) 21:53:44.64ID:aJ1C0C4G 初心者でも世界チャンピオンと同じ条件で勝負できる!
これだから競プロには人気があって当然!
最高の競技!
これだから競プロには人気があって当然!
最高の競技!
187日高
2020/06/11(木) 07:03:57.88ID:HpfZFyn0 >185
> a^{1/(p-1)}=r/p^{1/(p-1)}なのでこれは無理数。
この場合のrは、有理数となりえます。
> a^{1/(p-1)}=r/p^{1/(p-1)}なのでこれは無理数。
この場合のrは、有理数となりえます。
188日高
2020/06/11(木) 07:21:51.95ID:HpfZFyn0 修正7
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yを有理数とすると、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。
(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)は(ap)^{1/(p-1)}=1のとき、右辺は、(m+1)^pと同じとなる。
しかし、左辺の、x^p+y^pは、m^p+n^pと同じとならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yを有理数とすると、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。
(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)は(ap)^{1/(p-1)}=1のとき、右辺は、(m+1)^pと同じとなる。
しかし、左辺の、x^p+y^pは、m^p+n^pと同じとならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
189日高
2020/06/11(木) 15:51:46.12ID:HpfZFyn0 修正8
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yを有理数とすると、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。
(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。m,nは、整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)をx=m,y=n,(ap)^{1/(p-1)}=1とおいても、m,nは整数比なので、(5)の解となりえない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yを有理数とすると、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。
(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。m,nは、整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)をx=m,y=n,(ap)^{1/(p-1)}=1とおいても、m,nは整数比なので、(5)の解となりえない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
190日高
2020/06/11(木) 15:54:20.36ID:HpfZFyn0 >186
初心者でも世界チャンピオンと同じ条件で勝負できる!
これだから競プロには人気があって当然!
最高の競技!
どういう意味でしょうか?
初心者でも世界チャンピオンと同じ条件で勝負できる!
これだから競プロには人気があって当然!
最高の競技!
どういう意味でしょうか?
191日高
2020/06/11(木) 17:56:22.14ID:HpfZFyn0 修正9
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yを有理数とすると、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。
(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。m,nは、整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)にx=m,y=n,(ap)^{1/(p-1)}=1を代入しても、m,nは整数比なので、(5)の解とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yを有理数とすると、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。
(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。m,nは、整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)にx=m,y=n,(ap)^{1/(p-1)}=1を代入しても、m,nは整数比なので、(5)の解とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
192日高
2020/06/12(金) 09:07:08.49ID:qgSz08b7 修正10
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となり、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。
(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。m,nは、整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)にx=m,y=n,(ap)^{1/(p-1)}=1を代入しても、m,nは整数比なので、(5)の解とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となり、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。
(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。m,nは、整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(5)にx=m,y=n,(ap)^{1/(p-1)}=1を代入しても、m,nは整数比なので、(5)の解とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
193日高
2020/06/12(金) 09:32:18.36ID:qgSz08b7 【定理】p=2のとき、x^2+y^2=z^2は、整数比の解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となり、解x,yは整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となり、解x,yは整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解x,y,zを持つ。
194日高
2020/06/13(土) 08:53:36.97ID:0Z2VWoDS 修正11
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となり、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。
(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^p…(4)となる。m,nは、整数比となる。
(3)はrが有理数のとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(4)のm,nは整数比、(5)のx,yは、整数比ではないので、(4)のm,nは(5)の解ではない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となり、解x,yは整数比とならない。
(3)のxが無理数で、x,yが整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。
(r=p^{1/(p-1)}、m,nは有理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^p…(4)となる。m,nは、整数比となる。
(3)はrが有理数のとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、整数比とならない。
(4)のm,nは整数比、(5)のx,yは、整数比ではないので、(4)のm,nは(5)の解ではない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、整数比とならない。
195日高
2020/06/13(土) 16:54:32.89ID:0Z2VWoDS 修正12
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(3)はrが有理数のとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(4)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、x,yは、共に有理数とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(3)はrが有理数のとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(4)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、x,yは、共に有理数とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
196日高
2020/06/13(土) 20:51:49.97ID:0Z2VWoDS 【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
197132人目の素数さん
2020/06/14(日) 13:50:12.04ID:LsvPlUET198132人目の素数さん
2020/06/14(日) 13:54:40.05ID:LsvPlUET199132人目の素数さん
2020/06/14(日) 14:04:46.51ID:LsvPlUET201日高
2020/06/14(日) 15:32:37.95ID:PkeRK9ju >198
(3)の解x、yがともに無理数で、(4)の解がともに有理数である場合が考慮されていない
(3),(4)のx,yが、共に有理数となることは、ありません。
(3)の解x、yがともに無理数で、(4)の解がともに有理数である場合が考慮されていない
(3),(4)のx,yが、共に有理数となることは、ありません。
202日高
2020/06/14(日) 15:36:18.24ID:PkeRK9ju >199
pが奇素数の時r^(p-1)=pを満たすrは無理数
rが有理数の時(3)にはならない
rが有理数の時は、r=(ap)^{1/(p-1)}となります。
pが奇素数の時r^(p-1)=pを満たすrは無理数
rが有理数の時(3)にはならない
rが有理数の時は、r=(ap)^{1/(p-1)}となります。
203132人目の素数さん
2020/06/14(日) 17:21:32.15ID:LsvPlUET204132人目の素数さん
2020/06/14(日) 17:31:20.42ID:LsvPlUET >>201
2つの有理数m,nとして
(3)の解がm/(a^{1/(p-1)}、n/(a^{1/(p-1)}なら、x,yはともに有理数となります。
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解にならないことが証明されていません。
2つの有理数m,nとして
(3)の解がm/(a^{1/(p-1)}、n/(a^{1/(p-1)}なら、x,yはともに有理数となります。
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解にならないことが証明されていません。
205132人目の素数さん
2020/06/14(日) 17:32:04.85ID:LsvPlUET 204書き直します。
2つの有理数m,nとして
(3)の解がm/(a^{1/(p-1)}、n/(a^{1/(p-1)}なら、(4)の解x,yはともに有理数となります。
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解にならないことが証明されていません。
2つの有理数m,nとして
(3)の解がm/(a^{1/(p-1)}、n/(a^{1/(p-1)}なら、(4)の解x,yはともに有理数となります。
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解にならないことが証明されていません。
206日高
2020/06/14(日) 18:01:10.12ID:PkeRK9ju >205
(3)の解がm/(a^{1/(p-1)}、n/(a^{1/(p-1)}なら、(4)の解x,yはともに有理数となります。
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解にならないことが証明されていません。
(3)の解は、ともに、有理数となりません。
(3)の解がm/(a^{1/(p-1)}、n/(a^{1/(p-1)}なら、(4)の解x,yはともに有理数となります。
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解にならないことが証明されていません。
(3)の解は、ともに、有理数となりません。
207132人目の素数さん
2020/06/14(日) 19:18:44.97ID:LsvPlUET208日高
2020/06/14(日) 19:47:54.75ID:PkeRK9ju >201
m/(a^{1/(p-1)}は有理数なんですか?aがどんな数かもわからないのに?
m/(a^{1/(p-1)}は有理数か、無理数かは、不明ですが、
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}は、ともに、有理数か、
もしくは、ともに、無理数になります。
m/(a^{1/(p-1)}は有理数なんですか?aがどんな数かもわからないのに?
m/(a^{1/(p-1)}は有理数か、無理数かは、不明ですが、
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}は、ともに、有理数か、
もしくは、ともに、無理数になります。
209132人目の素数さん
2020/06/14(日) 19:51:45.31ID:LsvPlUET210日高
2020/06/14(日) 20:13:29.80ID:ApjMmQqn >209
2つの有理数m,nとして
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解にならないことが証明されていません。
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}は、
ともに、有理数もしくは、ともに、無理数となります。
x/yは、有理数となりません。
2つの有理数m,nとして
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解にならないことが証明されていません。
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}は、
ともに、有理数もしくは、ともに、無理数となります。
x/yは、有理数となりません。
211132人目の素数さん
2020/06/14(日) 20:30:14.69ID:LsvPlUET >>210
> x/yは、有理数となりません。
どの式の話ですか?
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が有理数か無理数かはどうでもいいけど、ともかく(3)の解なら
(4)の解はm、nでともに有理数です。
> x/yは、有理数となりません。
どの式の話ですか?
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が有理数か無理数かはどうでもいいけど、ともかく(3)の解なら
(4)の解はm、nでともに有理数です。
212日高
2020/06/14(日) 21:00:27.17ID:ApjMmQqn >211
(4)の解はm、nでともに有理数です。
m、nが、整数比ならば、(4)の解となりません。
(4)の解はm、nでともに有理数です。
m、nが、整数比ならば、(4)の解となりません。
213132人目の素数さん
2020/06/14(日) 21:04:32.03ID:LsvPlUET214132人目の素数さん
2020/06/14(日) 21:12:51.35ID:LsvPlUET >>213書き間違いもあるので、書き直し
> (4)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となる
のだったら、m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解のとき
m、nはともに有理数で(4)の解です。
> (4)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となる
のだったら、m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解のとき
m、nはともに有理数で(4)の解です。
215日高
2020/06/15(月) 06:52:47.03ID:11p6AMH4 【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(3)はrが有理数のとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(4)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、x,yは、共に有理数とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(3)はrが有理数のとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(4)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、x,yは、共に有理数とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
216日高
2020/06/15(月) 06:55:05.15ID:11p6AMH4 【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
217日高
2020/06/15(月) 06:59:45.72ID:11p6AMH4 >213
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}がく(3)の解なら
(4)の解はm、nでともに有理数です
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}は、(3)の解とは、なりません。
理由は、(3)の解の、x/yは、無理数となります。
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}がく(3)の解なら
(4)の解はm、nでともに有理数です
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}は、(3)の解とは、なりません。
理由は、(3)の解の、x/yは、無理数となります。
218日高
2020/06/15(月) 07:02:08.99ID:11p6AMH4 >214
のだったら、m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解のとき
m、nはともに有理数で(4)の解です。
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}は、(3)の解とは、なりません。
理由は、(3)の解の、x/yは、無理数となります。
のだったら、m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解のとき
m、nはともに有理数で(4)の解です。
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}は、(3)の解とは、なりません。
理由は、(3)の解の、x/yは、無理数となります。
219132人目の素数さん
2020/06/15(月) 07:20:50.77ID:FRXVIMl9 >>218
> >214
> のだったら、m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解のとき
> m、nはともに有理数で(4)の解です。
>
> m/(a^{1/(p-1)}、n/(a^{1/(p-1)}は、(3)の解とは、なりません。
>
> 理由は、(3)の解の、x/yは、無理数となります。
その場しのぎで根拠のない妄想ばかり主張するな。
x/yが有理数となるような解があるかどうかわからない状態で証明をしなければならないのに、
ひたすらまともな根拠なしに、x/yが有理数と主張するのは嘘、間違い、妄想。
それだけでゴミ。二度と投稿するな。
次に、xとyが無理数で(3)を満たすものはいくらでもある。
x=1となる(3)の解とやらはx/yが無理数になるんじゃねぇの?
要は、その場しのぎで嘘ついている証拠。
(3)の解とか意味不明な言い回しを使い、その時その時で意味を変えて主張しているからゴミの塊。
教科書などのまともな数学に基づく根拠がない限り反論不要・禁止。
> >214
> のだったら、m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解のとき
> m、nはともに有理数で(4)の解です。
>
> m/(a^{1/(p-1)}、n/(a^{1/(p-1)}は、(3)の解とは、なりません。
>
> 理由は、(3)の解の、x/yは、無理数となります。
その場しのぎで根拠のない妄想ばかり主張するな。
x/yが有理数となるような解があるかどうかわからない状態で証明をしなければならないのに、
ひたすらまともな根拠なしに、x/yが有理数と主張するのは嘘、間違い、妄想。
それだけでゴミ。二度と投稿するな。
次に、xとyが無理数で(3)を満たすものはいくらでもある。
x=1となる(3)の解とやらはx/yが無理数になるんじゃねぇの?
要は、その場しのぎで嘘ついている証拠。
(3)の解とか意味不明な言い回しを使い、その時その時で意味を変えて主張しているからゴミの塊。
教科書などのまともな数学に基づく根拠がない限り反論不要・禁止。
220日高
2020/06/15(月) 07:40:53.38ID:11p6AMH4 >219
x/yが有理数と主張するのは嘘、間違い、妄想。
(3)の、x/yは、無理数となります。
x/yが有理数と主張するのは嘘、間違い、妄想。
(3)の、x/yは、無理数となります。
221132人目の素数さん
2020/06/15(月) 10:21:33.32ID:FRXVIMl9222132人目の素数さん
2020/06/15(月) 20:50:18.70ID:C4MvZotE >>215 日高の「x^p+y^p=(x+p^{1/(p-1)})^p…(3)」なら
0以外の実数λに対しy=λxとおいて代入するとxのp次方程式が得られるからその実根をxとすれば
x;y=1:λとなる。x/y=1/λ。有理数でも無理数でもお好きなように。
0以外の実数λに対しy=λxとおいて代入するとxのp次方程式が得られるからその実根をxとすれば
x;y=1:λとなる。x/y=1/λ。有理数でも無理数でもお好きなように。
223日高
2020/06/15(月) 21:10:14.82ID:11p6AMH4 >222
>>215 日高の「x^p+y^p=(x+p^{1/(p-1)})^p…(3)」なら
0以外の実数λに対しy=λxとおいて代入するとxのp次方程式が得られるからその実根をxとすれば
x;y=1:λとなる。x/y=1/λ。有理数でも無理数でもお好きなように。
どういう意味でしょうか?
>>215 日高の「x^p+y^p=(x+p^{1/(p-1)})^p…(3)」なら
0以外の実数λに対しy=λxとおいて代入するとxのp次方程式が得られるからその実根をxとすれば
x;y=1:λとなる。x/y=1/λ。有理数でも無理数でもお好きなように。
どういう意味でしょうか?
224日高
2020/06/15(月) 21:30:36.43ID:11p6AMH4 【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
例1
y=8/3
x=7/9
z=25/9
x:y:z=7:24:25
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
例1
y=8/3
x=7/9
z=25/9
x:y:z=7:24:25
225132人目の素数さん
2020/06/15(月) 23:55:36.60ID:C4MvZotE226132人目の素数さん
2020/06/16(火) 00:56:31.38ID:vKbIxby9227132人目の素数さん
2020/06/16(火) 01:33:55.89ID:vKbIxby9228132人目の素数さん
2020/06/16(火) 01:36:54.29ID:+Tmq+rzf229日高
2020/06/16(火) 07:26:05.69ID:fpGZ0dec >225
どこがわからないのか、具体的に質問してください。
どういう意図でしょうか?という意味です。
どこがわからないのか、具体的に質問してください。
どういう意図でしょうか?という意味です。
230日高
2020/06/16(火) 07:38:49.21ID:fpGZ0dec >226
x=√2、y=√3、z=√5は、p=2のとき、x^2+y^2=z^2の解x,y,zですが有理数ではありません。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(3)にx=√2、y=√3、を代入すると、成り立ちません。
x=√2、y=√3、z=√5は、p=2のとき、x^2+y^2=z^2の解x,y,zですが有理数ではありません。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(3)にx=√2、y=√3、を代入すると、成り立ちません。
231日高
2020/06/16(火) 07:44:00.90ID:fpGZ0dec >227
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解のとき
x=m/(a^{1/(p-1)},y=n/(a^{1/(p-1)}は、(3)の解にはなりません。
m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解のとき
x=m/(a^{1/(p-1)},y=n/(a^{1/(p-1)}は、(3)の解にはなりません。
232日高
2020/06/16(火) 07:45:38.16ID:fpGZ0dec233日高
2020/06/16(火) 07:47:37.61ID:fpGZ0dec234日高
2020/06/16(火) 07:49:15.18ID:fpGZ0dec 【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
235日高
2020/06/16(火) 07:52:04.39ID:fpGZ0dec 【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(3)はrが有理数のとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(4)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、x,yは、共に有理数とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(3)はrが有理数のとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(4)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、x,yは、共に有理数とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
236132人目の素数さん
2020/06/16(火) 14:50:30.00ID:22bqGeTB >229 日高
そういう数学的事実を示したまでです。
そういう数学的事実を示したまでです。
237132人目の素数さん
2020/06/16(火) 15:01:00.07ID:22bqGeTB >>233 日高
普通に勉強していればわかります。
普通に勉強していればわかります。
238132人目の素数さん
2020/06/16(火) 21:26:10.80ID:jdyKPSMe >>234
p=2のとき
【証明】で結論づけられるのは
p=2のとき,「z=x+2」かつ「yが有理数」ならば,x^2+y^2=z^2の解x,y,zは、有理数となる。
ということのみ。
【定理】には「・・有理数となる。」とあるが,これが
「有理数となることがある。」という意味(存在命題)ならば一応正しいが,その場合【証明】なんかしなくても
x=3,y=4,z=5の例をあげるだけでよい。
「常に有理数となる。」という意味(全称命題)ならば全くの誤り
反証 x=√2,y=√3,z=√5
p=2のとき
【証明】で結論づけられるのは
p=2のとき,「z=x+2」かつ「yが有理数」ならば,x^2+y^2=z^2の解x,y,zは、有理数となる。
ということのみ。
【定理】には「・・有理数となる。」とあるが,これが
「有理数となることがある。」という意味(存在命題)ならば一応正しいが,その場合【証明】なんかしなくても
x=3,y=4,z=5の例をあげるだけでよい。
「常に有理数となる。」という意味(全称命題)ならば全くの誤り
反証 x=√2,y=√3,z=√5
239132人目の素数さん
2020/06/16(火) 21:31:26.48ID:XuDO9CbB 中学レベルの数学もろくにわかってない人に説明してもしょうがないですよ。
本人は勉強する気も全くないようだし、もうほっときましょう。
本人は勉強する気も全くないようだし、もうほっときましょう。
240132人目の素数さん
2020/06/17(水) 01:48:50.14ID:qD9AuJx8 >>233
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>193までは
「整数比の解x,y,zを持つ。」
だったのに、なぜわざわざ間違えるように書き直したのですか?
【反例】x=√2、y=√3、z=√5は、p=2のとき、x^2+y^2=z^2の解x,y,zですが有理数とならない。
「【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。」は間違いです。
「【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となることがある。」なら正しい。
正しいが、ほとんど価値のない落書きです。
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>193までは
「整数比の解x,y,zを持つ。」
だったのに、なぜわざわざ間違えるように書き直したのですか?
【反例】x=√2、y=√3、z=√5は、p=2のとき、x^2+y^2=z^2の解x,y,zですが有理数とならない。
「【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。」は間違いです。
「【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となることがある。」なら正しい。
正しいが、ほとんど価値のない落書きです。
241132人目の素数さん
2020/06/17(水) 01:56:51.55ID:qD9AuJx8 >>231
> x=m/(a^{1/(p-1)},y=n/(a^{1/(p-1)}は、(3)の解にはなりません。
そんなこと>>235のどこにも書いてありませんね。
rが無理数で、xも無理数、yも無理数の時どうなるか、>>235には書いてありません。
(4)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解のとき
m、nはともに有理数で(4)の解です。
ひょっとして、>>196-234で「有理数となることがある。」を「有理数となる。」とわざわざ間違うように書き直したのと同じ理屈で
あなたの「有理数とならない」は「有理数とならないことがある。」という意味ですか?
「【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならないことがある。」
これなら正しいが、ほとんど価値のない落書きです。
> x=m/(a^{1/(p-1)},y=n/(a^{1/(p-1)}は、(3)の解にはなりません。
そんなこと>>235のどこにも書いてありませんね。
rが無理数で、xも無理数、yも無理数の時どうなるか、>>235には書いてありません。
(4)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、m/(a^{1/(p-1)}、n/(a^{1/(p-1)}が(3)の解のとき
m、nはともに有理数で(4)の解です。
ひょっとして、>>196-234で「有理数となることがある。」を「有理数となる。」とわざわざ間違うように書き直したのと同じ理屈で
あなたの「有理数とならない」は「有理数とならないことがある。」という意味ですか?
「【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならないことがある。」
これなら正しいが、ほとんど価値のない落書きです。
242132人目の素数さん
2020/06/17(水) 02:49:53.12ID:QXhib9LU >>241
> 「【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならないことがある。」
> これなら正しいが、ほとんど価値のない落書きです。
0^p+0^p=0^pでよい?
> 「【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならないことがある。」
> これなら正しいが、ほとんど価値のない落書きです。
0^p+0^p=0^pでよい?
243132人目の素数さん
2020/06/17(水) 02:58:28.33ID:qD9AuJx8 >>220
【反例】
x^p+y^p=(x+p^{1/(p-1)})^p…(3)について、
例として、x=2w、y=wとおく。(3)の右辺を左辺に移項して
(2^p+1)w^p-(2w+p^{1/(p-1)})^p=0…(3-A)
wのp次の項の係数が1なので、(3-A)はwのp次方程式
pは奇素数なので、(A)の左辺wが小さいときの負の∞からwが大きいときの正の∞まで途切れずにつながっており、
かならず途中で左辺=0となるwがある。
このときx/y=2
同様に、x=3w、y=wとおけば、x/y=3
同様に、x=4w、y=wとおけば、x/y=4
【反例】
x^p+y^p=(x+p^{1/(p-1)})^p…(3)について、
例として、x=2w、y=wとおく。(3)の右辺を左辺に移項して
(2^p+1)w^p-(2w+p^{1/(p-1)})^p=0…(3-A)
wのp次の項の係数が1なので、(3-A)はwのp次方程式
pは奇素数なので、(A)の左辺wが小さいときの負の∞からwが大きいときの正の∞まで途切れずにつながっており、
かならず途中で左辺=0となるwがある。
このときx/y=2
同様に、x=3w、y=wとおけば、x/y=3
同様に、x=4w、y=wとおけば、x/y=4
244日高
2020/06/17(水) 08:29:14.01ID:TytBbFCt >238
反証 x=√2,y=√3,z=√5
√3は、有理数ではありません。
反証 x=√2,y=√3,z=√5
√3は、有理数ではありません。
245日高
2020/06/17(水) 08:34:52.74ID:TytBbFCt >240
「【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となることがある。」なら正しい。
「有理数となることがある。」ならば、有理数となるのでは、ないのでしょうか?
証明の中に、yが有理数のときと、書いています。
「【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となることがある。」なら正しい。
「有理数となることがある。」ならば、有理数となるのでは、ないのでしょうか?
証明の中に、yが有理数のときと、書いています。
246日高
2020/06/17(水) 08:38:55.85ID:TytBbFCt247日高
2020/06/17(水) 08:40:49.11ID:TytBbFCt >242
0^p+0^p=0^pでよい?
どういう意味でしょうか?
0^p+0^p=0^pでよい?
どういう意味でしょうか?
248日高
2020/06/17(水) 08:47:43.50ID:TytBbFCt >243
(2^p+1)w^p-(2w+p^{1/(p-1)})^p=0…(3-A)
この式の、意味がわかりません。
(2^p+1)w^p-(2w+p^{1/(p-1)})^p=0…(3-A)
この式の、意味がわかりません。
249日高
2020/06/17(水) 08:49:45.18ID:TytBbFCt 【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、有理数となる。
250日高
2020/06/17(水) 08:51:07.27ID:TytBbFCt 【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(3)はrが有理数のとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(4)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、x,yは、共に有理数とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(3)はrが有理数のとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(4)の解x,yは、(3)の解x,yのa^{1/(p-1)}倍となるので、x,yは、共に有理数とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
251日高
2020/06/17(水) 08:57:29.72ID:TytBbFCt 【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、0を除く有理数とならない。
252日高
2020/06/17(水) 09:07:27.47ID:TytBbFCt 【定理】p=2のとき、x^2+y^2=z^2は、有理数の解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、有理数の解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、有理数の解x,y,zを持つ。
253日高
2020/06/17(水) 09:17:06.62ID:TytBbFCt 【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
254日高
2020/06/17(水) 09:21:24.74ID:TytBbFCt 【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
255132人目の素数さん
2020/06/17(水) 10:20:12.23ID:DKF0dOY5 >>244日高
yが無理数なのが気に入らないならば
反例 x=√2 , y=1 , z=√3
というか,p=2のときの【定理】が「有理数となる場合がある」という意味ならば、一つでも例を上げればそれで足りるので,
x=3 , y=4 , z=5 をあげるだけでよく【定理】として掲げられた命題は【真】であり,その正しさが保証されます。
「常に有理数となる」という意味ならば,全くの誤りです。
√3は、確かに有理数ではありません。しかし x=√2 , y=√3 , z=√5 は x^2+y^2=z^2を満たします。
つまり,無理数でも解になり得るので【定理】として掲げられた命題は【偽】であることが確定します。
ここで,あなたの議論につきあっている方々のために一つだけ確認させて下さい。
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
yが無理数なのが気に入らないならば
反例 x=√2 , y=1 , z=√3
というか,p=2のときの【定理】が「有理数となる場合がある」という意味ならば、一つでも例を上げればそれで足りるので,
x=3 , y=4 , z=5 をあげるだけでよく【定理】として掲げられた命題は【真】であり,その正しさが保証されます。
「常に有理数となる」という意味ならば,全くの誤りです。
√3は、確かに有理数ではありません。しかし x=√2 , y=√3 , z=√5 は x^2+y^2=z^2を満たします。
つまり,無理数でも解になり得るので【定理】として掲げられた命題は【偽】であることが確定します。
ここで,あなたの議論につきあっている方々のために一つだけ確認させて下さい。
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
256日高
2020/06/17(水) 10:29:40.91ID:TytBbFCt >255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
257日高
2020/06/17(水) 10:32:38.01ID:TytBbFCt (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
258日高
2020/06/17(水) 10:34:17.01ID:TytBbFCt (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
259132人目の素数さん
2020/06/17(水) 10:54:06.29ID:QXhib9LU260日高
2020/06/17(水) 11:44:39.71ID:TytBbFCt >259
じゃあ「無効となることがある」ならば無効となるか?
全体の、文章を書いて下さい。
じゃあ「無効となることがある」ならば無効となるか?
全体の、文章を書いて下さい。
261132人目の素数さん
2020/06/17(水) 13:46:20.26ID:QXhib9LU >>260 日高
「通知後七日以内にお申し出がない場合はお申し込みが無効となることがあります」ぐらいでどうだ?
「通知後七日以内にお申し出がない場合はお申し込みが無効となることがあります」ぐらいでどうだ?
262日高
2020/06/17(水) 15:01:07.19ID:TytBbFCt >261
「通知後七日以内にお申し出がない場合はお申し込みが無効となることがあります」ぐらいでどうだ?
通知後七日以内に申し込めば、有効。それ以外は、無効となることがあります」
「通知後七日以内にお申し出がない場合はお申し込みが無効となることがあります」ぐらいでどうだ?
通知後七日以内に申し込めば、有効。それ以外は、無効となることがあります」
263132人目の素数さん
2020/06/17(水) 15:16:58.11ID:QXhib9LU >>262 それで無効となるの?
264132人目の素数さん
2020/06/17(水) 15:19:13.28ID:P/KFHEbP >>256
> >255
> あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
>
> はい。
まともな数学の言葉言葉遣い出でないので、ゴミ。間違い。勉強し直せ。
> >255
> あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
>
> はい。
まともな数学の言葉言葉遣い出でないので、ゴミ。間違い。勉強し直せ。
265日高
2020/06/17(水) 15:42:36.92ID:TytBbFCt >264
267日高
2020/06/17(水) 15:45:07.93ID:TytBbFCt >264
まともな数学の言葉言葉遣い出でないので、ゴミ。間違い。勉強し直せ。
なぜでしょうか?
まともな数学の言葉言葉遣い出でないので、ゴミ。間違い。勉強し直せ。
なぜでしょうか?
268日高
2020/06/17(水) 15:47:00.23ID:TytBbFCt (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
269日高
2020/06/17(水) 15:47:55.05ID:TytBbFCt (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
270132人目の素数さん
2020/06/17(水) 15:59:00.46ID:QXhib9LU271132人目の素数さん
2020/06/17(水) 16:00:54.41ID:QXhib9LU >>269 日高
ピタゴラスの定理ってそれじゃないよ。
ピタゴラスの定理ってそれじゃないよ。
272132人目の素数さん
2020/06/17(水) 16:02:55.04ID:P/KFHEbP273日高
2020/06/17(水) 17:08:46.78ID:TytBbFCt >270
何の話をしていたかもう忘れているのでは?
もとの話を、教えて下さい。
何の話をしていたかもう忘れているのでは?
もとの話を、教えて下さい。
274日高
2020/06/17(水) 17:10:20.67ID:TytBbFCt >271
ピタゴラスの定理ってそれじゃないよ。
どういう意味でしょうか?
ピタゴラスの定理ってそれじゃないよ。
どういう意味でしょうか?
275日高
2020/06/17(水) 17:12:08.69ID:TytBbFCt >272
間違いだから。
無意味な返事で誤魔化すな。ゴミ
なぜでしょうか?
間違いだから。
無意味な返事で誤魔化すな。ゴミ
なぜでしょうか?
276132人目の素数さん
2020/06/17(水) 18:43:19.31ID:QXhib9LU その頭じゃ数学は無理。
277日高
2020/06/17(水) 18:54:54.30ID:TytBbFCt >276
その頭じゃ数学は無理。
どうしてでしょうか?
その頭じゃ数学は無理。
どうしてでしょうか?
278日高
2020/06/17(水) 18:55:54.69ID:TytBbFCt (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
279日高
2020/06/17(水) 18:56:30.54ID:TytBbFCt (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
280132人目の素数さん
2020/06/17(水) 19:34:32.91ID:QXhib9LU >>278 日高
rが特別な値の場合しか調べていないので誤りです。
rが特別な値の場合しか調べていないので誤りです。
281132人目の素数さん
2020/06/17(水) 20:16:49.57ID:TmVrX6JA >>279 日高
ピタゴラスの定理には直角三角形が出てくるんですよ。
ピタゴラスの定理には直角三角形が出てくるんですよ。
282日高
2020/06/17(水) 20:24:12.08ID:TytBbFCt >280
rが特別な値の場合しか調べていないので誤りです。
rが別な値の場合も、x,y,zの、比は同じとなります。
rが特別な値の場合しか調べていないので誤りです。
rが別な値の場合も、x,y,zの、比は同じとなります。
283132人目の素数さん
2020/06/17(水) 20:27:47.27ID:TmVrX6JA284日高
2020/06/17(水) 20:28:03.57ID:TytBbFCt >281
ピタゴラスの定理には直角三角形が出てくるんですよ。
直角三角形が出て来なくても、ピタゴラスの定理というのでは、ないのでしょうか?
ピタゴラスの定理には直角三角形が出てくるんですよ。
直角三角形が出て来なくても、ピタゴラスの定理というのでは、ないのでしょうか?
285日高
2020/06/17(水) 20:31:30.17ID:TytBbFCt >283
だったらそれを証明の中に書きな。
理由を、問われれば、答えます、
だったらそれを証明の中に書きな。
理由を、問われれば、答えます、
286132人目の素数さん
2020/06/17(水) 20:44:27.55ID:DKF0dOY5 >>256日高
ならば,p=2のときの【定理】は【証明】の内容からは,z=x+2 とおいて,x,y,z が「有理数となる場合がある」という命題を証明しようとしていることになります。
この命題ならば確かに【真】ですが,「常に有理数となる」という命題としてならば【偽】です。(ここまでは確認事項)
そこで次に,pが奇素数であるときの【定理】を検討してみると,【証明】の内容からは
r^(p-1)=p の式でrを定め,z=x+r と置いた形のとき,x,y,z が「無理数となる」という命題を証明しようとしていることになります。
しかし,この場合「無理数となる」という命題が【真】であるとしても,これは zが特定の値をとるとき x,y,z が「無理数となる場合がある」ことを証明しているだけで,
「常に無理数となる」=「有理数の解をもたない」という証明にはなりません。
つまり,フェルマーの最終定理の証明のためには,rをこの形以外に定めた場合でも、
x^p+y^p=z^pには有理数の解は存在しないこと,
即ち,zがいかなる有理数値をとろうとも「x,y,zはともに有理数となることはない」ことを証明しなければいけません。
そうすると,【証明】の内容にも問題があることがわかります。
ここで【証明】のなかで 御自身が「rが無理数」とされていることに留意して下さい。
z=x+r なのですからzが有理数となるためには,xはこの無理数rを打ち消す無理数を含んでいなければなりません。
つまり「rが無理数」ならば「xは無理数」であり,それが【証明】に繰り込まれてしまっています。
即ち,ここでの【証明】は「xが無理数」であるならば「x,y,zがともに有理数となることはない」という当たり前のことを述べているだけであり,
結論としては【証明】には何の意味もない,ということになります。
以上の趣旨をご理解いただけると幸いです。
ならば,p=2のときの【定理】は【証明】の内容からは,z=x+2 とおいて,x,y,z が「有理数となる場合がある」という命題を証明しようとしていることになります。
この命題ならば確かに【真】ですが,「常に有理数となる」という命題としてならば【偽】です。(ここまでは確認事項)
そこで次に,pが奇素数であるときの【定理】を検討してみると,【証明】の内容からは
r^(p-1)=p の式でrを定め,z=x+r と置いた形のとき,x,y,z が「無理数となる」という命題を証明しようとしていることになります。
しかし,この場合「無理数となる」という命題が【真】であるとしても,これは zが特定の値をとるとき x,y,z が「無理数となる場合がある」ことを証明しているだけで,
「常に無理数となる」=「有理数の解をもたない」という証明にはなりません。
つまり,フェルマーの最終定理の証明のためには,rをこの形以外に定めた場合でも、
x^p+y^p=z^pには有理数の解は存在しないこと,
即ち,zがいかなる有理数値をとろうとも「x,y,zはともに有理数となることはない」ことを証明しなければいけません。
そうすると,【証明】の内容にも問題があることがわかります。
ここで【証明】のなかで 御自身が「rが無理数」とされていることに留意して下さい。
z=x+r なのですからzが有理数となるためには,xはこの無理数rを打ち消す無理数を含んでいなければなりません。
つまり「rが無理数」ならば「xは無理数」であり,それが【証明】に繰り込まれてしまっています。
即ち,ここでの【証明】は「xが無理数」であるならば「x,y,zがともに有理数となることはない」という当たり前のことを述べているだけであり,
結論としては【証明】には何の意味もない,ということになります。
以上の趣旨をご理解いただけると幸いです。
287132人目の素数さん
2020/06/17(水) 20:49:55.33ID:TmVrX6JA >>284 日高
> >281
> ピタゴラスの定理には直角三角形が出てくるんですよ。
>
> 直角三角形が出て来なくても、ピタゴラスの定理というのでは、ないのでしょうか?
ふつうは言わないと思うけど。言っている文献があったらあげてください。
> >281
> ピタゴラスの定理には直角三角形が出てくるんですよ。
>
> 直角三角形が出て来なくても、ピタゴラスの定理というのでは、ないのでしょうか?
ふつうは言わないと思うけど。言っている文献があったらあげてください。
288132人目の素数さん
2020/06/17(水) 20:51:15.58ID:TmVrX6JA289日高
2020/06/17(水) 21:20:56.89ID:TytBbFCt >286
つまり「rが無理数」ならば「xは無理数」であり,それが【証明】に繰り込まれてしまっています。
この部分を、詳しく説明していただけないでしょうか。
つまり「rが無理数」ならば「xは無理数」であり,それが【証明】に繰り込まれてしまっています。
この部分を、詳しく説明していただけないでしょうか。
290日高
2020/06/17(水) 21:23:04.99ID:TytBbFCt >287
ふつうは言わないと思うけど。言っている文献があったらあげてください。
文献は、わかりません。
ふつうは言わないと思うけど。言っている文献があったらあげてください。
文献は、わかりません。
291日高
2020/06/17(水) 21:25:03.37ID:TytBbFCt >288
書きたくなければ書かなくてもいいよ。誰も正しいとは認めないだけだから。
よく、わかりません。
書きたくなければ書かなくてもいいよ。誰も正しいとは認めないだけだから。
よく、わかりません。
292日高
2020/06/17(水) 21:26:17.59ID:TytBbFCt (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
293日高
2020/06/17(水) 21:27:08.63ID:TytBbFCt (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
294132人目の素数さん
2020/06/17(水) 21:30:34.60ID:TmVrX6JA >>292日高が正しいなら(たぶん)次も正しい。
【定理】pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+7y^p=z^pを、z=x+rとおいてx^p+7y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){7(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+7y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
反例はp=3,x=y=1,z=2。
【定理】pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+7y^p=z^pを、z=x+rとおいてx^p+7y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){7(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+7y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
反例はp=3,x=y=1,z=2。
295132人目の素数さん
2020/06/17(水) 22:23:48.03ID:DKF0dOY5 >>289
「rは無理数」である。
これは「pが奇素数」かつ「r^(p-1)=p(を満たす数)」と置いたことによって,x,y,zの値と無関係に定まります。
つぎに,「zが無理数」ならば,当然「x,y,zはともに有理数とはならない」=「x,y,zには少なくとも1個の無理数が含まれる」ことになります。
この場合x,y,zの値がどうであろうと,x,y,zの関係式がどうであろうと,この命題は【真】となります。
これは「zが無理数」を「xが無理数」または「yが無理数」と置き換えても当然成り立ちます。
つまりx,y,zのどれかが「無理数」ならば「x,y,zには少なくとも1個の無理数が含まれる」ということであり、これはあまりにも自明でしょう。
そこで「r^(p-1)=p」で r を定め,z=x+r とおくと
「rは無理数」(確定)なのですから
(1)「xが有理数」ならば,「zは無理数」となります。zにはrの無理数部分がそのまま残るからです。
(2)「xが無理数」ならば,「zは無理数」または「zは有理数」となりますが,前提として既に「無理数」がx,y,zの中に(xとして)含まれることになります
つまり(1)であろうと(2)であろうとx,zのどちらかが「無理数」なのですから
「x,y,zはともに有理数とはならない」=「x,y,zには少なくとも1個の無理数が含まれる」が成り立ってしまいます。
つまり、「rが無理数」かつ「z=x+r」と定めた時点で、「x,y,zには少なくとも1個の無理数が含まれる」が常に成り立ちます。
あなたが【証明】で述べていることは、結局フェルマーの最終定理にはまったく関係なく、それ以前に
「xが無理数」または「zが無理数」ならば「x,y,zには少なくとも1個の無理数が含まれる」ということを述べているだけであり、
すなわち、まったく無意味な【証明】であると思います。
「rは無理数」である。
これは「pが奇素数」かつ「r^(p-1)=p(を満たす数)」と置いたことによって,x,y,zの値と無関係に定まります。
つぎに,「zが無理数」ならば,当然「x,y,zはともに有理数とはならない」=「x,y,zには少なくとも1個の無理数が含まれる」ことになります。
この場合x,y,zの値がどうであろうと,x,y,zの関係式がどうであろうと,この命題は【真】となります。
これは「zが無理数」を「xが無理数」または「yが無理数」と置き換えても当然成り立ちます。
つまりx,y,zのどれかが「無理数」ならば「x,y,zには少なくとも1個の無理数が含まれる」ということであり、これはあまりにも自明でしょう。
そこで「r^(p-1)=p」で r を定め,z=x+r とおくと
「rは無理数」(確定)なのですから
(1)「xが有理数」ならば,「zは無理数」となります。zにはrの無理数部分がそのまま残るからです。
(2)「xが無理数」ならば,「zは無理数」または「zは有理数」となりますが,前提として既に「無理数」がx,y,zの中に(xとして)含まれることになります
つまり(1)であろうと(2)であろうとx,zのどちらかが「無理数」なのですから
「x,y,zはともに有理数とはならない」=「x,y,zには少なくとも1個の無理数が含まれる」が成り立ってしまいます。
つまり、「rが無理数」かつ「z=x+r」と定めた時点で、「x,y,zには少なくとも1個の無理数が含まれる」が常に成り立ちます。
あなたが【証明】で述べていることは、結局フェルマーの最終定理にはまったく関係なく、それ以前に
「xが無理数」または「zが無理数」ならば「x,y,zには少なくとも1個の無理数が含まれる」ということを述べているだけであり、
すなわち、まったく無意味な【証明】であると思います。
296132人目の素数さん
2020/06/17(水) 22:40:56.75ID:TmVrX6JA297132人目の素数さん
2020/06/17(水) 23:44:58.00ID:mV1XU9fr298132人目の素数さん
2020/06/18(木) 00:02:42.14ID:8BMp4iEJ >>256より
>255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
ということは、
>>292は
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる場合がある。xが有理数のとき、yは無理数となる場合がある。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
という主張だということで、全く意味不明。
>255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
ということは、
>>292は
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる場合がある。xが有理数のとき、yは無理数となる場合がある。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
という主張だということで、全く意味不明。
299日高
2020/06/18(木) 08:31:35.26ID:PZ3tlRyp300日高
2020/06/18(木) 08:47:37.52ID:PZ3tlRyp >295
「xが無理数」または「zが無理数」ならば「x,y,zには少なくとも1個の無理数が含まれる」ということを述べているだけであり、
すなわち、まったく無意味な【証明】であると思います。
rが有理数の場合の、x,y,zは、rが無理数の場合の定数倍となるので、
rが、有理数であっても、無理数であっても、x,y,zの割合は、変わりません。
「xが無理数」または「zが無理数」ならば「x,y,zには少なくとも1個の無理数が含まれる」ということを述べているだけであり、
すなわち、まったく無意味な【証明】であると思います。
rが有理数の場合の、x,y,zは、rが無理数の場合の定数倍となるので、
rが、有理数であっても、無理数であっても、x,y,zの割合は、変わりません。
301日高
2020/06/18(木) 08:53:16.13ID:PZ3tlRyp >296
>>250 日高
にはrがその値以外の場合の考察もいちおう書いてある。
よく、目を通していただき、ありがとうございます。
rが、有理数であっても、無理数であっても、x,y,zの割合は、変わらないということです。
>>250 日高
にはrがその値以外の場合の考察もいちおう書いてある。
よく、目を通していただき、ありがとうございます。
rが、有理数であっても、無理数であっても、x,y,zの割合は、変わらないということです。
302日高
2020/06/18(木) 08:55:08.83ID:PZ3tlRyp >297
迷惑だから。
なぜ、迷惑なのでしょうか?
迷惑だから。
なぜ、迷惑なのでしょうか?
303日高
2020/06/18(木) 08:59:38.23ID:PZ3tlRyp >298
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
ではなく、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
です。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
ではなく、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
です。
304日高
2020/06/18(木) 09:02:01.05ID:PZ3tlRyp (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
305日高
2020/06/18(木) 09:02:42.47ID:PZ3tlRyp (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
306132人目の素数さん
2020/06/18(木) 09:40:43.18ID:gZLadLF0307日高
2020/06/18(木) 10:00:31.76ID:PZ3tlRyp >306
漫才のネタですかwwwwwwwwwwwwwwww
どういう意味でしょうか?
漫才のネタですかwwwwwwwwwwwwwwww
どういう意味でしょうか?
308132人目の素数さん
2020/06/18(木) 10:15:41.65ID:GyYghBOc309132人目の素数さん
2020/06/18(木) 10:26:37.77ID:kh2VEepE310日高
2020/06/18(木) 13:29:35.78ID:PZ3tlRyp >308
では,rが有理数であるとしたときの,pが奇素数の場合の証明を書いてみて下さい。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数の場合は、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(4)のx,y,zは、(3)のx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
では,rが有理数であるとしたときの,pが奇素数の場合の証明を書いてみて下さい。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数の場合は、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(4)のx,y,zは、(3)のx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
311日高
2020/06/18(木) 13:32:54.12ID:PZ3tlRyp >309
間違いだから。
なぜ、間違いだから迷惑となるのでしょうか?
間違いだから。
なぜ、間違いだから迷惑となるのでしょうか?
312132人目の素数さん
2020/06/18(木) 14:15:41.15ID:kh2VEepE313132人目の素数さん
2020/06/18(木) 14:48:59.06ID:o5wMq/qR314132人目の素数さん
2020/06/18(木) 14:51:22.08ID:8BMp4iEJ >>303
再掲
>>256より
>255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
ということは、
>>292は
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる場合がある。xが有理数のとき、yは無理数となる場合がある。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
という主張だということで、全く意味不明。
再掲
>>256より
>255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
ということは、
>>292は
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる場合がある。xが有理数のとき、yは無理数となる場合がある。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
という主張だということで、全く意味不明。
315日高
2020/06/18(木) 15:45:12.57ID:PZ3tlRyp >313
確かに式は違います。私は証明の間違いを指摘することもできます。
証明の間違いを指摘して下さい。
確かに式は違います。私は証明の間違いを指摘することもできます。
証明の間違いを指摘して下さい。
316日高
2020/06/18(木) 15:52:10.21ID:PZ3tlRyp >314
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
「場合がある。」ではなく、(2)となります。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
「場合がある。」ではなく、(2)となります。
317日高
2020/06/18(木) 15:54:02.31ID:PZ3tlRyp (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
318日高
2020/06/18(木) 15:54:59.97ID:PZ3tlRyp (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
319132人目の素数さん
2020/06/18(木) 19:11:19.36ID:GyYghBOc >>310
>(4)のx,y,zは、(3)のx,y,zのa^{1/(p-1)}倍となる
その場合k=a^{1/(p-1)}とおくと x=kx,y=ky,z=kzとなります。
引用部分は,これを(4)に代入すると (kx)^p+(ky)^p=(kz)^p...(4)' が成り立つという意味だと思うんですが,
(4)' は k^pで両辺を割ることができ,割ると x^p+y^p=z^pとなります。
この式は(3)そのものですから,何も証明していません。
(3)で「x,y,zには少なくとも一つの無理数が含まれる」という命題の真偽と,
(4)'で「x,y,zには少なくとも一つの無理数が含まれる」という命題の真偽は同値です。同じ式なんですから。
ただの繰り返しにしかなっていません。
そもそも(4)で「rが有理数の場合は,・・・」とすることができません。
rは r^(p-1)=p で定義されるpの値でその値が具体的に決定される無理数です。
それを前提に考えるとrが無理数であり,z=x+rという関係式を認める場合
「x,zの少なくとも一つが無理数」という命題は【真】となります。>>289参照。
つまり,結論として証明すべき命題を,証明の前提にぶち込んでしまっています。
結果として【証明】は何も証明していないとになってしまいます。
そこで述べられているのは
「x,y,zの少なくとも一つが無理数」ならば「x,y,zの少なくとも一つが無理数」であるという無意味な論述です。
>(4)のx,y,zは、(3)のx,y,zのa^{1/(p-1)}倍となる
その場合k=a^{1/(p-1)}とおくと x=kx,y=ky,z=kzとなります。
引用部分は,これを(4)に代入すると (kx)^p+(ky)^p=(kz)^p...(4)' が成り立つという意味だと思うんですが,
(4)' は k^pで両辺を割ることができ,割ると x^p+y^p=z^pとなります。
この式は(3)そのものですから,何も証明していません。
(3)で「x,y,zには少なくとも一つの無理数が含まれる」という命題の真偽と,
(4)'で「x,y,zには少なくとも一つの無理数が含まれる」という命題の真偽は同値です。同じ式なんですから。
ただの繰り返しにしかなっていません。
そもそも(4)で「rが有理数の場合は,・・・」とすることができません。
rは r^(p-1)=p で定義されるpの値でその値が具体的に決定される無理数です。
それを前提に考えるとrが無理数であり,z=x+rという関係式を認める場合
「x,zの少なくとも一つが無理数」という命題は【真】となります。>>289参照。
つまり,結論として証明すべき命題を,証明の前提にぶち込んでしまっています。
結果として【証明】は何も証明していないとになってしまいます。
そこで述べられているのは
「x,y,zの少なくとも一つが無理数」ならば「x,y,zの少なくとも一つが無理数」であるという無意味な論述です。
320132人目の素数さん
2020/06/18(木) 19:50:58.30ID:GyYghBOc 参照は<<295でした。
また,
k=a^{1/(p-1)}とおくと x=kx,y=ky,z=kzとなります。
は,
k=a^{1/(p-1)}とおくと x'=kx,y'=ky,z'=kzとなります。
です。こうしてみると,(4)は x',y',z'を用いて書いたほうがよさそうです。
また,
k=a^{1/(p-1)}とおくと x=kx,y=ky,z=kzとなります。
は,
k=a^{1/(p-1)}とおくと x'=kx,y'=ky,z'=kzとなります。
です。こうしてみると,(4)は x',y',z'を用いて書いたほうがよさそうです。
321132人目の素数さん
2020/06/18(木) 19:57:08.52ID:zkZ4Ak+i >>315 日高
> >313
> 確かに式は違います。私は証明の間違いを指摘することもできます。
>
> 証明の間違いを指摘して下さい。
>>294
> >>292日高が正しいなら(たぶん)次も正しい。
>
> 【定理】pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
> 【証明】x^p+7y^p=z^pを、z=x+rとおいてx^p+7y^p=(x+r)^p…(1)とする。
> (1)の両辺を積の形にすると、r^(p-1){7(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
> (2)はr^(p-1)=pのとき、x^p+7y^p=(x+p^{1/(p-1)})^p…(3)となる。
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
> ∴pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
>
> 反例はp=3,x=y=1,z=2。
(3)はx^3+7y^3=(x+√3)^3となるがx=y=√3のときz=x+√3=2√3となって(3)をみたす。
つまりx=y=√3,z=2√3は無理数解だがx:y:zは自然数比1:1:2となる。
このケースを見落としている。
日高は見落としていないと言い切れるか?
> >313
> 確かに式は違います。私は証明の間違いを指摘することもできます。
>
> 証明の間違いを指摘して下さい。
>>294
> >>292日高が正しいなら(たぶん)次も正しい。
>
> 【定理】pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
> 【証明】x^p+7y^p=z^pを、z=x+rとおいてx^p+7y^p=(x+r)^p…(1)とする。
> (1)の両辺を積の形にすると、r^(p-1){7(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
> (2)はr^(p-1)=pのとき、x^p+7y^p=(x+p^{1/(p-1)})^p…(3)となる。
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
> ∴pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
>
> 反例はp=3,x=y=1,z=2。
(3)はx^3+7y^3=(x+√3)^3となるがx=y=√3のときz=x+√3=2√3となって(3)をみたす。
つまりx=y=√3,z=2√3は無理数解だがx:y:zは自然数比1:1:2となる。
このケースを見落としている。
日高は見落としていないと言い切れるか?
322日高
2020/06/18(木) 20:49:30.72ID:PZ3tlRyp >319
そもそも(4)で「rが有理数の場合は,・・・」とすることができません。
どうしてでしょうか?
そもそも(4)で「rが有理数の場合は,・・・」とすることができません。
どうしてでしょうか?
323日高
2020/06/18(木) 21:00:24.80ID:PZ3tlRyp >321
(3)はx^3+7y^3=(x+√3)^3となるがx=y=√3のときz=x+√3=2√3となって(3)をみたす。
つまりx=y=√3,z=2√3は無理数解だがx:y:zは自然数比1:1:2となる。
このケースを見落としている。
式が、違います。
(3)はx^3+7y^3=(x+√3)^3となるがx=y=√3のときz=x+√3=2√3となって(3)をみたす。
つまりx=y=√3,z=2√3は無理数解だがx:y:zは自然数比1:1:2となる。
このケースを見落としている。
式が、違います。
324132人目の素数さん
2020/06/18(木) 21:06:25.62ID:zkZ4Ak+i >>323 日高
式は違うが、同じ見落としをしていないと言い切れる?
x^3+y^3=(x+√3)^3に、無理数解x,y,zでx:y:zが自然数比となるものは存在しないって言える?
言えるなら証明してみせて。
式は違うが、同じ見落としをしていないと言い切れる?
x^3+y^3=(x+√3)^3に、無理数解x,y,zでx:y:zが自然数比となるものは存在しないって言える?
言えるなら証明してみせて。
325132人目の素数さん
2020/06/18(木) 21:25:01.04ID:8BMp4iEJ >>316
再掲
>>256より
>255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
ということは、
>>292は
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる場合がある。xが有理数のとき、yは無理数となる場合がある。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
という主張だということで、全く意味不明。
再掲
>>256より
>255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
ということは、
>>292は
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる場合がある。xが有理数のとき、yは無理数となる場合がある。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
という主張だということで、全く意味不明。
326132人目の素数さん
2020/06/18(木) 21:49:52.45ID:0dhoHspM >「数式」書き込み支援プログラム
関連のスレッド無いのか?
>より直観的なシンプル・タイプで、微積分や係数・関数、各分野の単位表現や実用数学の再現性に特化。
みたいなヤツ。
関連のスレッド無いのか?
>より直観的なシンプル・タイプで、微積分や係数・関数、各分野の単位表現や実用数学の再現性に特化。
みたいなヤツ。
327132人目の素数さん
2020/06/18(木) 21:53:14.63ID:0dhoHspM328132人目の素数さん
2020/06/18(木) 22:52:23.86ID:G8tIqtVV 高校生の頃にMathematica動いてるワークステーション見て仰天したわ
329132人目の素数さん
2020/06/19(金) 01:36:43.62ID:PO6XMLNx >>317
x^p+y^p=z^pを満たす3つの有理数s,、t、uが存在するならば、そのときr=z-xで定義されるrは必ず有理数である。有理数-有理数=有理数だから。
rが有理数でないとき、x^p+y^p=z^pを満たす3つの有理数s、t、uは存在しない。存在しないもののことなんて考えるだけ無駄。無意味
よって>>317は無意味な落書きです。
rが有理数でないとき、x^p+y^p=z^pを満たす3つの無理数αs、αt、αuは存在するかもしれない。存在しないことが証明されてないから。
(3)はrが無理数なので、x^p+y^p=z^pを満たす3つの無理数αs、αt、αuは存在するかもしれない。存在しないことが証明されてないから。
そのとき(3)の解の1/α倍である3つの有理数s、,t、uはx^p+y^p=z^pの解である。(この時当然r=z-xで定義されるrは有理数である。)
x^p+y^p=z^pを満たす3つの有理数s,、t、uが存在するならば、そのときr=z-xで定義されるrは必ず有理数である。有理数-有理数=有理数だから。
rが有理数でないとき、x^p+y^p=z^pを満たす3つの有理数s、t、uは存在しない。存在しないもののことなんて考えるだけ無駄。無意味
よって>>317は無意味な落書きです。
rが有理数でないとき、x^p+y^p=z^pを満たす3つの無理数αs、αt、αuは存在するかもしれない。存在しないことが証明されてないから。
(3)はrが無理数なので、x^p+y^p=z^pを満たす3つの無理数αs、αt、αuは存在するかもしれない。存在しないことが証明されてないから。
そのとき(3)の解の1/α倍である3つの有理数s、,t、uはx^p+y^p=z^pの解である。(この時当然r=z-xで定義されるrは有理数である。)
330132人目の素数さん
2020/06/19(金) 03:27:37.92ID:zr5CtlqN >>322日高
>(3)はrが無理数なので、「yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。」
という(3)の結論は,rが無理数であることに基づいているので,rが有理数の場合には使えません。
>(4)のx,y,zは、(3)のx,y,zのa^{1/(p-1)}倍となる。
>∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
のときに行間で(3)の結論を使っていますよね。
しかし,「rが有理数ならば、x,yは有理数となる」が(3)の結論とは無関係に成り立つかも知れないんですから
>∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
とは結論できないでしょう。
>(3)はrが無理数なので、「yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。」
という(3)の結論は,rが無理数であることに基づいているので,rが有理数の場合には使えません。
>(4)のx,y,zは、(3)のx,y,zのa^{1/(p-1)}倍となる。
>∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
のときに行間で(3)の結論を使っていますよね。
しかし,「rが有理数ならば、x,yは有理数となる」が(3)の結論とは無関係に成り立つかも知れないんですから
>∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
とは結論できないでしょう。
331132人目の素数さん
2020/06/19(金) 04:30:40.89ID:zr5CtlqN まとめておくと,あなたの【証明】において主張されている論述は
(1)r^(p-1)=p で,無理数rを定義し,(2)z=x+r と置いたうえで,
「x,y,zのうち少なくとも1つは無理数である」という結論を導こうとしているのだと判断できます。
しかし,(1)(2)を前提とするならば「rが無理数」ならば「x,zのどちらか,または両方が無理数である」(命題Bとします)は【真】となります。
ここから「x,y,zの少なくとも1つは無理数である」(命題Aとします)という結論を引き出そうというのは全くの徒労でしょう
Bが成り立つならば,Aは成り立つからです。
あなたの【証明】は「A ならば A である」という無意味な主張でしかありません。
【簡単な証明】がもし存在するならば,それは「x,y,zのすべてが有理数と仮定する」と(r=z-xですから当然rも有理数となります)矛盾が生じるという背理法で証明するしかありません。
無理数を持ち込むと「A ならば A である」になってしまいます。
付言しておくと(1)(2)を前提とすると,xとzの差は一定の具体的な値に固定されることになります。
その場合に命題Aが成り立つとしても,xとzの差がそれ以外の値のときにAが否定されるかも知れないのですからその点でも【証明】には欠陥があります。
つまり(1)(2)を前提とする限りその証明は「x,y,zの少なくとも1つは無理数である」「場合がある」という存在命題の証明に過ぎません。
証明は当然「常に」「x,y,zの少なくとも1つは無理数である」という全称命題の証明でなければなりません。
(1)r^(p-1)=p で,無理数rを定義し,(2)z=x+r と置いたうえで,
「x,y,zのうち少なくとも1つは無理数である」という結論を導こうとしているのだと判断できます。
しかし,(1)(2)を前提とするならば「rが無理数」ならば「x,zのどちらか,または両方が無理数である」(命題Bとします)は【真】となります。
ここから「x,y,zの少なくとも1つは無理数である」(命題Aとします)という結論を引き出そうというのは全くの徒労でしょう
Bが成り立つならば,Aは成り立つからです。
あなたの【証明】は「A ならば A である」という無意味な主張でしかありません。
【簡単な証明】がもし存在するならば,それは「x,y,zのすべてが有理数と仮定する」と(r=z-xですから当然rも有理数となります)矛盾が生じるという背理法で証明するしかありません。
無理数を持ち込むと「A ならば A である」になってしまいます。
付言しておくと(1)(2)を前提とすると,xとzの差は一定の具体的な値に固定されることになります。
その場合に命題Aが成り立つとしても,xとzの差がそれ以外の値のときにAが否定されるかも知れないのですからその点でも【証明】には欠陥があります。
つまり(1)(2)を前提とする限りその証明は「x,y,zの少なくとも1つは無理数である」「場合がある」という存在命題の証明に過ぎません。
証明は当然「常に」「x,y,zの少なくとも1つは無理数である」という全称命題の証明でなければなりません。
332日高
2020/06/19(金) 07:23:44.28ID:gz8+8MNc >324
x^3+y^3=(x+√3)^3に、無理数解x,y,zでx:y:zが自然数比となるものは存在しないって言える?
言えるなら証明してみせて。
x^3+y^3=(x+√3)^3のx,yが、有理数のとき成り立たないので、x,yが無理数のときも、
成り立ちません。
x^3+y^3=(x+√3)^3に、無理数解x,y,zでx:y:zが自然数比となるものは存在しないって言える?
言えるなら証明してみせて。
x^3+y^3=(x+√3)^3のx,yが、有理数のとき成り立たないので、x,yが無理数のときも、
成り立ちません。
333日高
2020/06/19(金) 07:26:04.85ID:gz8+8MNc >325
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となります。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となります。
334日高
2020/06/19(金) 07:33:27.15ID:gz8+8MNc >329
rが有理数でないとき、x^p+y^p=z^pを満たす3つの無理数αs、αt、αuは存在するかもしれない。存在しないことが証明されてないから。
x^p+y^p=z^pを満たす3つの無理数αs、αt、αuは存在しません。
理由は、
x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しないからです。
rが有理数でないとき、x^p+y^p=z^pを満たす3つの無理数αs、αt、αuは存在するかもしれない。存在しないことが証明されてないから。
x^p+y^p=z^pを満たす3つの無理数αs、αt、αuは存在しません。
理由は、
x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しないからです。
335日高
2020/06/19(金) 07:41:14.01ID:gz8+8MNc >330
「rが有理数ならば、x,yは有理数となる」が(3)の結論とは無関係に成り立つかも知れないんですから
「rが有理数ならば、x,yは有理数となる」が(3)の結論とは無関係に成り立つ場合は、
どういう場合でしょうか?
「rが有理数ならば、x,yは有理数となる」が(3)の結論とは無関係に成り立つかも知れないんですから
「rが有理数ならば、x,yは有理数となる」が(3)の結論とは無関係に成り立つ場合は、
どういう場合でしょうか?
336日高
2020/06/19(金) 07:50:12.95ID:gz8+8MNc >331
まとめておくと,あなたの【証明】において主張されている論述は
(1)r^(p-1)=p で,無理数rを定義し,(2)z=x+r と置いたうえで,
「x,y,zのうち少なくとも1つは無理数である」という結論を導こうとしているのだと判断できます。
私の主張は、rが、無理数であっても、有理数であっても、x/yは、同じということです。
まとめておくと,あなたの【証明】において主張されている論述は
(1)r^(p-1)=p で,無理数rを定義し,(2)z=x+r と置いたうえで,
「x,y,zのうち少なくとも1つは無理数である」という結論を導こうとしているのだと判断できます。
私の主張は、rが、無理数であっても、有理数であっても、x/yは、同じということです。
337日高
2020/06/19(金) 07:51:53.01ID:gz8+8MNc (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
338日高
2020/06/19(金) 07:52:58.13ID:gz8+8MNc (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
339132人目の素数さん
2020/06/19(金) 07:56:28.04ID:aJF1hulq >>334
> 理由は、
> x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しないからです。
「x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しない」は最終的に証明しようとしている命題だろう。
(厳密には0を含まない有理数解が存在しない、だが)
当然、証明の中では真偽不明。
一定の条件下での成立が証明済であるなら、その条件が成り立つことを示した上で使うことはある。
でも今回は条件示してないのでそれには当たらない。
命題の証明に証明すべき命題そのものを使うのであれば、それは循環論法という誤謬なので、それでは何も証明できない。
> 理由は、
> x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しないからです。
「x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しない」は最終的に証明しようとしている命題だろう。
(厳密には0を含まない有理数解が存在しない、だが)
当然、証明の中では真偽不明。
一定の条件下での成立が証明済であるなら、その条件が成り立つことを示した上で使うことはある。
でも今回は条件示してないのでそれには当たらない。
命題の証明に証明すべき命題そのものを使うのであれば、それは循環論法という誤謬なので、それでは何も証明できない。
340132人目の素数さん
2020/06/19(金) 08:42:07.40ID:PW7eNCMl >>332 日高
> x^3+y^3=(x+√3)^3のx,yが、有理数のとき成り立たないので、x,yが無理数のときも、
> 成り立ちません。
その論法はx^3+7y^3=(x+√3)^3に対しては通用しない。
ここでは成り立つというのだから、その理由を説明してくれたまえ。
> x^3+y^3=(x+√3)^3のx,yが、有理数のとき成り立たないので、x,yが無理数のときも、
> 成り立ちません。
その論法はx^3+7y^3=(x+√3)^3に対しては通用しない。
ここでは成り立つというのだから、その理由を説明してくれたまえ。
341日高
2020/06/19(金) 08:43:04.90ID:gz8+8MNc >339
「x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しない」は最終的に証明しようとしている命題だろう。
「x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しない」は(3)で、証明済です。
「x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しない」は最終的に証明しようとしている命題だろう。
「x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しない」は(3)で、証明済です。
342日高
2020/06/19(金) 08:46:10.96ID:gz8+8MNc >340
その論法はx^3+7y^3=(x+√3)^3に対しては通用しない。
式が、違います。
その論法はx^3+7y^3=(x+√3)^3に対しては通用しない。
式が、違います。
343132人目の素数さん
2020/06/19(金) 08:57:40.77ID:PW7eNCMl >>342 日高
> >340
> その論法はx^3+7y^3=(x+√3)^3に対しては通用しない。
>
> 式が、違います。
だから、式が違うx^3+y^3=z^3についてはなぜ通用するのか説明して、って言っています。説明して。
> >340
> その論法はx^3+7y^3=(x+√3)^3に対しては通用しない。
>
> 式が、違います。
だから、式が違うx^3+y^3=z^3についてはなぜ通用するのか説明して、って言っています。説明して。
344132人目の素数さん
2020/06/19(金) 09:05:56.99ID:PW7eNCMl345132人目の素数さん
2020/06/19(金) 09:09:09.40ID:PW7eNCMl >>341 日高
> >339
> 「x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しない」は最終的に証明しようとしている命題だろう。
>
> 「x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しない」は(3)で、証明済です。
これで「問題外」決定では? 皆様。
> >339
> 「x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しない」は最終的に証明しようとしている命題だろう。
>
> 「x^p+y^p=z^pを満たす3つの有理数s、t、uが、存在しない」は(3)で、証明済です。
これで「問題外」決定では? 皆様。
346日高
2020/06/19(金) 09:11:27.99ID:gz8+8MNc >343
> その論法はx^3+7y^3=(x+√3)^3に対しては通用しない。
x^3+7y^3=(x+√3)^3の、7y^3の係数7が、ある為です。
> その論法はx^3+7y^3=(x+√3)^3に対しては通用しない。
x^3+7y^3=(x+√3)^3の、7y^3の係数7が、ある為です。
347日高
2020/06/19(金) 09:12:29.09ID:gz8+8MNc (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
348日高
2020/06/19(金) 09:13:09.49ID:gz8+8MNc (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
349132人目の素数さん
2020/06/19(金) 09:17:33.54ID:PW7eNCMl >>346 日高
> >343
> > その論法はx^3+7y^3=(x+√3)^3に対しては通用しない。
>
> x^3+7y^3=(x+√3)^3の、7y^3の係数7が、ある為です。
7がないとなぜ通用するのですか?
> >343
> > その論法はx^3+7y^3=(x+√3)^3に対しては通用しない。
>
> x^3+7y^3=(x+√3)^3の、7y^3の係数7が、ある為です。
7がないとなぜ通用するのですか?
350日高
2020/06/19(金) 09:55:22.64ID:gz8+8MNc >349
7がないとなぜ通用するのですか?
7があると、x,yが、有理数のとき、成り立ちます。
7がないと、x,yが、有理数のとき、成り立ちません。
7がないとなぜ通用するのですか?
7があると、x,yが、有理数のとき、成り立ちます。
7がないと、x,yが、有理数のとき、成り立ちません。
351日高
2020/06/19(金) 10:00:12.87ID:gz8+8MNc >350
訂正
有理数→整数比
訂正
有理数→整数比
352132人目の素数さん
2020/06/19(金) 10:19:07.70ID:PW7eNCMl >350 日高
> >349
> 7がないとなぜ通用するのですか?
>
> 7があると、x,yが、有理数のとき、成り立ちます。
> 7がないと、x,yが、有理数のとき、成り立ちません。
>>351 日高
> >350
> 訂正
> 有理数→整数比
それはもうわかっています。その証明を述べてください。
> >349
> 7がないとなぜ通用するのですか?
>
> 7があると、x,yが、有理数のとき、成り立ちます。
> 7がないと、x,yが、有理数のとき、成り立ちません。
>>351 日高
> >350
> 訂正
> 有理数→整数比
それはもうわかっています。その証明を述べてください。
353132人目の素数さん
2020/06/19(金) 10:38:17.00ID:yaPaZkcY >>333
再掲
>>256より
>255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
ということは、
>>292は
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる場合がある。xが有理数のとき、yは無理数となる場合がある。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
という主張だということで、全く意味不明。
再掲
>>256より
>255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
ということは、
>>292は
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる場合がある。xが有理数のとき、yは無理数となる場合がある。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
という主張だということで、全く意味不明。
354132人目の素数さん
2020/06/20(土) 00:56:13.01ID:xmgt8Uh0355132人目の素数さん
2020/06/20(土) 01:00:26.20ID:xmgt8Uh0 >>341
繰り返しになりますが、3つの有理数s,t,uがx^p+y^p=z^pの解の時
rは無理数にはなりません。r^(p-1)=pには絶対になりません。よって(2)は絶対に(3)になりません。つまり、式が違います。
繰り返しになりますが、3つの有理数s,t,uがx^p+y^p=z^pの解の時
rは無理数にはなりません。r^(p-1)=pには絶対になりません。よって(2)は絶対に(3)になりません。つまり、式が違います。
356132人目の素数さん
2020/06/20(土) 01:45:02.95ID:xmgt8Uh0 >>336
ある奇素数pについて、次の方程式を考える。
(2w)^p+w^p=((2w)+p^{1/(p-1)})^p…(3-A)
右辺を左辺に移項して
(2w)^p+w^p-((2w)+p^{1/(p-1)})^p=0…(3-B)
これはwについてのp次方程式であり、pが奇素数なので(3-B)を満たす実数w(もちろんそれは(3-A)も満たす)が少なくとも1つ必ず存在する。
ここで、x=2w,y=wとおく。これを(3-A)に代入して
x^p+y^p=(x+p^{1/(p-1)})^p…(3-C)
wが少なくとも1つ存在するので、(3-C)を満たすx,yが少なくとも1つ必ず存在する。
この時、x/y=2
同様のやり方で、x/y=3、x/y=4、…となるようなx,yを見つけることができる。
ある奇素数pについて、次の方程式を考える。
(2w)^p+w^p=((2w)+p^{1/(p-1)})^p…(3-A)
右辺を左辺に移項して
(2w)^p+w^p-((2w)+p^{1/(p-1)})^p=0…(3-B)
これはwについてのp次方程式であり、pが奇素数なので(3-B)を満たす実数w(もちろんそれは(3-A)も満たす)が少なくとも1つ必ず存在する。
ここで、x=2w,y=wとおく。これを(3-A)に代入して
x^p+y^p=(x+p^{1/(p-1)})^p…(3-C)
wが少なくとも1つ存在するので、(3-C)を満たすx,yが少なくとも1つ必ず存在する。
この時、x/y=2
同様のやり方で、x/y=3、x/y=4、…となるようなx,yを見つけることができる。
357132人目の素数さん
2020/06/20(土) 01:45:50.86ID:xmgt8Uh0 >>336
例:p=3のとき
(2w)^3+w^3=((2w)+3^{1/(3-1)})^3…(3-A)
(2w)^3+w^3-((2w)+3^{1/(3-1)})^3=0
8w^3+w^3-(8w^3+3(4w^2)√3+3(2w)3+3√3)=0
w^3-(12√3)w^2-18w-3√3=0
w=6(3^(1/6))+4√3+3(3^(5/6))のとき、(3-A)が成り立つ。
x=2w,y=wとおくと、(3-A)は
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)となる。
x=2(6(3^(1/6))+4√3+3(3^(5/6))),y=6(3^(1/6))+4√3+3(3^(5/6))のとき、(3-C)が成り立つ。
このとき、x/y=2
例:p=3のとき
(2w)^3+w^3=((2w)+3^{1/(3-1)})^3…(3-A)
(2w)^3+w^3-((2w)+3^{1/(3-1)})^3=0
8w^3+w^3-(8w^3+3(4w^2)√3+3(2w)3+3√3)=0
w^3-(12√3)w^2-18w-3√3=0
w=6(3^(1/6))+4√3+3(3^(5/6))のとき、(3-A)が成り立つ。
x=2w,y=wとおくと、(3-A)は
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)となる。
x=2(6(3^(1/6))+4√3+3(3^(5/6))),y=6(3^(1/6))+4√3+3(3^(5/6))のとき、(3-C)が成り立つ。
このとき、x/y=2
358132人目の素数さん
2020/06/20(土) 19:39:08.82ID:RLjDcmzq pが2のときx^2+y^2=(x+2)^2からy^2=4x+4となりx=y^2/4-1だからx/y=y/4-1/yとなって右辺のグラフの概形を考えるとx/yは任意の正の実数値をとる。
359日高
2020/06/23(火) 16:33:49.26ID:xJOh+h1h >352
それはもうわかっています。その証明を述べてください。
x^3+7y^3=(x+√3)^3は、
x=y=√3のとき、式が成り立つので、x,yは、整数比となります。
それはもうわかっています。その証明を述べてください。
x^3+7y^3=(x+√3)^3は、
x=y=√3のとき、式が成り立つので、x,yは、整数比となります。
360日高
2020/06/23(火) 16:36:17.07ID:xJOh+h1h (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
361日高
2020/06/23(火) 16:36:57.99ID:xJOh+h1h (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
362日高
2020/06/23(火) 17:35:37.41ID:xJOh+h1h >353
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
違います。(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。です。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
違います。(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。です。
363日高
2020/06/23(火) 17:40:19.42ID:xJOh+h1h >354
r^(p-1)=pでないとき、x^p+y^p=z^pは(3)にならず、rが無理数とも限らず、3つの有理数s,t,uが存在しないことが証明されていません。
r^(p-1)=pでないときは、r^(p-1)=apとなります。rは、有理数となります。
r^(p-1)=pでないとき、x^p+y^p=z^pは(3)にならず、rが無理数とも限らず、3つの有理数s,t,uが存在しないことが証明されていません。
r^(p-1)=pでないときは、r^(p-1)=apとなります。rは、有理数となります。
364日高
2020/06/23(火) 17:43:30.02ID:xJOh+h1h >355
繰り返しになりますが、3つの有理数s,t,uがx^p+y^p=z^pの解の時
rは無理数にはなりません。r^(p-1)=pには絶対になりません。よって(2)は絶対に(3)になりません。つまり、式が違います。
s,t,uがx^p+y^p=z^pの解の時は、rは有理数となります。
繰り返しになりますが、3つの有理数s,t,uがx^p+y^p=z^pの解の時
rは無理数にはなりません。r^(p-1)=pには絶対になりません。よって(2)は絶対に(3)になりません。つまり、式が違います。
s,t,uがx^p+y^p=z^pの解の時は、rは有理数となります。
365132人目の素数さん
2020/06/23(火) 18:41:35.66ID:q9igFpUp >>359 日高
> >352
> それはもうわかっています。その証明を述べてください。
>
> x^3+7y^3=(x+√3)^3は
> x=y=√3のとき、式が成り立つので、x,yは、整数比となります。
そっちじゃなくて、 x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを示してください。
> >352
> それはもうわかっています。その証明を述べてください。
>
> x^3+7y^3=(x+√3)^3は
> x=y=√3のとき、式が成り立つので、x,yは、整数比となります。
そっちじゃなくて、 x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを示してください。
366日高
2020/06/23(火) 21:46:24.53ID:xJOh+h1h >356
この時、x/y=2
同様のやり方で、x/y=3、x/y=4、…となるようなx,yを見つけることができる。
よく、理解できませんので、「見つけることができる。」の意味を詳しく説明して
いただけないでしょうか?
この時、x/y=2
同様のやり方で、x/y=3、x/y=4、…となるようなx,yを見つけることができる。
よく、理解できませんので、「見つけることができる。」の意味を詳しく説明して
いただけないでしょうか?
367日高
2020/06/23(火) 21:56:08.03ID:xJOh+h1h >357
このとき、x/y=2
x^p+y^p=(x+p^{1/(p-1)})^p…(3)は、成り立ちません。
このとき、x/y=2
x^p+y^p=(x+p^{1/(p-1)})^p…(3)は、成り立ちません。
368日高
2020/06/23(火) 22:00:07.71ID:xJOh+h1h >365
そっちじゃなくて、 x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを示してください。
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
そっちじゃなくて、 x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを示してください。
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
369132人目の素数さん
2020/06/23(火) 22:17:06.24ID:rjcu8IB3 >>368 日高
> >365
> そっちじゃなくて、 x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを示してください。
>
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
そうじゃなくて,x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを証明してください。
(上の日高の命題は、フェルマーの最終定理のp=3版に反例がないこと、から正しい。)
> >365
> そっちじゃなくて、 x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを示してください。
>
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
そうじゃなくて,x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを証明してください。
(上の日高の命題は、フェルマーの最終定理のp=3版に反例がないこと、から正しい。)
370132人目の素数さん
2020/06/24(水) 00:19:00.31ID:R68gpjdM >>363
そうですね。r^(p-1)=pでないときは、r^(p-1)=apとなり、rは、有理数となり、3つの有理数s,t,uが存在しないことが証明されていません。
s,t,uを共通の無理数で割って、r^(p-1)=pが成り立つような新しい3つの無理数o,p,qを考えることができますが、
r^(p-1)=pのとき、3つの無理数o,p,qが存在しないことが証明されていません。
そうですね。r^(p-1)=pでないときは、r^(p-1)=apとなり、rは、有理数となり、3つの有理数s,t,uが存在しないことが証明されていません。
s,t,uを共通の無理数で割って、r^(p-1)=pが成り立つような新しい3つの無理数o,p,qを考えることができますが、
r^(p-1)=pのとき、3つの無理数o,p,qが存在しないことが証明されていません。
371132人目の素数さん
2020/06/24(水) 00:23:29.82ID:R68gpjdM >>366
あなたの好きな数を1つ思い浮かべてください。それをφとします。
ある奇素数pについて、次の方程式を考える。
(φw)^p+w^p=((φw)+p^{1/(p-1)})^p…(3-A)
右辺を左辺に移項して
(φw)^p+w^p-((φw)+p^{1/(p-1)})^p=0…(3-B)
これはwについてのp次方程式であり、pが奇素数なので(3-B)を満たす実数w(もちろんそれは(3-A)も満たす)が少なくとも1つ必ず存在する。
ここで、x=φw,y=wとおく(※)。これを(3-A)に代入して
x^p+y^p=(x+p^{1/(p-1)})^p…(3-C)
wが少なくとも1つ存在するので、(3-C)を満たすx,yが少なくとも1つ必ず存在する。
この時、(※)の部分の定義よりx/y=φ
例:p=3のとき、適当にφ=3とおく。
(3w)^3+w^3=((3w)+3^{1/(3-1)})^3…(3-A)
右辺を左辺に移項して
(3w)^3+w^3-((3w)+3^{1/(3-1)})^3=0
展開して
27w^3+w^3-(27w^3+27√3w^2+27w+3√3)=0
整理して
w^3-(27√3)w^2-27w-3√3=0
解の公式より
w=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))のとき、(3-A)が成り立つ。
x=3w,y=wとおく(※)と、(3-A)は
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)となる。
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3))),y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))のとき、(3-C)が成り立つ。
このとき、(※)の部分の定義よりx/y=φ=3
あなたの好きな数を1つ思い浮かべてください。それをφとします。
ある奇素数pについて、次の方程式を考える。
(φw)^p+w^p=((φw)+p^{1/(p-1)})^p…(3-A)
右辺を左辺に移項して
(φw)^p+w^p-((φw)+p^{1/(p-1)})^p=0…(3-B)
これはwについてのp次方程式であり、pが奇素数なので(3-B)を満たす実数w(もちろんそれは(3-A)も満たす)が少なくとも1つ必ず存在する。
ここで、x=φw,y=wとおく(※)。これを(3-A)に代入して
x^p+y^p=(x+p^{1/(p-1)})^p…(3-C)
wが少なくとも1つ存在するので、(3-C)を満たすx,yが少なくとも1つ必ず存在する。
この時、(※)の部分の定義よりx/y=φ
例:p=3のとき、適当にφ=3とおく。
(3w)^3+w^3=((3w)+3^{1/(3-1)})^3…(3-A)
右辺を左辺に移項して
(3w)^3+w^3-((3w)+3^{1/(3-1)})^3=0
展開して
27w^3+w^3-(27w^3+27√3w^2+27w+3√3)=0
整理して
w^3-(27√3)w^2-27w-3√3=0
解の公式より
w=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))のとき、(3-A)が成り立つ。
x=3w,y=wとおく(※)と、(3-A)は
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)となる。
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3))),y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))のとき、(3-C)が成り立つ。
このとき、(※)の部分の定義よりx/y=φ=3
372132人目の素数さん
2020/06/24(水) 01:04:10.11ID:R68gpjdM 同様に
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
について
x=4√3(16+4(65^(1/3))+65^(2/3)),y=√3(16+4(65^(1/3))+65^(2/3))も(3-C)の解
このときx/y=4
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3))),y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))も(3-C)の解
このときx/y=5
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
について
x=4√3(16+4(65^(1/3))+65^(2/3)),y=√3(16+4(65^(1/3))+65^(2/3))も(3-C)の解
このときx/y=4
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3))),y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))も(3-C)の解
このときx/y=5
373132人目の素数さん
2020/06/24(水) 01:21:00.33ID:R68gpjdM >>368
式が違います。
x、y、zが有理数の時、r=(√3でないなにか)であってr=√3ではありません。
よって
満たす式はx^3+y^3=(x+(√3でないなにか))^3であってx^3+y^3=(x+√3)^3ではありません。
式が違います。
式が違います。
x、y、zが有理数の時、r=(√3でないなにか)であってr=√3ではありません。
よって
満たす式はx^3+y^3=(x+(√3でないなにか))^3であってx^3+y^3=(x+√3)^3ではありません。
式が違います。
374132人目の素数さん
2020/06/24(水) 02:00:15.84ID:JoU9VEZG >>368 日高
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
これを証明してくれてもいいです。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
これを証明してくれてもいいです。
375日高
2020/06/24(水) 07:35:05.75ID:gq7mTAGe (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
376日高
2020/06/24(水) 07:37:51.76ID:gq7mTAGe (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
377日高
2020/06/24(水) 07:41:38.88ID:gq7mTAGe >369
そうじゃなくて,x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを証明してください。
375を、見て下さい。
そうじゃなくて,x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを証明してください。
375を、見て下さい。
378日高
2020/06/24(水) 07:48:49.59ID:gq7mTAGe >370
そうですね。r^(p-1)=pでないときは、r^(p-1)=apとなり、rは、有理数となり、3つの有理数s,t,uが存在しないことが証明されていません。
rが、有理数の場合の、x,yは(3)のときのx,yのa^{1/(p-1)}倍となります。
>s,t,uを共通の無理数で割って、…
o,p,qは、整数比となります。
そうですね。r^(p-1)=pでないときは、r^(p-1)=apとなり、rは、有理数となり、3つの有理数s,t,uが存在しないことが証明されていません。
rが、有理数の場合の、x,yは(3)のときのx,yのa^{1/(p-1)}倍となります。
>s,t,uを共通の無理数で割って、…
o,p,qは、整数比となります。
379日高
2020/06/24(水) 07:54:27.43ID:gq7mTAGe >371
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)となる。
このとき、(※)の部分の定義よりx/y=φ=3
x/y=φ=3は、(3-C)を、満たしません。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)となる。
このとき、(※)の部分の定義よりx/y=φ=3
x/y=φ=3は、(3-C)を、満たしません。
380日高
2020/06/24(水) 07:59:16.25ID:gq7mTAGe >372
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
このときx/y=5
x/y=5は、(3-C)を、満たしません。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
このときx/y=5
x/y=5は、(3-C)を、満たしません。
381日高
2020/06/24(水) 08:03:37.18ID:gq7mTAGe >373
x、y、zが有理数の時、r=(√3でないなにか)であってr=√3ではありません。
x、y、zが有理数ならば、rは有理数です。
x、y、zが有理数の時、r=(√3でないなにか)であってr=√3ではありません。
x、y、zが有理数ならば、rは有理数です。
382日高
2020/06/24(水) 08:10:53.47ID:gq7mTAGe >374
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
これを証明してくれてもいいです。
x^3+y^3=z^3を満たすx,y,zが、無理数のとき、その、x,y,zを、共通の無理数で割ると、
商は、有理数となります。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
これを証明してくれてもいいです。
x^3+y^3=z^3を満たすx,y,zが、無理数のとき、その、x,y,zを、共通の無理数で割ると、
商は、有理数となります。
383132人目の素数さん
2020/06/24(水) 08:28:00.93ID:JoU9VEZG384132人目の素数さん
2020/06/24(水) 08:30:56.82ID:JoU9VEZG >>382 日高
> >374
> > x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> > x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
>
> これを証明してくれてもいいです。
>
> x^3+y^3=z^3を満たすx,y,zが、無理数のとき、その、x,y,zを、共通の無理数で割ると、
> 商は、有理数となります。
式が違います。x^3+y^3=(x+√3)^3です。
> >374
> > x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> > x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
>
> これを証明してくれてもいいです。
>
> x^3+y^3=z^3を満たすx,y,zが、無理数のとき、その、x,y,zを、共通の無理数で割ると、
> 商は、有理数となります。
式が違います。x^3+y^3=(x+√3)^3です。
385132人目の素数さん
2020/06/24(水) 10:27:27.03ID:DpvYXAPq386日高
2020/06/24(水) 10:55:29.04ID:gq7mTAGe (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
387日高
2020/06/24(水) 10:56:44.78ID:gq7mTAGe (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
388日高
2020/06/24(水) 11:00:36.42ID:gq7mTAGe >383
そうじゃなくて,x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを証明してください。
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので、
整数比となる無理数解は、ありません。
そうじゃなくて,x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを証明してください。
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので、
整数比となる無理数解は、ありません。
389日高
2020/06/24(水) 11:17:34.22ID:gq7mTAGe >384
式が違います。x^3+y^3=(x+√3)^3です。
z=x+√3ですので、x=m√3,y=n√3のとき、x,yは、整数比となります。(m,nは、有理数)
(m√3)^3+(n√3)^3=(m√3+√3)^3
両辺を、√3^3で割ると、
m^3+n^3=(n+1)^3
m,nは、整数なので、解となりません。
式が違います。x^3+y^3=(x+√3)^3です。
z=x+√3ですので、x=m√3,y=n√3のとき、x,yは、整数比となります。(m,nは、有理数)
(m√3)^3+(n√3)^3=(m√3+√3)^3
両辺を、√3^3で割ると、
m^3+n^3=(n+1)^3
m,nは、整数なので、解となりません。
390日高
2020/06/24(水) 11:19:04.82ID:gq7mTAGe391132人目の素数さん
2020/06/24(水) 11:47:04.09ID:JoU9VEZG >>388 日高
> >383
> そうじゃなくて,x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを証明してください。
>
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので、
> 整数比となる無理数解は、ありません。
なぜ? x^3+7y^3=(x+√3)^3の場合は自然数比となる無理数解があります。この式については存在しないことを示してください。
> >383
> そうじゃなくて,x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないことを証明してください。
>
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので、
> 整数比となる無理数解は、ありません。
なぜ? x^3+7y^3=(x+√3)^3の場合は自然数比となる無理数解があります。この式については存在しないことを示してください。
392132人目の素数さん
2020/06/24(水) 11:53:08.05ID:JoU9VEZG >>389 日高
> >384
> 式が違います。x^3+y^3=(x+√3)^3です。
>
> z=x+√3ですので、x=m√3,y=n√3のとき、x,yは、整数比となります。(m,nは、有理数)
> (m√3)^3+(n√3)^3=(m√3+√3)^3
> 両辺を、√3^3で割ると、
> m^3+n^3=(n+1)^3
> m,nは、整数なので、解となりません。
m,nは有理数と上で書いているではありませんか?
> >384
> 式が違います。x^3+y^3=(x+√3)^3です。
>
> z=x+√3ですので、x=m√3,y=n√3のとき、x,yは、整数比となります。(m,nは、有理数)
> (m√3)^3+(n√3)^3=(m√3+√3)^3
> 両辺を、√3^3で割ると、
> m^3+n^3=(n+1)^3
> m,nは、整数なので、解となりません。
m,nは有理数と上で書いているではありませんか?
393日高
2020/06/24(水) 14:00:10.83ID:gq7mTAGe >391
x^3+7y^3=(x+√3)^3の場合は自然数比となる無理数解があります。この式については存在しないことを示してください。
386を、見てください。
x^3+7y^3=(x+√3)^3の場合は自然数比となる無理数解があります。この式については存在しないことを示してください。
386を、見てください。
394日高
2020/06/24(水) 14:04:02.65ID:gq7mTAGe >392
> m^3+n^3=(n+1)^3
> m,nは、整数なので、解となりません。
m,nは、有理数なので、解となりません。
m/nは、無理数となります。
> m^3+n^3=(n+1)^3
> m,nは、整数なので、解となりません。
m,nは、有理数なので、解となりません。
m/nは、無理数となります。
395132人目の素数さん
2020/06/24(水) 15:04:12.78ID:JoU9VEZG >>393 日高
> >391
> x^3+7y^3=(x+√3)^3の場合は自然数比となる無理数解があります。この式については存在しないことを示してください。
>
> 386を、見てください。
見ましたけど、書かれていません。証明してください。
> >391
> x^3+7y^3=(x+√3)^3の場合は自然数比となる無理数解があります。この式については存在しないことを示してください。
>
> 386を、見てください。
見ましたけど、書かれていません。証明してください。
396132人目の素数さん
2020/06/24(水) 15:07:20.05ID:JoU9VEZG >>394 日高
> >392
> > m^3+n^3=(n+1)^3
> > m,nは、整数なので、解となりません。
>
> m,nは、有理数なので、解となりません。
> m/nは、無理数となります。
まず最初に。訂正したならそう断れや。
で、なぜ有理数だと解になりませんか?
> >392
> > m^3+n^3=(n+1)^3
> > m,nは、整数なので、解となりません。
>
> m,nは、有理数なので、解となりません。
> m/nは、無理数となります。
まず最初に。訂正したならそう断れや。
で、なぜ有理数だと解になりませんか?
397132人目の素数さん
2020/06/24(水) 20:02:55.50ID:ViZ/FDEB >>362
再掲
>>256より
>255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
ということは、
>>292は
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる場合がある。xが有理数のとき、yは無理数となる場合がある。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
という主張だということで、全く意味不明。
>>362
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
違います。(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。です。
どう違うのですか?
再掲
>>256より
>255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
ということは、
>>292は
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる場合がある。xが有理数のとき、yは無理数となる場合がある。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
という主張だということで、全く意味不明。
>>362
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
違います。(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。です。
どう違うのですか?
398日高
2020/06/24(水) 21:56:41.59ID:gq7mTAGe (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
399日高
2020/06/24(水) 21:57:48.32ID:gq7mTAGe (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
400日高
2020/06/24(水) 22:01:27.52ID:gq7mTAGe >395
この式については存在しないことを示してください。
「この式」を示して下さい。
この式については存在しないことを示してください。
「この式」を示して下さい。
401日高
2020/06/24(水) 22:04:22.14ID:gq7mTAGe >396
なぜ有理数だと解になりませんか?
y/xは、無理数となるからです。
なぜ有理数だと解になりませんか?
y/xは、無理数となるからです。
402日高
2020/06/24(水) 22:08:53.74ID:gq7mTAGe >397
どう違うのですか?
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
これから、
x^p+y^p=(x+p^{1/(p-1)})^p…(3)を、導きます。
どう違うのですか?
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
これから、
x^p+y^p=(x+p^{1/(p-1)})^p…(3)を、導きます。
403132人目の素数さん
2020/06/24(水) 22:23:06.84ID:XqoqQNYX404132人目の素数さん
2020/06/24(水) 22:25:10.70ID:XqoqQNYX405132人目の素数さん
2020/06/24(水) 23:11:20.58ID:R68gpjdM406132人目の素数さん
2020/06/24(水) 23:18:20.57ID:ViZ/FDEB >>402
返信するなら質問に答えてください。
再掲
>>256より
>255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
ということは、
>>292は
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる場合がある。xが有理数のとき、yは無理数となる場合がある。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
という主張だということで、全く意味不明。
>>362
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
違います。(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。です。
どう違うのですか?
返信するなら質問に答えてください。
再掲
>>256より
>255
あなたが「有理数となる」と主張されるとき,その意味するところは「有理数となる場合がある」との理解で正しいのですか?
はい。
ということは、
>>292は
(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる場合がある。xが有理数のとき、yは無理数となる場合がある。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
という主張だということで、全く意味不明。
>>362
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
違います。(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。です。
どう違うのですか?
407132人目の素数さん
2020/06/24(水) 23:18:27.30ID:R68gpjdM >>379-380
実際に
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
に
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))
を代入したら等号が成り立つんですけど。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
に
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))、y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))
を代入したら等号が成り立つんですけど。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
に
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))
を代入したら等号が成り立つんですけど。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
に
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))
を代入したら等号が成り立つんですけど。
実際に
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
に
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))
を代入したら等号が成り立つんですけど。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
に
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))、y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))
を代入したら等号が成り立つんですけど。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
に
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))
を代入したら等号が成り立つんですけど。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
に
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))
を代入したら等号が成り立つんですけど。
408132人目の素数さん
2020/06/24(水) 23:26:51.09ID:R68gpjdM http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>368について。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
>>381
> x、y、zが有理数ならば、rは有理数です。
そう、その通り。
x、y、zが有理数ならば、満たす式はx^3+y^3=(x+(有理数))^3であってx^3+y^3=(x+√3)^3ではありません。
式が違います。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
>>381
> x、y、zが有理数ならば、rは有理数です。
そう、その通り。
x、y、zが有理数ならば、満たす式はx^3+y^3=(x+(有理数))^3であってx^3+y^3=(x+√3)^3ではありません。
式が違います。
409日高
2020/06/25(木) 06:08:57.56ID:WrSnuua8410日高
2020/06/25(木) 06:09:49.93ID:WrSnuua8 (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
411日高
2020/06/25(木) 06:10:32.80ID:WrSnuua8 (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
413日高
2020/06/25(木) 06:17:15.88ID:WrSnuua8 >405
r^(p-1)=pのとき、整数比の3つの無理数o,p,qが存在しないことが証明されていません。
整数比の3つの無理数o,p,qが存在するならば、整数比の3つの有理数が、存在します。
r^(p-1)=pのとき、整数比の3つの無理数o,p,qが存在しないことが証明されていません。
整数比の3つの無理数o,p,qが存在するならば、整数比の3つの有理数が、存在します。
414日高
2020/06/25(木) 06:22:20.20ID:WrSnuua8 >406
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
違います。(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。です。
どう違うのですか?
後者は、必ず(2)となります。前者は、(2)となる場合がある。です。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる場合がある。
違います。(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。です。
どう違うのですか?
後者は、必ず(2)となります。前者は、(2)となる場合がある。です。
415日高
2020/06/25(木) 06:42:08.76ID:WrSnuua8 >407
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
に
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))
を代入したら等号が成り立つんですけど。
α=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))とおくと、
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)は、
5^3+1^3=(5+√3/(α^3))^3となるので、成り立ちません。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)
に
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))
を代入したら等号が成り立つんですけど。
α=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))とおくと、
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)は、
5^3+1^3=(5+√3/(α^3))^3となるので、成り立ちません。
416日高
2020/06/25(木) 06:45:16.08ID:WrSnuua8 >408
> x、y、zが有理数ならば、rは有理数です。
そう、その通り。
x、y、zが有理数ならば、満たす式はx^3+y^3=(x+(有理数))^3であってx^3+y^3=(x+√3)^3ではありません。
式が違います。
x^3+y^3=(x+√3)^3なので、x、y、zは、有理数となりません。
> x、y、zが有理数ならば、rは有理数です。
そう、その通り。
x、y、zが有理数ならば、満たす式はx^3+y^3=(x+(有理数))^3であってx^3+y^3=(x+√3)^3ではありません。
式が違います。
x^3+y^3=(x+√3)^3なので、x、y、zは、有理数となりません。
417132人目の素数さん
2020/06/25(木) 14:42:59.72ID:MW4QklpA418日高
2020/06/25(木) 15:43:22.04ID:WrSnuua8 >417
x:y:z(=x+√3)が整数比となる無理数解x,y,zが存在しないことです。
x^3+y^3=(x+√3)^3
x=m√3,y=n√3を、代入すると、(m,nは、有理数とする。)
(m√3)^3+(n√3)=(m√3+√3)^3となる。
両辺を、(√3)^3で割ると、
m^3+n^3=(n+1)^3
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
(3)の、x,yは、有理数とならない。
よって、m,nは、有理数とならない。
x:y:z(=x+√3)が整数比となる無理数解x,y,zが存在しないことです。
x^3+y^3=(x+√3)^3
x=m√3,y=n√3を、代入すると、(m,nは、有理数とする。)
(m√3)^3+(n√3)=(m√3+√3)^3となる。
両辺を、(√3)^3で割ると、
m^3+n^3=(n+1)^3
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
(3)の、x,yは、有理数とならない。
よって、m,nは、有理数とならない。
419132人目の素数さん
2020/06/25(木) 15:57:59.65ID:MW4QklpA >>418 日高
> rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
> (3)の、x,yは、有理数とならない。
rとか(3)とか、どこにも出てこないので、何の話かわかりません。
わかるように答えてください。
> rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
> (3)の、x,yは、有理数とならない。
rとか(3)とか、どこにも出てこないので、何の話かわかりません。
わかるように答えてください。
420日高
2020/06/25(木) 16:31:20.96ID:WrSnuua8 (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
421日高
2020/06/25(木) 16:32:00.15ID:WrSnuua8 (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
422日高
2020/06/25(木) 16:35:02.42ID:WrSnuua8 >419
rとか(3)とか、どこにも出てこないので、何の話かわかりません。
わかるように答えてください。
rと(3)は、420の中の、rと(3)です。
rとか(3)とか、どこにも出てこないので、何の話かわかりません。
わかるように答えてください。
rと(3)は、420の中の、rと(3)です。
423132人目の素数さん
2020/06/25(木) 16:39:51.70ID:MW4QklpA424日高
2020/06/25(木) 17:03:09.65ID:WrSnuua8 >423
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
これ、証明できていますか?
はい。
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
これ、証明できていますか?
はい。
425132人目の素数さん
2020/06/25(木) 17:10:33.03ID:MW4QklpA >>424 日高
では証明をここに書いてください。お願いします。
では証明をここに書いてください。お願いします。
426日高
2020/06/25(木) 18:02:18.80ID:WrSnuua8 >424
では証明をここに書いてください
x^p+y^p=(x+p^{1/(p-1)})^pのx,yを共に有理数とすると、左辺は、有理数となり、
右辺は、無理数となるので、x,yは、共に有理数と、ならない。
では証明をここに書いてください
x^p+y^p=(x+p^{1/(p-1)})^pのx,yを共に有理数とすると、左辺は、有理数となり、
右辺は、無理数となるので、x,yは、共に有理数と、ならない。
427132人目の素数さん
2020/06/25(木) 18:09:06.71ID:MW4QklpA >>426 日高
> x^p+y^p=(x+p^{1/(p-1)})^pのx,yを共に有理数とすると、左辺は、有理数となり、
> 右辺は、無理数となるので、x,yは、共に有理数と、ならない。
(有理数+p^{1/(p-1)})^pはいつでも無理数ですか?
> x^p+y^p=(x+p^{1/(p-1)})^pのx,yを共に有理数とすると、左辺は、有理数となり、
> 右辺は、無理数となるので、x,yは、共に有理数と、ならない。
(有理数+p^{1/(p-1)})^pはいつでも無理数ですか?
428132人目の素数さん
2020/06/25(木) 18:57:39.34ID:UOx3bJdj >>427
(有理数+p^{1/(p-1)})^pはいつでも無理数ですか?
これは常に無理数となる。
この部分は日高の主張は正しい。
なぜならば,pが奇素数なのでp-1は偶数となる。したがって二項定理により展開すれば,pの次数がk/(p-1)=1/2となる項がただ一つだけ生じる。
この√pは他の展開した項で打ち消せないので,(有理数+p^{1/(p-1)})^pは無理数となる。
もちろん>>426に問題がないわけではない。
ともに有理数とはならないというのは正しいが,ともに無理数とはならない,という証明になっていない。
つまり,このままでは証明は先に進めることはできない。
そして,この部分が決定的に間違っている。
(有理数+p^{1/(p-1)})^pはいつでも無理数ですか?
これは常に無理数となる。
この部分は日高の主張は正しい。
なぜならば,pが奇素数なのでp-1は偶数となる。したがって二項定理により展開すれば,pの次数がk/(p-1)=1/2となる項がただ一つだけ生じる。
この√pは他の展開した項で打ち消せないので,(有理数+p^{1/(p-1)})^pは無理数となる。
もちろん>>426に問題がないわけではない。
ともに有理数とはならないというのは正しいが,ともに無理数とはならない,という証明になっていない。
つまり,このままでは証明は先に進めることはできない。
そして,この部分が決定的に間違っている。
429日高
2020/06/25(木) 19:36:09.52ID:WrSnuua8 >427
(有理数+p^{1/(p-1)})^pはいつでも無理数ですか?
はい。
(有理数+p^{1/(p-1)})^pはいつでも無理数ですか?
はい。
430日高
2020/06/25(木) 19:40:09.99ID:WrSnuua8 (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
431日高
2020/06/25(木) 19:40:52.24ID:WrSnuua8 (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
432日高
2020/06/25(木) 19:43:09.76ID:WrSnuua8 (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
433日高
2020/06/25(木) 19:50:15.78ID:WrSnuua8 >428
ともに無理数とはならない,という証明になっていない。
ともに無理数の場合は、ともに有理数の場合と同じです。
ともに無理数とはならない,という証明になっていない。
ともに無理数の場合は、ともに有理数の場合と同じです。
434132人目の素数さん
2020/06/25(木) 20:00:16.57ID:UOx3bJdj >>433
有理数+有理数が無理数となることはないので
「ともに有理数となることはない」は成り立ちますが
無理数+無理数は無理数となって矛盾しないので
「同じです」,とはとても言えないと思いますが。
少なくとも証明としてなっとくする人はいないでしょう。
有理数+有理数が無理数となることはないので
「ともに有理数となることはない」は成り立ちますが
無理数+無理数は無理数となって矛盾しないので
「同じです」,とはとても言えないと思いますが。
少なくとも証明としてなっとくする人はいないでしょう。
435132人目の素数さん
2020/06/25(木) 20:01:40.90ID:QU4tCHut >>428
たとえばp=5のとき(x+p^{1/(p-1)})^pは(x+5^(1/4))^5。
二項展開してx^5+5x^4*5^(1/4)+10x^3*5^(1/2)+10x^2*5^(3/4)+5x*5^1+5+5^(5/4)
=(x^5+25x)+(5x^4+5)5^(1/4)+10x^3*5^(1/2)+10x^2*5^(3/4)となると思うけど
1,5^(1/4),5^(1/2),5^(3/4)は有理数体上一次独立でしょうか?
たとえばp=5のとき(x+p^{1/(p-1)})^pは(x+5^(1/4))^5。
二項展開してx^5+5x^4*5^(1/4)+10x^3*5^(1/2)+10x^2*5^(3/4)+5x*5^1+5+5^(5/4)
=(x^5+25x)+(5x^4+5)5^(1/4)+10x^3*5^(1/2)+10x^2*5^(3/4)となると思うけど
1,5^(1/4),5^(1/2),5^(3/4)は有理数体上一次独立でしょうか?
436日高
2020/06/25(木) 20:44:58.76ID:WrSnuua8 >435
二項展開してx^5+5x^4*5^(1/4)+10x^3*5^(1/2)+10x^2*5^(3/4)+5x*5^1+5+5^(5/4)の
最後から、2番目の項の5は、不必要ではないでしょうか?
二項展開してx^5+5x^4*5^(1/4)+10x^3*5^(1/2)+10x^2*5^(3/4)+5x*5^1+5+5^(5/4)の
最後から、2番目の項の5は、不必要ではないでしょうか?
437132人目の素数さん
2020/06/25(木) 20:49:59.05ID:QU4tCHut >>436
不要でした。
不要でした。
438132人目の素数さん
2020/06/25(木) 21:52:46.81ID:UOx3bJdj >>435
p>0 q>0の有理数として
5^{1/4}+p*5^{3/4}=q*5^{1/2}...(1)
となるp,qが存在するかを考えます。
両辺を5^{1/4}で割って
1+p*5^{1/2}=q*5^{1/4}
両辺を2乗して
1+2p*5^{1/2}*5p^2=q^2+5^{1/2}
⇔ 1+5p^2=(q^2-2p)5^{1/2}
p>0なので q^2-2p>0
⇔ √5=(1+5*p^2)/(q^2-2p)
となるので,
(1)をみたすp,qは存在しません。
p>0 q>0の有理数として
5^{1/4}+p*5^{3/4}=q*5^{1/2}...(1)
となるp,qが存在するかを考えます。
両辺を5^{1/4}で割って
1+p*5^{1/2}=q*5^{1/4}
両辺を2乗して
1+2p*5^{1/2}*5p^2=q^2+5^{1/2}
⇔ 1+5p^2=(q^2-2p)5^{1/2}
p>0なので q^2-2p>0
⇔ √5=(1+5*p^2)/(q^2-2p)
となるので,
(1)をみたすp,qは存在しません。
439132人目の素数さん
2020/06/25(木) 22:04:38.95ID:UOx3bJdj 両辺を2乗して
1+2p*5^{1/2}*5p^2=q^2*5^{1/2}
でした。
1+2p*5^{1/2}*5p^2=q^2*5^{1/2}
でした。
440132人目の素数さん
2020/06/25(木) 22:09:10.72ID:UOx3bJdj 両辺を2乗して
1+2p*5^{1/2}+5p^2=q^2*5^{1/2}
です。すみません・・・・・
1+2p*5^{1/2}+5p^2=q^2*5^{1/2}
です。すみません・・・・・
441132人目の素数さん
2020/06/25(木) 23:12:12.57ID:QU4tCHut442132人目の素数さん
2020/06/25(木) 23:41:55.39ID:OtInCGQm >>415
インチキを書かないでください。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)は、
5^3+1^3=(5+√3/α)^3
125+1=(5+√3/(3^(1/6) (25 3^(1/3) + 15 14^(1/3) + 3 42^(2/3))))^3
126=126
成り立っています。
インチキを書かないでください。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)は、
5^3+1^3=(5+√3/α)^3
125+1=(5+√3/(3^(1/6) (25 3^(1/3) + 15 14^(1/3) + 3 42^(2/3))))^3
126=126
成り立っています。
443132人目の素数さん
2020/06/25(木) 23:47:21.41ID:OtInCGQm >>442書き間違えました。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)は、
5^3+1^3=(5+√3/α)^3
125+1=(5+√3/(3^(1/6)(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)) )))^3
126=126
成り立っています。
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)は、
5^3+1^3=(5+√3/α)^3
125+1=(5+√3/(3^(1/6)(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)) )))^3
126=126
成り立っています。
444132人目の素数さん
2020/06/25(木) 23:49:57.59ID:UOx3bJdj (1)はこの形なら
5^{1/4}+p*5^{3/4}=r - q*5^{1/2}...(1)'
p>0,q>0,r>0 の有理数じゃないとだめですよね。
左辺を5^{1/4}でくくって,両辺を2乗すると√5=の形になると思います。
具体的には・・・お願いします。
5^{1/4}+p*5^{3/4}=r - q*5^{1/2}...(1)'
p>0,q>0,r>0 の有理数じゃないとだめですよね。
左辺を5^{1/4}でくくって,両辺を2乗すると√5=の形になると思います。
具体的には・・・お願いします。
445132人目の素数さん
2020/06/25(木) 23:52:44.53ID:OtInCGQm >>413
整数比の3つの有理数が、存在するとき、絶対にr^(p-1)=pにならないので
(2)はr^(p-1)=pの時だけ成り立つ式x^p+y^p=(x+p^{1/(p-1)})^p…(3)にはなりません。
整数比の3つの有理数が、存在するとき、(2)は成り立ちますが、
整数比の3つの有理数が、存在するとき、(2)は(3)になりません。
(3)はr^(p-1)=pの時だけの式だから。
整数比の3つの有理数が、存在するとき、絶対にr^(p-1)=pにならないので
(2)はr^(p-1)=pの時だけ成り立つ式x^p+y^p=(x+p^{1/(p-1)})^p…(3)にはなりません。
整数比の3つの有理数が、存在するとき、(2)は成り立ちますが、
整数比の3つの有理数が、存在するとき、(2)は(3)になりません。
(3)はr^(p-1)=pの時だけの式だから。
446132人目の素数さん
2020/06/26(金) 00:08:13.29ID:GCEMbksQ >>416
式が違います。
r^(p-1)=pではないので、(2)は(3)になりません。
x^3+y^3=(x+√3)^3…(3)にならないので、(2)は(2)のままです。
3つの有理数が(2)の解とならない証明がどこにもありません。
式が違います。
r^(p-1)=pではないので、(2)は(3)になりません。
x^3+y^3=(x+√3)^3…(3)にならないので、(2)は(2)のままです。
3つの有理数が(2)の解とならない証明がどこにもありません。
447132人目の素数さん
2020/06/26(金) 00:38:00.32ID:GCEMbksQ http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>368について。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
3つの数がr^(p-1)=pを満たすように、3つの数に共通の数をかけて新しい3つの数をつくったら、新しい3つの数は有理数でなくなる。
よって「x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。」は間違い。
3つの数がr^(p-1)=pを満たさないような数のとき、(2)は(3)にならないので、x^3+y^3=(x+√3)^3…(3)という式がどこにも出てこない。
よって「x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。」は間違い。
3つの数はr^(p-1)=pを満たすような数かr^(p-1)=pを満たさないような数か、必ずどちらかであってそれ以外にはならない。
r^(p-1)=pを満たすときもr^(p-1)=pを満たさないときも「x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。」は間違いなので
「x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。」は必ず間違い。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
3つの数がr^(p-1)=pを満たすように、3つの数に共通の数をかけて新しい3つの数をつくったら、新しい3つの数は有理数でなくなる。
よって「x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。」は間違い。
3つの数がr^(p-1)=pを満たさないような数のとき、(2)は(3)にならないので、x^3+y^3=(x+√3)^3…(3)という式がどこにも出てこない。
よって「x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。」は間違い。
3つの数はr^(p-1)=pを満たすような数かr^(p-1)=pを満たさないような数か、必ずどちらかであってそれ以外にはならない。
r^(p-1)=pを満たすときもr^(p-1)=pを満たさないときも「x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。」は間違いなので
「x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。」は必ず間違い。
448132人目の素数さん
2020/06/26(金) 01:06:26.90ID:GCEMbksQ >>447続き
式が(3)でなく(2)なら正しい。
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる無理数解があるならば、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる有理数解があります。
なら正しい。
しかし、(2)は(3)となる場合があるが、ならない場合もある。
とくにx:y:zが整数比となる有理数解のとき(2)は(3)に絶対にならない。
よって
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる有理数解があります。
なら正しいが
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる有理数解があります。
には絶対にならない。
式が(3)でなく(2)なら正しい。
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる無理数解があるならば、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる有理数解があります。
なら正しい。
しかし、(2)は(3)となる場合があるが、ならない場合もある。
とくにx:y:zが整数比となる有理数解のとき(2)は(3)に絶対にならない。
よって
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる有理数解があります。
なら正しいが
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる有理数解があります。
には絶対にならない。
449日高
2020/06/26(金) 06:11:57.02ID:qTbB33y3 (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
450日高
2020/06/26(金) 06:12:57.36ID:qTbB33y3 (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
451日高
2020/06/26(金) 07:51:02.78ID:qTbB33y3 >438
p>0 q>0の有理数として
5^{1/4}+p*5^{3/4}=q*5^{1/2}...(1)
となるp,qが存在するかを考えます。
目的は、何でしょうか?
p>0 q>0の有理数として
5^{1/4}+p*5^{3/4}=q*5^{1/2}...(1)
となるp,qが存在するかを考えます。
目的は、何でしょうか?
452日高
2020/06/26(金) 08:04:15.03ID:qTbB33y3 >443
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)は、
5^3+1^3=(5+√3/α)^3
125+1=(5+√3/(3^(1/6)(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)) )))^3
126=126
計算は、合っていますか?
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)は、
5^3+1^3=(5+√3/α)^3
125+1=(5+√3/(3^(1/6)(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)) )))^3
126=126
計算は、合っていますか?
453日高
2020/06/26(金) 08:07:41.29ID:qTbB33y3 >444
(1)はこの形なら
5^{1/4}+p*5^{3/4}=r - q*5^{1/2}...(1)'
p>0,q>0,r>0 の有理数じゃないとだめですよね。
左辺を5^{1/4}でくくって,両辺を2乗すると√5=の形になると思います。
具体的には・・・お願いします。
目的が、わかりません。
(1)はこの形なら
5^{1/4}+p*5^{3/4}=r - q*5^{1/2}...(1)'
p>0,q>0,r>0 の有理数じゃないとだめですよね。
左辺を5^{1/4}でくくって,両辺を2乗すると√5=の形になると思います。
具体的には・・・お願いします。
目的が、わかりません。
454日高
2020/06/26(金) 08:13:15.68ID:qTbB33y3 >445
整数比の3つの有理数が、存在するとき、(2)は(3)になりません。
(3)はr^(p-1)=pの時だけの式だから。
はい。そうです。
整数比の3つの有理数が、存在するとき、(2)は(3)になりません。
(3)はr^(p-1)=pの時だけの式だから。
はい。そうです。
455日高
2020/06/26(金) 08:16:41.30ID:qTbB33y3 >446
r^(p-1)=pではないので、(2)は(3)になりません。
r^(p-1)=pのとき、(2)は(3)となります。
r^(p-1)=pではないので、(2)は(3)になりません。
r^(p-1)=pのとき、(2)は(3)となります。
456132人目の素数さん
2020/06/26(金) 08:17:26.82ID:6z5d95Ka457日高
2020/06/26(金) 08:22:34.81ID:qTbB33y3 >447
3つの数がr^(p-1)=pを満たすように、3つの数に共通の数をかけて新しい3つの数をつくったら、新しい3つの数は有理数でなくなる。
この部分を、詳しく説明して下さい。
3つの数がr^(p-1)=pを満たすように、3つの数に共通の数をかけて新しい3つの数をつくったら、新しい3つの数は有理数でなくなる。
この部分を、詳しく説明して下さい。
458日高
2020/06/26(金) 08:35:06.67ID:qTbB33y3 >448
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる有理数解があります。
には絶対にならない。
「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、」は、
仮定なので、αを無理数、X,Y,Zを有理数としたとき、
(αX)^3+(αY)^3=(αZ)^3が、成り立ちます。
よって、両辺をα^3で割ったX^3+Y^3=Z^3も、成り立ちます。
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる有理数解があります。
には絶対にならない。
「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、」は、
仮定なので、αを無理数、X,Y,Zを有理数としたとき、
(αX)^3+(αY)^3=(αZ)^3が、成り立ちます。
よって、両辺をα^3で割ったX^3+Y^3=Z^3も、成り立ちます。
459日高
2020/06/26(金) 08:36:27.75ID:qTbB33y3 (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
460日高
2020/06/26(金) 08:37:39.47ID:qTbB33y3 (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
462132人目の素数さん
2020/06/26(金) 08:45:19.21ID:6z5d95Ka463132人目の素数さん
2020/06/26(金) 09:17:08.83ID:bAzrfZJs 荒川静香鮫に喰われて死んだけん今夜お葬式
464日高
2020/06/26(金) 13:53:28.45ID:qTbB33y3 462
いや、Wolframで計算したから
信用できるでしょ、って話なんだが。
Wolframとは?
いや、Wolframで計算したから
信用できるでしょ、って話なんだが。
Wolframとは?
465132人目の素数さん
2020/06/26(金) 16:03:33.57ID:WEsYlV0S > x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる有理数解があります。
これは正しいです。フェルマーの最終定理が肯定的に証明されていますから。
> x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる有理数解があります。
これは正しいです。フェルマーの最終定理が肯定的に証明されていますから。
466132人目の素数さん
2020/06/26(金) 18:41:16.66ID:WEsYlV0S >>465
日高の推論が正しいという意味ではありません。
日高の推論が正しいという意味ではありません。
467132人目の素数さん
2020/06/26(金) 19:15:25.43ID:RxpSeIZz 日高も結果だけは正しいからな
途中の証明は間違いだらけなのだけど
途中の証明は間違いだらけなのだけど
468日高
2020/06/26(金) 20:18:13.81ID:qTbB33y3 >467
日高も結果だけは正しいからな
途中の証明は間違いだらけなのだけど
「途中の証明は間違いだらけ」の部分は、どこでしょうか?
日高も結果だけは正しいからな
途中の証明は間違いだらけなのだけど
「途中の証明は間違いだらけ」の部分は、どこでしょうか?
469日高
2020/06/26(金) 20:18:58.61ID:qTbB33y3 (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
470日高
2020/06/26(金) 20:19:30.09ID:qTbB33y3 (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
471132人目の素数さん
2020/06/26(金) 20:34:19.48ID:MviRQxG/ >>468 日高
> >467
> 日高も結果だけは正しいからな
> 途中の証明は間違いだらけなのだけど
>
> 「途中の証明は間違いだらけ」の部分は、どこでしょうか?
今までの指摘で気づけないなら一生気づけないだろうな。
> >467
> 日高も結果だけは正しいからな
> 途中の証明は間違いだらけなのだけど
>
> 「途中の証明は間違いだらけ」の部分は、どこでしょうか?
今までの指摘で気づけないなら一生気づけないだろうな。
472日高
2020/06/26(金) 20:34:45.75ID:qTbB33y3 >466
日高の推論が正しいという意味ではありません。
日高の推論の、間違い部分を指摘して下さい。
日高の推論が正しいという意味ではありません。
日高の推論の、間違い部分を指摘して下さい。
473日高
2020/06/26(金) 20:36:51.24ID:qTbB33y3 >471
今までの指摘で気づけないなら一生気づけないだろうな。
「今までの指摘で気づけないなら」
どの部分のことでしょうか?
今までの指摘で気づけないなら一生気づけないだろうな。
「今までの指摘で気づけないなら」
どの部分のことでしょうか?
474132人目の素数さん
2020/06/26(金) 21:02:13.83ID:gFpF1rJJ >>469
> rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
> ∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
aが定義されていない。
未定義の記号を含む文は数学では無意味。
よって、まったく証明としての体をなしていない。
> rが有理数のときの、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
> ∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
aが定義されていない。
未定義の記号を含む文は数学では無意味。
よって、まったく証明としての体をなしていない。
475日高
2020/06/26(金) 21:03:04.36ID:qTbB33y3 >443
125+1=(5+√3/(3^(1/6)(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)) )))^3
126=126
右辺は、936.55…では、ないでしょうか?
125+1=(5+√3/(3^(1/6)(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)) )))^3
126=126
右辺は、936.55…では、ないでしょうか?
476日高
2020/06/26(金) 21:07:52.14ID:qTbB33y3 >474
aが定義されていない。
未定義の記号を含む文は数学では無意味。
よって、まったく証明としての体をなしていない。
aは、r=(ap)^{1/(p-1)}で、定義されます。
aが定義されていない。
未定義の記号を含む文は数学では無意味。
よって、まったく証明としての体をなしていない。
aは、r=(ap)^{1/(p-1)}で、定義されます。
477132人目の素数さん
2020/06/26(金) 21:39:10.94ID:3nonSw06478132人目の素数さん
2020/06/26(金) 21:54:53.61ID:MviRQxG/ >>451 日高
> >438
> p>0 q>0の有理数として
> 5^{1/4}+p*5^{3/4}=q*5^{1/2}...(1)
> となるp,qが存在するかを考えます。
>
> 目的は、何でしょうか?
5^{1/4},5^{3/4},5^{1/2}が有理数体上線型独立かどうか調べるため。
> >438
> p>0 q>0の有理数として
> 5^{1/4}+p*5^{3/4}=q*5^{1/2}...(1)
> となるp,qが存在するかを考えます。
>
> 目的は、何でしょうか?
5^{1/4},5^{3/4},5^{1/2}が有理数体上線型独立かどうか調べるため。
479132人目の素数さん
2020/06/26(金) 22:51:34.05ID:5uVH53J5480132人目の素数さん
2020/06/27(土) 00:21:08.77ID:BDr7qoc9 >>475
ざっと数値計算してみれば
(5+√3/(3^(1/6) ( 25(3^(1/3)) + 15(14^(1/3)) + 3(42^(2/3)) ) ) )^3
3^(1/6)≒1.2
25(3^(1/3))≒25×1.4≒36
15(14^(1/3))≒15×2.4≒36
3(42^(2/3))≒3×12≒36
1.2×(36+36+36)≒130
√3/130≒0.013
(5+0.013)^3≒126
ちゃんと展開する式を書くにはここは狭すぎるので自分でやってください。
ざっと数値計算してみれば
(5+√3/(3^(1/6) ( 25(3^(1/3)) + 15(14^(1/3)) + 3(42^(2/3)) ) ) )^3
3^(1/6)≒1.2
25(3^(1/3))≒25×1.4≒36
15(14^(1/3))≒15×2.4≒36
3(42^(2/3))≒3×12≒36
1.2×(36+36+36)≒130
√3/130≒0.013
(5+0.013)^3≒126
ちゃんと展開する式を書くにはここは狭すぎるので自分でやってください。
481132人目の素数さん
2020/06/27(土) 00:35:19.37ID:BDr7qoc9 >>454
> 整数比の3つの有理数が、存在するとき、(2)は(3)になりません。
> (3)はr^(p-1)=pの時だけの式だから。
> はい。そうです。
(2)は(3)にならないということは
「r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる有理数解があります。」
は
「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる有理数解があります。」
になりません。
> 整数比の3つの有理数が、存在するとき、(2)は(3)になりません。
> (3)はr^(p-1)=pの時だけの式だから。
> はい。そうです。
(2)は(3)にならないということは
「r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる有理数解があります。」
は
「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる有理数解があります。」
になりません。
482132人目の素数さん
2020/06/27(土) 00:40:51.87ID:BDr7qoc9 http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>368について。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
>>455
> r^(p-1)=pのとき、(2)は(3)となります。
x、y、zが有理数ならば、「r^(p-1)=pのとき、」ではないので、(2)は(3)となりません。
式が違います。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
>>455
> r^(p-1)=pのとき、(2)は(3)となります。
x、y、zが有理数ならば、「r^(p-1)=pのとき、」ではないので、(2)は(3)となりません。
式が違います。
483132人目の素数さん
2020/06/27(土) 01:21:32.13ID:BDr7qoc9 >>457
有理数s、t、uからr=z-x=p^{1/(p-1)を満たすような数を作るためには、共通の無理数をかけるしかないけど
共通の無理数をかけた新しい3つの数は、必ず無理数になる。
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる解があるならば、それは必ず無理数解となる。
有理数s、t、uからr=z-x=p^{1/(p-1)を満たすような数を作るためには、共通の無理数をかけるしかないけど
共通の無理数をかけた新しい3つの数は、必ず無理数になる。
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる解があるならば、それは必ず無理数解となる。
484132人目の素数さん
2020/06/27(土) 01:38:57.91ID:BDr7qoc9 >>458
> 仮定なので、αを無理数、X,Y,Zを有理数としたとき、
> (αX)^3+(αY)^3=(αZ)^3が、成り立ちます。
> よって、両辺をα^3で割ったX^3+Y^3=Z^3も、成り立ちます。
R=Z-Xとおくと、X^p+Y^p=(Z+R)^p…(11)も成り立ちます。
(11)の両辺を積の形にすると、R^(p-1){(Y/R)^p-1}=p{X^(p-1)+…+R^(p-2)X}…(22)も成り立ちます。
(22)はR^(p-1)=pのとき、X^p+Y^p=(X+p^{1/(p-1)})^p…(33)となりますが
いまは「X,Y,Zを有理数としたとき、」なので「R^(p-1)=pのとき」にはならず、(22)はX^p+Y^p=(X+p^{1/(p-1)})^p…(33)となりません。
よって、X^3+Y^3=Z^3は、成り立ちますが、この式はX^3+Y^3=(X+√3)^3…(33)にはなりません。
式が違います。
> 仮定なので、αを無理数、X,Y,Zを有理数としたとき、
> (αX)^3+(αY)^3=(αZ)^3が、成り立ちます。
> よって、両辺をα^3で割ったX^3+Y^3=Z^3も、成り立ちます。
R=Z-Xとおくと、X^p+Y^p=(Z+R)^p…(11)も成り立ちます。
(11)の両辺を積の形にすると、R^(p-1){(Y/R)^p-1}=p{X^(p-1)+…+R^(p-2)X}…(22)も成り立ちます。
(22)はR^(p-1)=pのとき、X^p+Y^p=(X+p^{1/(p-1)})^p…(33)となりますが
いまは「X,Y,Zを有理数としたとき、」なので「R^(p-1)=pのとき」にはならず、(22)はX^p+Y^p=(X+p^{1/(p-1)})^p…(33)となりません。
よって、X^3+Y^3=Z^3は、成り立ちますが、この式はX^3+Y^3=(X+√3)^3…(33)にはなりません。
式が違います。
485日高
2020/06/27(土) 08:47:33.67ID:E7fuhkyn (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
486日高
2020/06/27(土) 08:53:29.62ID:E7fuhkyn >478
> 目的は、何でしょうか?
5^{1/4},5^{3/4},5^{1/2}が有理数体上線型独立かどうか調べるため。
よく、意味がわかりません。解説していただけないでしょうか。
> 目的は、何でしょうか?
5^{1/4},5^{3/4},5^{1/2}が有理数体上線型独立かどうか調べるため。
よく、意味がわかりません。解説していただけないでしょうか。
487日高
2020/06/27(土) 08:56:55.87ID:E7fuhkyn >479
その先の【証明】がたったの1行しかないので,その意味するところが明確ではありませんが,
その部分は「x,yの一方のみが有理数で,他方は無理数である」という主張に基づいて,
その解を有理数倍しても,無理数倍しても「ともに有理数となることはない」という結論を導こうとしているものと思われますが。
はい。そうです。
その先の【証明】がたったの1行しかないので,その意味するところが明確ではありませんが,
その部分は「x,yの一方のみが有理数で,他方は無理数である」という主張に基づいて,
その解を有理数倍しても,無理数倍しても「ともに有理数となることはない」という結論を導こうとしているものと思われますが。
はい。そうです。
488日高
2020/06/27(土) 08:59:38.80ID:E7fuhkyn >480
ちゃんと展開する式を書くにはここは狭すぎるので自分でやってください。
すみませんが、一番最初の部分から、書いていただけないでしょうか。
ちゃんと展開する式を書くにはここは狭すぎるので自分でやってください。
すみませんが、一番最初の部分から、書いていただけないでしょうか。
489132人目の素数さん
2020/06/27(土) 10:11:30.34ID:HgHfZSHT490132人目の素数さん
2020/06/27(土) 11:46:51.49ID:BDr7qoc9 >>488掲示板への迷惑行為になるので自分でこのスレッドを見直していただきたいのですが。
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>336について。
> rが、無理数であっても、有理数であっても、x/yは、同じということです。
ある奇素数pについて、次の方程式を考える。
(2w)^p+w^p=((2w)+p^{1/(p-1)})^p…(3-A)
右辺を左辺に移項して
(2w)^p+w^p-((2w)+p^{1/(p-1)})^p=0…(3-B)
これはwについてのp次方程式であり、pが奇素数なので(3-B)を満たす実数w(もちろんそれは(3-A)も満たす)が少なくとも1つ必ず存在する。
ここで、x=2w,y=wとおく。これを(3-A)に代入して
x^p+y^p=(x+p^{1/(p-1)})^p…(3-C)
wが少なくとも1つ存在するので、(3-C)を満たすx,yが少なくとも1つ必ず存在する。
この時、x/y=2
例:p=3のとき
(2w)^3+w^3=((2w)+3^{1/(3-1)})^3…(3-A)
(2w)^3+w^3-((2w)+3^{1/(3-1)})^3=0
8w^3+w^3-(8w^3+3(4w^2)√3+3(2w)3+3√3)=0
w^3-(12√3)w^2-18w-3√3=0
w=6(3^(1/6))+4√3+3(3^(5/6))のとき、(3-A)が成り立つ。
x=2w,y=wとおくと、(3-A)は
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)となる。
x=2(6(3^(1/6))+4√3+3(3^(5/6))),y=6(3^(1/6))+4√3+3(3^(5/6))のとき、(3-C)が成り立つ。
このとき、x/y=2
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>336について。
> rが、無理数であっても、有理数であっても、x/yは、同じということです。
ある奇素数pについて、次の方程式を考える。
(2w)^p+w^p=((2w)+p^{1/(p-1)})^p…(3-A)
右辺を左辺に移項して
(2w)^p+w^p-((2w)+p^{1/(p-1)})^p=0…(3-B)
これはwについてのp次方程式であり、pが奇素数なので(3-B)を満たす実数w(もちろんそれは(3-A)も満たす)が少なくとも1つ必ず存在する。
ここで、x=2w,y=wとおく。これを(3-A)に代入して
x^p+y^p=(x+p^{1/(p-1)})^p…(3-C)
wが少なくとも1つ存在するので、(3-C)を満たすx,yが少なくとも1つ必ず存在する。
この時、x/y=2
例:p=3のとき
(2w)^3+w^3=((2w)+3^{1/(3-1)})^3…(3-A)
(2w)^3+w^3-((2w)+3^{1/(3-1)})^3=0
8w^3+w^3-(8w^3+3(4w^2)√3+3(2w)3+3√3)=0
w^3-(12√3)w^2-18w-3√3=0
w=6(3^(1/6))+4√3+3(3^(5/6))のとき、(3-A)が成り立つ。
x=2w,y=wとおくと、(3-A)は
x^3+y^3=(x+3^{1/(3-1)})^3…(3-C)となる。
x=2(6(3^(1/6))+4√3+3(3^(5/6))),y=6(3^(1/6))+4√3+3(3^(5/6))のとき、(3-C)が成り立つ。
このとき、x/y=2
491132人目の素数さん
2020/06/27(土) 11:57:06.16ID:BDr7qoc9 >>488続き 掲示板への迷惑行為になるので自分でこのスレッドを見直していただきたいのですが。
同様に、適当に決めた数字φについて
(φw)^p+w^p=((φw)+p^{1/(p-1)})^p…(3-A)
右辺を左辺に移項して
(φw)^p+w^p-((φw)+p^{1/(p-1)})^p=0…(3-B)
これはwについてのp次方程式であり、pが奇素数なので(3-B)を満たす実数w(もちろんそれは(3-A)も満たす)が少なくとも1つ必ず存在する。
ここで、x=φw,y=wとおく(※)。これを(3-A)に代入して
x^p+y^p=(x+p^{1/(p-1)})^p…(3-C)
wが少なくとも1つ存在するので、(3-C)を満たすx,yが少なくとも1つ必ず存在する。
この時、(※)の部分の定義よりx/y=φ
例:p=3、φ=2の時
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))
は(3-C)の解である。
このときx/y=2
例:p=3、φ=3の時
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))、y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))
は(3-C)の解である。
このときx/y=3
例:p=3、φ=4の時
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))
は(3-C)の解である。
このときx/y=4
例:p=3、φ=5の時
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))
は(3-C)の解である。
このときx/y=5
同様に、適当に決めた数字φについて
(φw)^p+w^p=((φw)+p^{1/(p-1)})^p…(3-A)
右辺を左辺に移項して
(φw)^p+w^p-((φw)+p^{1/(p-1)})^p=0…(3-B)
これはwについてのp次方程式であり、pが奇素数なので(3-B)を満たす実数w(もちろんそれは(3-A)も満たす)が少なくとも1つ必ず存在する。
ここで、x=φw,y=wとおく(※)。これを(3-A)に代入して
x^p+y^p=(x+p^{1/(p-1)})^p…(3-C)
wが少なくとも1つ存在するので、(3-C)を満たすx,yが少なくとも1つ必ず存在する。
この時、(※)の部分の定義よりx/y=φ
例:p=3、φ=2の時
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))
は(3-C)の解である。
このときx/y=2
例:p=3、φ=3の時
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))、y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))
は(3-C)の解である。
このときx/y=3
例:p=3、φ=4の時
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))
は(3-C)の解である。
このときx/y=4
例:p=3、φ=5の時
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))
は(3-C)の解である。
このときx/y=5
492132人目の素数さん
2020/06/27(土) 12:00:41.71ID:BDr7qoc9 >>491の最後間違えました。
例:p=3、φ=5の時
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))
は(3-C)の解である。
このときx/y=5
例:p=3、φ=5の時
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))
は(3-C)の解である。
このときx/y=5
493日高
2020/06/27(土) 12:22:34.35ID:E7fuhkyn >481
(2)は(3)にならないということは
「r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる有理数解があります。」
は
「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる有理数解があります。」
になりません。
「 整数比の3つの有理数が、存在するとき、」
は、(2)は(3)になりません。」
(2)は(3)にならないということは
「r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる有理数解があります。」
は
「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる有理数解があります。」
になりません。
「 整数比の3つの有理数が、存在するとき、」
は、(2)は(3)になりません。」
494日高
2020/06/27(土) 12:35:26.75ID:E7fuhkyn >482
x、y、zが有理数ならば、「r^(p-1)=pのとき、」ではないので、(2)は(3)となりません。
はい。そうです。
式が違います。
式(2)と、式(3)は、同じです。(x、y、zが有理数という条件が、なければ)
x、y、zが有理数ならば、「r^(p-1)=pのとき、」ではないので、(2)は(3)となりません。
はい。そうです。
式が違います。
式(2)と、式(3)は、同じです。(x、y、zが有理数という条件が、なければ)
495日高
2020/06/27(土) 12:36:36.34ID:E7fuhkyn (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
496日高
2020/06/27(土) 12:37:24.79ID:E7fuhkyn (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
497日高
2020/06/27(土) 12:44:48.95ID:E7fuhkyn >483
有理数s、t、uからr=z-x=p^{1/(p-1)を満たすような数を作るためには、共通の無理数をかけるしかないけど
共通の無理数をかけた新しい3つの数は、必ず無理数になる。
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる解があるならば、それは必ず無理数解となる。
はい。そうです。
有理数s、t、uからr=z-x=p^{1/(p-1)を満たすような数を作るためには、共通の無理数をかけるしかないけど
共通の無理数をかけた新しい3つの数は、必ず無理数になる。
x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる解があるならば、それは必ず無理数解となる。
はい。そうです。
498日高
2020/06/27(土) 12:56:12.44ID:E7fuhkyn >484
R=Z-Xとおくと、X^p+Y^p=(Z+R)^p…(11)も成り立ちます。
(11)は、X^p+Y^p=(X+R)^pではないでしょうか?
R=Z-Xとおくと、X^p+Y^p=(Z+R)^p…(11)も成り立ちます。
(11)は、X^p+Y^p=(X+R)^pではないでしょうか?
499日高
2020/06/27(土) 13:05:43.83ID:E7fuhkyn >489
x:y:z=1:1:(2のp乗根)となり,整数比にならないと主張されるかも知れませんが
z^pをx^p,y^pにどのような割合で振り分けても,x,y,zが整数比にはならない,というのは証明すべき主題であって
証明の途中では援用できませんよ。
よく、意味が理解できませんので、詳しく説明していただけないでしょうか。
x:y:z=1:1:(2のp乗根)となり,整数比にならないと主張されるかも知れませんが
z^pをx^p,y^pにどのような割合で振り分けても,x,y,zが整数比にはならない,というのは証明すべき主題であって
証明の途中では援用できませんよ。
よく、意味が理解できませんので、詳しく説明していただけないでしょうか。
500132人目の素数さん
2020/06/27(土) 13:52:44.34ID:BDr7qoc9 >>498
そうです。書き間違いでした。すみません。
> 仮定なので、αを無理数、X,Y,Zを有理数としたとき、
> (αX)^3+(αY)^3=(αZ)^3が、成り立ちます。
> よって、両辺をα^3で割ったX^3+Y^3=Z^3も、成り立ちます。
R=Z-Xとおくと、X^p+Y^p=(X+R)^p…(11)も成り立ちます。
(11)の両辺を積の形にすると、R^(p-1){(Y/R)^p-1}=p{X^(p-1)+…+R^(p-2)X}…(22)も成り立ちます。
(22)はR^(p-1)=pのとき、X^p+Y^p=(X+p^{1/(p-1)})^p…(33)となりますが
いまは「X,Y,Zを有理数としたとき、」なので「R^(p-1)=pのとき」にはならず、(22)はX^p+Y^p=(X+p^{1/(p-1)})^p…(33)となりません。
よって、X^3+Y^3=Z^3は、成り立ちますが、この式はX^3+Y^3=(X+√3)^3…(33)にはなりません。
式が違います。
そうです。書き間違いでした。すみません。
> 仮定なので、αを無理数、X,Y,Zを有理数としたとき、
> (αX)^3+(αY)^3=(αZ)^3が、成り立ちます。
> よって、両辺をα^3で割ったX^3+Y^3=Z^3も、成り立ちます。
R=Z-Xとおくと、X^p+Y^p=(X+R)^p…(11)も成り立ちます。
(11)の両辺を積の形にすると、R^(p-1){(Y/R)^p-1}=p{X^(p-1)+…+R^(p-2)X}…(22)も成り立ちます。
(22)はR^(p-1)=pのとき、X^p+Y^p=(X+p^{1/(p-1)})^p…(33)となりますが
いまは「X,Y,Zを有理数としたとき、」なので「R^(p-1)=pのとき」にはならず、(22)はX^p+Y^p=(X+p^{1/(p-1)})^p…(33)となりません。
よって、X^3+Y^3=Z^3は、成り立ちますが、この式はX^3+Y^3=(X+√3)^3…(33)にはなりません。
式が違います。
501132人目の素数さん
2020/06/27(土) 14:12:59.53ID:BDr7qoc9 >>493
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>368について。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
これは間違い。
間違いであることの説明。
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる無理数解があるならば、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる有理数解があります。
なら正しい。
>>493で、あなたが書いた通り、
> 「 整数比の3つの有理数が、存在するとき、」
> は、(2)は(3)になりません。」
これも正しい。よって
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
これは間違い。
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>368について。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
これは間違い。
間違いであることの説明。
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる無理数解があるならば、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)にx:y:zが整数比となる有理数解があります。
なら正しい。
>>493で、あなたが書いた通り、
> 「 整数比の3つの有理数が、存在するとき、」
> は、(2)は(3)になりません。」
これも正しい。よって
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
これは間違い。
502132人目の素数さん
2020/06/27(土) 14:15:26.89ID:BDr7qoc9 >>494
> 式(2)と、式(3)は、同じです。(x、y、zが有理数という条件が、なければ)
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
には、x、y、zが有理数という条件があります。
よって、同じではありません。
式が違います。
> 式(2)と、式(3)は、同じです。(x、y、zが有理数という条件が、なければ)
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
には、x、y、zが有理数という条件があります。
よって、同じではありません。
式が違います。
503132人目の素数さん
2020/06/27(土) 14:18:09.27ID:BDr7qoc9 >>497
> x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる解があるならば、それは必ず無理数解となる。
>
> はい。そうです。
では、http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>368について、
「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる解があるならば、それは必ず無理数解となる。」ことより
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
これは間違い。
> x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる解があるならば、それは必ず無理数解となる。
>
> はい。そうです。
では、http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>368について、
「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる解があるならば、それは必ず無理数解となる。」ことより
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
これは間違い。
504132人目の素数さん
2020/06/27(土) 14:38:49.68ID:qfF2JAXN >>486 日高
> >478
> > 目的は、何でしょうか?
>
> 5^{1/4},5^{3/4},5^{1/2}が有理数体上線型独立かどうか調べるため。
>
> よく、意味がわかりません。解説していただけないでしょうか。
有理数体上線型独立の意味はわかるんですよね?
> >478
> > 目的は、何でしょうか?
>
> 5^{1/4},5^{3/4},5^{1/2}が有理数体上線型独立かどうか調べるため。
>
> よく、意味がわかりません。解説していただけないでしょうか。
有理数体上線型独立の意味はわかるんですよね?
505132人目の素数さん
2020/06/27(土) 15:40:46.94ID:E7fuhkyn >490
まとめておくと,あなたの【証明】において主張されている論述は
(1)r^(p-1)=p で,無理数rを定義し,(2)z=x+r と置いたうえで,
「x,y,zのうち少なくとも1つは無理数である」という結論を導こうとしているのだと判断できます。
私の主張は、rが、無理数であっても、有理数であっても、x/yは、同じということです。
上記の私の主張と、490の、「この時、x/y=2」との、繋がりが、わかりません。
まとめておくと,あなたの【証明】において主張されている論述は
(1)r^(p-1)=p で,無理数rを定義し,(2)z=x+r と置いたうえで,
「x,y,zのうち少なくとも1つは無理数である」という結論を導こうとしているのだと判断できます。
私の主張は、rが、無理数であっても、有理数であっても、x/yは、同じということです。
上記の私の主張と、490の、「この時、x/y=2」との、繋がりが、わかりません。
506日高
2020/06/27(土) 15:47:26.29ID:E7fuhkyn (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
507日高
2020/06/27(土) 15:48:16.35ID:E7fuhkyn (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
508日高
2020/06/27(土) 15:52:41.39ID:E7fuhkyn >490
まとめておくと,あなたの【証明】において主張されている論述は
(1)r^(p-1)=p で,無理数rを定義し,(2)z=x+r と置いたうえで,
「x,y,zのうち少なくとも1つは無理数である」という結論を導こうとしているのだと判断できます。
私の主張は、rが、無理数であっても、有理数であっても、x/yは、同じということです。
上記の私の主張と、490の、「この時、x/y=2」との、繋がりが、わかりません。
まとめておくと,あなたの【証明】において主張されている論述は
(1)r^(p-1)=p で,無理数rを定義し,(2)z=x+r と置いたうえで,
「x,y,zのうち少なくとも1つは無理数である」という結論を導こうとしているのだと判断できます。
私の主張は、rが、無理数であっても、有理数であっても、x/yは、同じということです。
上記の私の主張と、490の、「この時、x/y=2」との、繋がりが、わかりません。
509132人目の素数さん
2020/06/27(土) 15:56:08.73ID:BDr7qoc9 >>505
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>217において、あなたはこう書きました。
> 理由は、(3)の解の、x/yは、無理数となります。
しかし実際には、x/yは2になったり3になったり4になったり5になったり、どんな数にもなります。
よって間違っています。
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>217において、あなたはこう書きました。
> 理由は、(3)の解の、x/yは、無理数となります。
しかし実際には、x/yは2になったり3になったり4になったり5になったり、どんな数にもなります。
よって間違っています。
510日高
2020/06/27(土) 16:21:59.93ID:E7fuhkyn >500
よって、X^3+Y^3=Z^3は、成り立ちますが、この式はX^3+Y^3=(X+√3)^3…(33)にはなりません。
X,Y,Zが、有理数のとき、X^3+Y^3=Z^3は、成り立ちません。
Rが、有理数のとき、X^3+Y^3=(X+√3)^3…(33)にはなりません。
よって、X^3+Y^3=Z^3は、成り立ちますが、この式はX^3+Y^3=(X+√3)^3…(33)にはなりません。
X,Y,Zが、有理数のとき、X^3+Y^3=Z^3は、成り立ちません。
Rが、有理数のとき、X^3+Y^3=(X+√3)^3…(33)にはなりません。
511日高
2020/06/27(土) 16:25:46.09ID:E7fuhkyn >501
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
これは間違い。
理由が、理解できません。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
これは間違い。
理由が、理解できません。
512日高
2020/06/27(土) 16:28:58.55ID:E7fuhkyn >504
有理数体上線型独立の意味はわかるんですよね?
わかりません。
有理数体上線型独立の意味はわかるんですよね?
わかりません。
513日高
2020/06/27(土) 16:41:54.78ID:E7fuhkyn >509
> 理由は、(3)の解の、x/yは、無理数となります。
しかし実際には、x/yは2になったり3になったり4になったり5になったり、どんな数にもなります。
よって間違っています。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx/yは2になりません。
x^p+y^p=(x+(p^{1/(p-1)})/w)^pならば、x/yは2になります。(wは、無理数)
> 理由は、(3)の解の、x/yは、無理数となります。
しかし実際には、x/yは2になったり3になったり4になったり5になったり、どんな数にもなります。
よって間違っています。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx/yは2になりません。
x^p+y^p=(x+(p^{1/(p-1)})/w)^pならば、x/yは2になります。(wは、無理数)
514132人目の素数さん
2020/06/27(土) 17:15:25.83ID:BDr7qoc9 >>513
同じことをもう一度書けとあなたがいうから>>491に書いたのに読んでないのですか?
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))
はx^p+y^p=(x+p^{1/(p-1)})^pの解である。
このときx/y=2
例:p=3、φ=3の時
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))、y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))
はx^p+y^p=(x+p^{1/(p-1)})^pの解である。
このときx/y=3
例:p=3、φ=4の時
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))
はx^p+y^p=(x+p^{1/(p-1)})^pの解である。
このときx/y=4
例:p=3、φ=5の時
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))
ははx^p+y^p=(x+p^{1/(p-1)})^pの解である。
このときx/y=5
同じことをもう一度書けとあなたがいうから>>491に書いたのに読んでないのですか?
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))
はx^p+y^p=(x+p^{1/(p-1)})^pの解である。
このときx/y=2
例:p=3、φ=3の時
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))、y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))
はx^p+y^p=(x+p^{1/(p-1)})^pの解である。
このときx/y=3
例:p=3、φ=4の時
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))
はx^p+y^p=(x+p^{1/(p-1)})^pの解である。
このときx/y=4
例:p=3、φ=5の時
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))
ははx^p+y^p=(x+p^{1/(p-1)})^pの解である。
このときx/y=5
515132人目の素数さん
2020/06/27(土) 17:17:46.87ID:BDr7qoc9516132人目の素数さん
2020/06/27(土) 17:29:15.92ID:BDr7qoc9 >>510
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>458にあなたはこう書きました。
> 「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、」は、
> 仮定なので、αを無理数、X,Y,Zを有理数としたとき、
> (αX)^3+(αY)^3=(αZ)^3が、成り立ちます。
> よって、両辺をα^3で割ったX^3+Y^3=Z^3も、成り立ちます。
「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、」は、
仮定なので、X^3+Y^3=Z^3も、成り立ちます。
これは正しい。
「X,Y,Zを有理数としたとき」は
仮定なのでX^3+Y^3=Z^3は、成り立ちますが、
「X,Y,Zを有理数としたとき」、R=p^{1/(p-1)}は成り立たないので、この式はX^3+Y^3=(X+√3)^3…(33)にはなりません。
よって
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
X^3+Y^3=Z^3にX:Y:Zが整数比となる有理数解があります。
は正しい。
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
R^(p-1){(Y/R)^p-1}=p{X^(p-1)+…+r^(p-2)X}…(2)にX:Y:Zが整数比となる有理数解があります。
も正しい。
しかし、
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
X^3+Y^3=(X+√3)^3…(33)にX:Y:Zが整数比となる有理数解があります。
にはなりません。
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>458にあなたはこう書きました。
> 「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、」は、
> 仮定なので、αを無理数、X,Y,Zを有理数としたとき、
> (αX)^3+(αY)^3=(αZ)^3が、成り立ちます。
> よって、両辺をα^3で割ったX^3+Y^3=Z^3も、成り立ちます。
「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、」は、
仮定なので、X^3+Y^3=Z^3も、成り立ちます。
これは正しい。
「X,Y,Zを有理数としたとき」は
仮定なのでX^3+Y^3=Z^3は、成り立ちますが、
「X,Y,Zを有理数としたとき」、R=p^{1/(p-1)}は成り立たないので、この式はX^3+Y^3=(X+√3)^3…(33)にはなりません。
よって
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
X^3+Y^3=Z^3にX:Y:Zが整数比となる有理数解があります。
は正しい。
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
R^(p-1){(Y/R)^p-1}=p{X^(p-1)+…+r^(p-2)X}…(2)にX:Y:Zが整数比となる有理数解があります。
も正しい。
しかし、
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
X^3+Y^3=(X+√3)^3…(33)にX:Y:Zが整数比となる有理数解があります。
にはなりません。
517日高
2020/06/27(土) 17:29:36.96ID:E7fuhkyn (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
518日高
2020/06/27(土) 17:31:20.99ID:E7fuhkyn (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
520日高
2020/06/27(土) 17:42:44.53ID:E7fuhkyn521日高
2020/06/27(土) 17:46:04.61ID:E7fuhkyn >516
しかし、
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
X^3+Y^3=(X+√3)^3…(33)にX:Y:Zが整数比となる有理数解があります。
にはなりません。
どうしてでしょうか?
しかし、
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
X^3+Y^3=(X+√3)^3…(33)にX:Y:Zが整数比となる有理数解があります。
にはなりません。
どうしてでしょうか?
522132人目の素数さん
2020/06/27(土) 17:53:23.41ID:HgHfZSHT523132人目の素数さん
2020/06/27(土) 18:05:26.89ID:BDr7qoc9524132人目の素数さん
2020/06/27(土) 18:06:19.49ID:BDr7qoc9525日高
2020/06/27(土) 18:08:01.32ID:E7fuhkyn >522
しかし(3)式からは>>489で指摘したように,x,yがともに無理数となる解が(容易に)作り出せます。
したがって,「x,yの一方のみが有理数で,他方は無理数である」という主張は誤りである,という点は認められるのですか。
(3)のx,yは、共に有理数となりません。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx/yは2になりません。
x^p+y^p=(x+(p^{1/(p-1)})/w)^pならば、x/yは2になります。(wは、無理数)
しかし(3)式からは>>489で指摘したように,x,yがともに無理数となる解が(容易に)作り出せます。
したがって,「x,yの一方のみが有理数で,他方は無理数である」という主張は誤りである,という点は認められるのですか。
(3)のx,yは、共に有理数となりません。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx/yは2になりません。
x^p+y^p=(x+(p^{1/(p-1)})/w)^pならば、x/yは2になります。(wは、無理数)
526132人目の素数さん
2020/06/27(土) 18:10:07.88ID:BDr7qoc9 >>519
もちろん読んだだけでなく検算したんでしょうね。では
p=3のとき、
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))
はx^p+y^p=(x+p^{1/(p-1)})^p…(3)の解であり、
このとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx/yは2になる、ということで問題ないですね。
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>217において、あなたが書いた
> 理由は、(3)の解の、x/yは、無理数となります。
は間違いです。
もちろん読んだだけでなく検算したんでしょうね。では
p=3のとき、
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))
はx^p+y^p=(x+p^{1/(p-1)})^p…(3)の解であり、
このとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx/yは2になる、ということで問題ないですね。
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>217において、あなたが書いた
> 理由は、(3)の解の、x/yは、無理数となります。
は間違いです。
527日高
2020/06/27(土) 18:13:15.51ID:E7fuhkyn >523
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
が間違いである理由が、>>493で、あなたが書いた通り、
> 「 整数比の3つの有理数が、存在するとき、」
> は、(2)は(3)になりません。」
である、と理解できたんですね。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
は、間違いでは、ありません。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
が間違いである理由が、>>493で、あなたが書いた通り、
> 「 整数比の3つの有理数が、存在するとき、」
> は、(2)は(3)になりません。」
である、と理解できたんですね。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
は、間違いでは、ありません。
528132人目の素数さん
2020/06/27(土) 18:15:21.62ID:HgHfZSHT529日高
2020/06/27(土) 18:15:55.59ID:E7fuhkyn >524
理由は>>493で、あなたが書いた通り、
> 「 整数比の3つの有理数が、存在するとき、」
> は、(2)は(3)になりません。」
だからです。
整数比の3つの有理数が、存在しないので、(2)は(3)になります。
理由は>>493で、あなたが書いた通り、
> 「 整数比の3つの有理数が、存在するとき、」
> は、(2)は(3)になりません。」
だからです。
整数比の3つの有理数が、存在しないので、(2)は(3)になります。
530日高
2020/06/27(土) 18:18:10.68ID:E7fuhkyn (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
531日高
2020/06/27(土) 18:18:51.75ID:E7fuhkyn (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
532132人目の素数さん
2020/06/27(土) 18:33:42.52ID:HgHfZSHT533日高
2020/06/27(土) 18:43:29.80ID:E7fuhkyn >526
p=3のとき、
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))
はx^p+y^p=(x+p^{1/(p-1)})^p…(3)の解であり、
このとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx/yは2になる、ということで問題ないですね。
6(3^(1/6))+4√3+3(3^(5/6))=wとおくと、
(2w)^3+(w)^3=(2w+√3)^3
両辺を、w^3で割ると、
2^3+1^3=(2+√3/w)^3
この場合は、x/y=2となります。
2^3+1^3=(2+√3/w)^3と、2^3+1^3=(2+√3)^3は、式が違います。
p=3のとき、
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))
はx^p+y^p=(x+p^{1/(p-1)})^p…(3)の解であり、
このとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx/yは2になる、ということで問題ないですね。
6(3^(1/6))+4√3+3(3^(5/6))=wとおくと、
(2w)^3+(w)^3=(2w+√3)^3
両辺を、w^3で割ると、
2^3+1^3=(2+√3/w)^3
この場合は、x/y=2となります。
2^3+1^3=(2+√3/w)^3と、2^3+1^3=(2+√3)^3は、式が違います。
534日高
2020/06/27(土) 18:49:19.11ID:E7fuhkyn535日高
2020/06/27(土) 18:55:37.54ID:E7fuhkyn >532
2y=xとおくとx^p+y^p=(2^p+1)y^pになります。
この式の意味は?
2y=xとおくとx^p+y^p=(2^p+1)y^pになります。
この式の意味は?
536132人目の素数さん
2020/06/27(土) 18:56:03.54ID:BDr7qoc9 >>533
何を言っているのですか?
x=2(6(3^(1/6))+4√3+3(3^(5/6)))です。
y=6(3^(1/6))+4√3+3(3^(5/6))です。
式はx^p+y^p=(x+p^{1/(p-1)})^p…(3)です。このxとyは(3)の解です。
そのときx/y=2です。
何を言っているのですか?
x=2(6(3^(1/6))+4√3+3(3^(5/6)))です。
y=6(3^(1/6))+4√3+3(3^(5/6))です。
式はx^p+y^p=(x+p^{1/(p-1)})^p…(3)です。このxとyは(3)の解です。
そのときx/y=2です。
537132人目の素数さん
2020/06/27(土) 19:00:42.79ID:qfF2JAXN538132人目の素数さん
2020/06/27(土) 19:43:09.10ID:BDr7qoc9 あなたは、http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>368で
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
と書き、その説明として、http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>458で
> 「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、」は、
> 仮定なので、αを無理数、X,Y,Zを有理数としたとき、
> (αX)^3+(αY)^3=(αZ)^3が、成り立ちます。
> よって、両辺をα^3で割ったX^3+Y^3=Z^3も、成り立ちます。
と書きました。しかしどう見ても「X^3+Y^3=Z^3」と 「x^3+y^3=(x+√3)^3」は式が違います。
>>493で、あなたが書いた通り、
> 「 整数比の3つの有理数が、存在するとき、」
> は、(2)は(3)になりません。」
なので絶対に「X^3+Y^3=Z^3」と 「x^3+y^3=(x+√3)^3」は式が違います。
つまり
> 「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、」は、
> 仮定なので、αを無理数、X,Y,Zを有理数としたとき、
> (αX)^3+(αY)^3=(αZ)^3が、成り立ちます。
> よって、両辺をα^3で割ったX^3+Y^3=Z^3も、成り立ちます。
は
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
の説明になっていません。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
と書き、その説明として、http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>458で
> 「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、」は、
> 仮定なので、αを無理数、X,Y,Zを有理数としたとき、
> (αX)^3+(αY)^3=(αZ)^3が、成り立ちます。
> よって、両辺をα^3で割ったX^3+Y^3=Z^3も、成り立ちます。
と書きました。しかしどう見ても「X^3+Y^3=Z^3」と 「x^3+y^3=(x+√3)^3」は式が違います。
>>493で、あなたが書いた通り、
> 「 整数比の3つの有理数が、存在するとき、」
> は、(2)は(3)になりません。」
なので絶対に「X^3+Y^3=Z^3」と 「x^3+y^3=(x+√3)^3」は式が違います。
つまり
> 「x^3+y^3=(x+√3)^3…(3)にx:y:zが整数比となる無理数解があるならば、」は、
> 仮定なので、αを無理数、X,Y,Zを有理数としたとき、
> (αX)^3+(αY)^3=(αZ)^3が、成り立ちます。
> よって、両辺をα^3で割ったX^3+Y^3=Z^3も、成り立ちます。
は
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
の説明になっていません。
539132人目の素数さん
2020/06/27(土) 20:10:58.31ID:o+sgXcYr >>530 日高
> (フェルマーの最終定理)
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
> (1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
この一行はまったくの無駄。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
それは本当に証明できているかな?
xが有理数のときz(=r+p^{1/(p-1)})は無理数となる。z が有理数のとき、zは無理数となる
ならば自明だけどね。
> rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
そういうふうに実数aを定義する、の意味ね。
a=r^(p-1)/pだから「a^{1/(p-1)}倍」はr/p^{1/(p-1)}倍。
(3)のrは特別な値だったからそれをρと書くとr/ρ倍。当たり前すぎる。
このr/ρは無理数なので、(3)の無理数解に対応する。
(3)の無理数解は検討していない。よって大間違い。
> ∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
これはもちろん言えていません。
日高の論法をまねすると次が証明できる。
【定理】pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+7y^p=z^pを、z=x+rとおいてx^p+7y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){7(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+7y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、xが有理数のとき、zは無理数となる。zが有理数のとき、xは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
反例はp=3,x=y=1,z=2。(3)の無理数解x=y=√3,z=2√3がこれに対応する。
> (フェルマーの最終定理)
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
> (1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
この一行はまったくの無駄。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
それは本当に証明できているかな?
xが有理数のときz(=r+p^{1/(p-1)})は無理数となる。z が有理数のとき、zは無理数となる
ならば自明だけどね。
> rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
そういうふうに実数aを定義する、の意味ね。
a=r^(p-1)/pだから「a^{1/(p-1)}倍」はr/p^{1/(p-1)}倍。
(3)のrは特別な値だったからそれをρと書くとr/ρ倍。当たり前すぎる。
このr/ρは無理数なので、(3)の無理数解に対応する。
(3)の無理数解は検討していない。よって大間違い。
> ∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
これはもちろん言えていません。
日高の論法をまねすると次が証明できる。
【定理】pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+7y^p=z^pを、z=x+rとおいてx^p+7y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){7(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+7y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、xが有理数のとき、zは無理数となる。zが有理数のとき、xは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
反例はp=3,x=y=1,z=2。(3)の無理数解x=y=√3,z=2√3がこれに対応する。
540132人目の素数さん
2020/06/27(土) 20:17:52.84ID:HgHfZSHT >>535
x:y=2:1ならばx^p:y^p=2^p:1になります。
右辺を x^p:y^p=(2^p):1に分ける準備をしようというのが式の意味です。。
具体的にやってみると,(3)の右辺をqとして
r = x^p ={2^p/(2^p +1)}*q,
s = y^p ={1/(2^p +1)}q
とおけば r+s=q, r:s=2^p:1であり,
t^p={1/(2^p+1)}*q とおくと
r=x^p=2^p*t^p=(2t)^p したがって x=2t,
s=y^p=t^p したがって y=t
よって x/y=2となります。
(3)式は2:1に限らず,上の方法で任意の自然数比を持つ解 x,y を作り出せます。
x:y=r:s (r,sは自然数)ならば(3)の右辺を r^p:s^pの比に分ければよいだけです。
この点に誤解があるように見受けられますが,
x,yが無理数となってよいならば,x/yが整数または有理数となるx,yはいくらでも作り出せます。
x:y=2:1ならばx^p:y^p=2^p:1になります。
右辺を x^p:y^p=(2^p):1に分ける準備をしようというのが式の意味です。。
具体的にやってみると,(3)の右辺をqとして
r = x^p ={2^p/(2^p +1)}*q,
s = y^p ={1/(2^p +1)}q
とおけば r+s=q, r:s=2^p:1であり,
t^p={1/(2^p+1)}*q とおくと
r=x^p=2^p*t^p=(2t)^p したがって x=2t,
s=y^p=t^p したがって y=t
よって x/y=2となります。
(3)式は2:1に限らず,上の方法で任意の自然数比を持つ解 x,y を作り出せます。
x:y=r:s (r,sは自然数)ならば(3)の右辺を r^p:s^pの比に分ければよいだけです。
この点に誤解があるように見受けられますが,
x,yが無理数となってよいならば,x/yが整数または有理数となるx,yはいくらでも作り出せます。
541132人目の素数さん
2020/06/27(土) 20:54:39.55ID:HgHfZSHT というわけで
(フェルマーの最終定理)における【証明】の(3)式で,x,yがともに無理数であり,x:yが自然数比となる場合があることを示しました。
日高さん,あなたの【証明】は上の事実によって破綻するのではありませんか。
お答えをお待ちしております。
(フェルマーの最終定理)における【証明】の(3)式で,x,yがともに無理数であり,x:yが自然数比となる場合があることを示しました。
日高さん,あなたの【証明】は上の事実によって破綻するのではありませんか。
お答えをお待ちしております。
542日高
2020/06/27(土) 21:35:35.33ID:E7fuhkyn >536
x=2(6(3^(1/6))+4√3+3(3^(5/6)))です。
y=6(3^(1/6))+4√3+3(3^(5/6))です。
式はx^p+y^p=(x+p^{1/(p-1)})^p…(3)です。このxとyは(3)の解です。
そのときx/y=2です。
計算が、合いません。
x=2(6(3^(1/6))+4√3+3(3^(5/6)))です。
y=6(3^(1/6))+4√3+3(3^(5/6))です。
式はx^p+y^p=(x+p^{1/(p-1)})^p…(3)です。このxとyは(3)の解です。
そのときx/y=2です。
計算が、合いません。
543日高
2020/06/27(土) 21:37:23.05ID:E7fuhkyn >537
> 有理数体上線型独立の意味はわかるんですよね?
>
> わかりません。
じゃあ「よく、意味がわかりません」じゃないだろうに。
まったく、わかりません。
> 有理数体上線型独立の意味はわかるんですよね?
>
> わかりません。
じゃあ「よく、意味がわかりません」じゃないだろうに。
まったく、わかりません。
544日高
2020/06/27(土) 21:45:37.74ID:E7fuhkyn >538
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
の説明になっていません。
どうしてでしょうか?x,yは、共に有理数となりません。
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があります。
の説明になっていません。
どうしてでしょうか?x,yは、共に有理数となりません。
545日高
2020/06/27(土) 21:50:47.17ID:E7fuhkyn >539
xが有理数のときz(=r+p^{1/(p-1)})は無理数となる。z が有理数のとき、zは無理数となる
ならば自明だけどね。
どういう意味でしょうか?
xが有理数のときz(=r+p^{1/(p-1)})は無理数となる。z が有理数のとき、zは無理数となる
ならば自明だけどね。
どういう意味でしょうか?
546132人目の素数さん
2020/06/27(土) 22:02:57.34ID:BDr7qoc9 >>542
そうですか。ただの計算なので議論の余地はありません。
証明はあきらめてください。
一応確認のために書いておくと
x=2(6(3^(1/6))+4√3+3(3^(5/6)))≒43.2
y=6(3^(1/6))+4√3+3(3^(5/6))≒21.6
(x+3^{1/(3-1)})^3≒91052
そのときx/y=2です。
計算は合っています。
そうですか。ただの計算なので議論の余地はありません。
証明はあきらめてください。
一応確認のために書いておくと
x=2(6(3^(1/6))+4√3+3(3^(5/6)))≒43.2
y=6(3^(1/6))+4√3+3(3^(5/6))≒21.6
(x+3^{1/(3-1)})^3≒91052
そのときx/y=2です。
計算は合っています。
547日高
2020/06/27(土) 22:23:57.03ID:E7fuhkyn >540
具体的にやってみると,(3)の右辺をqとして
r = x^p ={2^p/(2^p +1)}*q,
s = y^p ={1/(2^p +1)}q
この、部分が、理解できません。
具体的にやってみると,(3)の右辺をqとして
r = x^p ={2^p/(2^p +1)}*q,
s = y^p ={1/(2^p +1)}q
この、部分が、理解できません。
548132人目の素数さん
2020/06/27(土) 22:50:45.15ID:HgHfZSHT >>547
qをa:bにわけるならばq*a/(a+b)とq*b/(a+b)になります。
(2^p):1にわけるならば書いてある通りになります。
右辺の値qをある割合に分けて、それぞれをx^p,y^pに割り当てるという意味です。
まさかここまで説明されて、理解できません、とかいわないでしょうね。右辺は実数なんだからある割合で分けられる。
これがわからないなら、小学生以下です。
qをa:bにわけるならばq*a/(a+b)とq*b/(a+b)になります。
(2^p):1にわけるならば書いてある通りになります。
右辺の値qをある割合に分けて、それぞれをx^p,y^pに割り当てるという意味です。
まさかここまで説明されて、理解できません、とかいわないでしょうね。右辺は実数なんだからある割合で分けられる。
これがわからないなら、小学生以下です。
549日高
2020/06/27(土) 23:15:46.84ID:E7fuhkyn >546
x=2(6(3^(1/6))+4√3+3(3^(5/6)))≒43.2
y=6(3^(1/6))+4√3+3(3^(5/6))≒21.6
(x+3^{1/(3-1)})^3≒91052
そのときx/y=2です。
すみません。計算は、合っていました。
x^3+y^3=(x+√3)^3は、x,yが、有理数のとき、成り立ちませんが、
x,yが、無理数で、整数比のときは、成り立ちます。
x=2(6(3^(1/6))+4√3+3(3^(5/6)))≒43.2
y=6(3^(1/6))+4√3+3(3^(5/6))≒21.6
(x+3^{1/(3-1)})^3≒91052
そのときx/y=2です。
すみません。計算は、合っていました。
x^3+y^3=(x+√3)^3は、x,yが、有理数のとき、成り立ちませんが、
x,yが、無理数で、整数比のときは、成り立ちます。
550日高
2020/06/27(土) 23:25:17.38ID:E7fuhkyn >541
(フェルマーの最終定理)における【証明】の(3)式で,x,yがともに無理数であり,x:yが自然数比となる場合があることを示しました。
日高さん,あなたの【証明】は上の事実によって破綻するのではありませんか。
x,yがともに無理数であり,x:yが自然数比となる場合があることは、わかりました。
しかし、x,yが、共に有理数となることは、ありません。
(フェルマーの最終定理)における【証明】の(3)式で,x,yがともに無理数であり,x:yが自然数比となる場合があることを示しました。
日高さん,あなたの【証明】は上の事実によって破綻するのではありませんか。
x,yがともに無理数であり,x:yが自然数比となる場合があることは、わかりました。
しかし、x,yが、共に有理数となることは、ありません。
551日高
2020/06/27(土) 23:28:24.44ID:E7fuhkyn >548
qをa:bにわけるならばq*a/(a+b)とq*b/(a+b)になります。
(2^p):1にわけるならば書いてある通りになります。
右辺の値qをある割合に分けて、それぞれをx^p,y^pに割り当てるという意味です。
まさかここまで説明されて、理解できません、とかいわないでしょうね。右辺は実数なんだからある割合で分けられる。
これがわからないなら、小学生以下です。
わかりました。
qをa:bにわけるならばq*a/(a+b)とq*b/(a+b)になります。
(2^p):1にわけるならば書いてある通りになります。
右辺の値qをある割合に分けて、それぞれをx^p,y^pに割り当てるという意味です。
まさかここまで説明されて、理解できません、とかいわないでしょうね。右辺は実数なんだからある割合で分けられる。
これがわからないなら、小学生以下です。
わかりました。
552132人目の素数さん
2020/06/27(土) 23:28:53.84ID:o+sgXcYr >>549 日高
> x^3+y^3=(x+√3)^3は、x,yが、有理数のとき、成り立ちませんが、
> x,yが、無理数で、整数比のときは、成り立ちます。
日本語おかしいよ。x,yが、無理数で、整数比のときは、成り立つことがある、だろ?
> x^3+y^3=(x+√3)^3は、x,yが、有理数のとき、成り立ちませんが、
> x,yが、無理数で、整数比のときは、成り立ちます。
日本語おかしいよ。x,yが、無理数で、整数比のときは、成り立つことがある、だろ?
553日高
2020/06/27(土) 23:29:29.62ID:E7fuhkyn (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
554日高
2020/06/27(土) 23:31:23.31ID:E7fuhkyn (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
555132人目の素数さん
2020/06/27(土) 23:33:41.62ID:BDr7qoc9 >>544
いいですか
あなたの理屈
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだけど
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がない
が成り立つためには、前半の2行
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
が正しくないといけませんが、x,yは、共に有理数となりませんので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
は間違いです。よって
あなたの理屈
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだけど
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がない
が成り立ちません。
いいですか
あなたの理屈
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだけど
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がない
が成り立つためには、前半の2行
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
が正しくないといけませんが、x,yは、共に有理数となりませんので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
は間違いです。よって
あなたの理屈
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだけど
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がない
が成り立ちません。
556日高
2020/06/27(土) 23:34:33.23ID:E7fuhkyn >552
日本語おかしいよ。x,yが、無理数で、整数比のときは、成り立つことがある、だろ?
そうですね。
日本語おかしいよ。x,yが、無理数で、整数比のときは、成り立つことがある、だろ?
そうですね。
557132人目の素数さん
2020/06/27(土) 23:39:21.75ID:HgHfZSHT >>550
右辺が無理数なんだからx,yがともに有理数にならないことは当然です。
ここで証明すべきことはそんなことではなく、x,y,zがともに無理数であるとしても、x:yが自然数比になることがあるとしても、
x:y:zが自然数比になることはない、ということです。
右辺が無理数なんだからx,yがともに有理数にならないことは当然です。
ここで証明すべきことはそんなことではなく、x,y,zがともに無理数であるとしても、x:yが自然数比になることがあるとしても、
x:y:zが自然数比になることはない、ということです。
558132人目の素数さん
2020/06/28(日) 00:01:25.73ID:JTgPdygo すぐわかることだけどA^3+B^3=C^3に自然数解A,B,Cがあれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がある。
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がある。
559132人目の素数さん
2020/06/28(日) 00:07:07.94ID:1qy0EaUs >>557(続き)
そこで,かりにx:y:zが自然数比になる場合があるとします
x,y,zは無理数なので,この消えてしまった無理数を補って
x=qX,y=qY,z=qZ (qは無理数,X,Y,Zは自然数)
とするとx,y,zは,x^3+y^3=z^3を満たすので,代入してみると
q^3(X^3+Y^3)=q^3*Z^3
⇔X^3+Y^3=Z^3
となり明らかに,この式を満たすX,Y,Zが存在するならばフェルマーの最終定理の反例そのものになります。
したがって,【証明】を維持するために必要になった x:y:z が自然数比になる場合がないという証明は,
X^3+Y^3=Z^3を成り立たせるX,Y,Z(X,Y,Zは自然数)は存在しない
⇔フェルマーの最終定理が成り立つという証明そのものになってしまいます。
つまり,証明は出発点に戻ってしまうので,今までやってきたことはすべて無駄になります。
即ち,【証明】はここで破綻しているので,残念でしょうが,【証明】は誤りという結論が出ることになります
そこで,かりにx:y:zが自然数比になる場合があるとします
x,y,zは無理数なので,この消えてしまった無理数を補って
x=qX,y=qY,z=qZ (qは無理数,X,Y,Zは自然数)
とするとx,y,zは,x^3+y^3=z^3を満たすので,代入してみると
q^3(X^3+Y^3)=q^3*Z^3
⇔X^3+Y^3=Z^3
となり明らかに,この式を満たすX,Y,Zが存在するならばフェルマーの最終定理の反例そのものになります。
したがって,【証明】を維持するために必要になった x:y:z が自然数比になる場合がないという証明は,
X^3+Y^3=Z^3を成り立たせるX,Y,Z(X,Y,Zは自然数)は存在しない
⇔フェルマーの最終定理が成り立つという証明そのものになってしまいます。
つまり,証明は出発点に戻ってしまうので,今までやってきたことはすべて無駄になります。
即ち,【証明】はここで破綻しているので,残念でしょうが,【証明】は誤りという結論が出ることになります
560132人目の素数さん
2020/06/28(日) 00:09:44.52ID:1qy0EaUs >>559
^3としている部分は^pの誤りです。すみません。
^3としている部分は^pの誤りです。すみません。
561132人目の素数さん
2020/06/28(日) 00:16:33.69ID:kReQ8QzU 結局、循環するのか・
562132人目の素数さん
2020/06/28(日) 00:18:06.32ID:JTgPdygo563132人目の素数さん
2020/06/28(日) 01:34:45.91ID:guOOW4c7 >>545 日高
> >539
> xが有理数のときz(=r+p^{1/(p-1)})は無理数となる。z が有理数のとき、zは無理数となる
> ならば自明だけどね。
>
> どういう意味でしょうか?
これが君には自明でないと言っているの?
それとも、これが自明なことはわかるけどそれがどうしたの、と言っているの?
> >539
> xが有理数のときz(=r+p^{1/(p-1)})は無理数となる。z が有理数のとき、zは無理数となる
> ならば自明だけどね。
>
> どういう意味でしょうか?
これが君には自明でないと言っているの?
それとも、これが自明なことはわかるけどそれがどうしたの、と言っているの?
564日高
2020/06/28(日) 08:46:28.17ID:6XyAxBIn >555
あなたの理屈
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだけど
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がない
が成り立ちません。
どうしてでしょうか?
あなたの理屈
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだけど
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がない
が成り立ちません。
どうしてでしょうか?
565日高
2020/06/28(日) 08:49:48.22ID:6XyAxBIn >557
ここで証明すべきことはそんなことではなく、x,y,zがともに無理数であるとしても、x:yが自然数比になることがあるとしても、
x:y:zが自然数比になることはない、ということです。
そうですね。
ここで証明すべきことはそんなことではなく、x,y,zがともに無理数であるとしても、x:yが自然数比になることがあるとしても、
x:y:zが自然数比になることはない、ということです。
そうですね。
566日高
2020/06/28(日) 08:51:17.25ID:6XyAxBIn >558
すぐわかることだけどA^3+B^3=C^3に自然数解A,B,Cがあれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がある。
そうですね。
すぐわかることだけどA^3+B^3=C^3に自然数解A,B,Cがあれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がある。
そうですね。
567日高
2020/06/28(日) 08:59:04.82ID:6XyAxBIn >559
したがって,【証明】を維持するために必要になった x:y:z が自然数比になる場合がないという証明は,
X^3+Y^3=Z^3を成り立たせるX,Y,Z(X,Y,Zは自然数)は存在しない
⇔フェルマーの最終定理が成り立つという証明そのものになってしまいます。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx,y,zは、整数比となりません。
したがって,【証明】を維持するために必要になった x:y:z が自然数比になる場合がないという証明は,
X^3+Y^3=Z^3を成り立たせるX,Y,Z(X,Y,Zは自然数)は存在しない
⇔フェルマーの最終定理が成り立つという証明そのものになってしまいます。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx,y,zは、整数比となりません。
568日高
2020/06/28(日) 09:00:53.91ID:6XyAxBIn >561
結局、循環するのか・
循環しないと、思います。
結局、循環するのか・
循環しないと、思います。
569日高
2020/06/28(日) 09:03:39.74ID:6XyAxBIn >562
> つまり,証明は出発点に戻ってしまうので,今までやってきたことはすべて無駄になります。
って言うか、今までやってきたことは何の証明にもなっていない、ということだと思う。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx,y,zは、整数比とならないので、循環しないと、思います。
> つまり,証明は出発点に戻ってしまうので,今までやってきたことはすべて無駄になります。
って言うか、今までやってきたことは何の証明にもなっていない、ということだと思う。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx,y,zは、整数比とならないので、循環しないと、思います。
570日高
2020/06/28(日) 09:06:31.85ID:6XyAxBIn >563
xが有理数のときz(=r+p^{1/(p-1)})は無理数となる。z が有理数のとき、zは無理数となる
「z が有理数のとき、zは無理数となる」の意味がわかりません。
xが有理数のときz(=r+p^{1/(p-1)})は無理数となる。z が有理数のとき、zは無理数となる
「z が有理数のとき、zは無理数となる」の意味がわかりません。
571日高
2020/06/28(日) 09:08:17.73ID:6XyAxBIn フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
572日高
2020/06/28(日) 09:09:24.17ID:6XyAxBIn (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
573132人目の素数さん
2020/06/28(日) 09:54:59.40ID:kHWXx7GJ >>564
やっぱりあなたは掲示板に嫌がらせをしたいだけの人なのですか?
あなたの引用した>>555にちゃんとどうしてか理由が書いてあるのに
そういう時でも必ず聞きなおして、しかも1度書いた同じことを何度も書くことを求めますよね?
どうしてでしょうか?
どうしてか書いてある>>555をもう一度書きます。
いいですか
あなたの理屈
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだけど
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がない
が成り立つためには、前半の2行
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
が正しくないといけませんが、x,yは、共に有理数となりませんので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
は間違いです。よって
あなたの理屈
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだけど
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がない
が成り立ちません。
やっぱりあなたは掲示板に嫌がらせをしたいだけの人なのですか?
あなたの引用した>>555にちゃんとどうしてか理由が書いてあるのに
そういう時でも必ず聞きなおして、しかも1度書いた同じことを何度も書くことを求めますよね?
どうしてでしょうか?
どうしてか書いてある>>555をもう一度書きます。
いいですか
あなたの理屈
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだけど
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がない
が成り立つためには、前半の2行
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
が正しくないといけませんが、x,yは、共に有理数となりませんので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
は間違いです。よって
あなたの理屈
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだけど
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がない
が成り立ちません。
574日高
2020/06/28(日) 11:09:16.98ID:6XyAxBIn x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
が正しくないといけませんが、x,yは、共に有理数となりませんので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
は間違いです。
どうして、x,yが、共に有理数とならないことが、
「x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ」
が、間違いだということに、つながるのでしょうか?
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
が正しくないといけませんが、x,yは、共に有理数となりませんので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
は間違いです。
どうして、x,yが、共に有理数とならないことが、
「x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ」
が、間違いだということに、つながるのでしょうか?
575132人目の素数さん
2020/06/28(日) 11:38:37.79ID:1qy0EaUs >>567
そうです,整数比にはなりません。
ワイルズは楕円関数を使ってそれを証明しました。
しかし,あなたは,主張するだけで証明していません。
あなたの【証明】なるものは,x/yが有理数となることがないことに依拠していると思います。
しかし,x/yが有理数となることがあることは簡単に示せることを指摘しました。
したがって,あなたは x/y=(無理数)という主張によらない証明を改めて示す必要があります。
それができなければ,【証明】は破綻している,という結論を受け入れるしかないでしょう。
じつのところ,x,y,zが有理数となる場合がいないことの証明が必要である,親切心から付け加えた蛇足でしかありません。
x/yが有理数となることがある,ということを示した時点であなたの証明は破綻しているんです。
破綻していない,というのならば
x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx,y,zは、整数比となりません。
という主張の証明をお願いします。
そうです,整数比にはなりません。
ワイルズは楕円関数を使ってそれを証明しました。
しかし,あなたは,主張するだけで証明していません。
あなたの【証明】なるものは,x/yが有理数となることがないことに依拠していると思います。
しかし,x/yが有理数となることがあることは簡単に示せることを指摘しました。
したがって,あなたは x/y=(無理数)という主張によらない証明を改めて示す必要があります。
それができなければ,【証明】は破綻している,という結論を受け入れるしかないでしょう。
じつのところ,x,y,zが有理数となる場合がいないことの証明が必要である,親切心から付け加えた蛇足でしかありません。
x/yが有理数となることがある,ということを示した時点であなたの証明は破綻しているんです。
破綻していない,というのならば
x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx,y,zは、整数比となりません。
という主張の証明をお願いします。
576132人目の素数さん
2020/06/28(日) 11:42:12.71ID:guOOW4c7577132人目の素数さん
2020/06/28(日) 12:15:35.66ID:kHWXx7GJ578132人目の素数さん
2020/06/28(日) 12:19:25.36ID:kHWXx7GJ579132人目の素数さん
2020/06/28(日) 12:30:51.49ID:1qy0EaUs >>575(続き)
つけくわえておくと,
x^p+y^p=(x+p^{1/(p-1)})^p…(3)という式は,x^p+y^p=z^pという式の一例でしかありません。
したがって(3)式で,x:y:zが整数比(自然数比)となる場合がないことを示せたとしても
z=x+p^{1/(p-1)}という形以外の場合にはx:y:zが整数比になる場合があるかも知れませから
x^p+y^p=(x+p^{1/(p-1)})^pにおけるx:y:zが整数比にならない
という証明がもしできたとしても,フェルマーの最終定理の証明にはならないことをお忘れなく。
つけくわえておくと,
x^p+y^p=(x+p^{1/(p-1)})^p…(3)という式は,x^p+y^p=z^pという式の一例でしかありません。
したがって(3)式で,x:y:zが整数比(自然数比)となる場合がないことを示せたとしても
z=x+p^{1/(p-1)}という形以外の場合にはx:y:zが整数比になる場合があるかも知れませから
x^p+y^p=(x+p^{1/(p-1)})^pにおけるx:y:zが整数比にならない
という証明がもしできたとしても,フェルマーの最終定理の証明にはならないことをお忘れなく。
580日高
2020/06/28(日) 14:31:01.34ID:6XyAxBIn >575
あなたの【証明】なるものは,x/yが有理数となることがないことに依拠していると思います。
しかし,x/yが有理数となることがあることは簡単に示せることを指摘しました。
私の【証明】は、x,yが共に有理数とならないということです。
あなたの【証明】なるものは,x/yが有理数となることがないことに依拠していると思います。
しかし,x/yが有理数となることがあることは簡単に示せることを指摘しました。
私の【証明】は、x,yが共に有理数とならないということです。
581日高
2020/06/28(日) 14:34:30.05ID:6XyAxBIn (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
582日高
2020/06/28(日) 14:35:22.31ID:6XyAxBIn (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
583132人目の素数さん
2020/06/28(日) 15:50:17.65ID:kHWXx7GJ >>581
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
p=3のとき、
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))は(3)の解で、xが無理数、yが無理数である。x/y=2である。(※)
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))、y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))は(3)の解で、xが無理数、yが無理数である。x/y=3である。(※)
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))は(3)の解で、xが無理数、yが無理数である。x/y=4である。(※)
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))は(3)の解で、xが無理数、yが無理数である。x/y=5である。(※)
このようなx/yが有理数となるような(3)の解は無限にある。(※)
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
p=3のとき、
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))は(3)の解で、xが無理数、yが無理数である。x/y=2である。(※)
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))、y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))は(3)の解で、xが無理数、yが無理数である。x/y=3である。(※)
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))は(3)の解で、xが無理数、yが無理数である。x/y=4である。(※)
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))は(3)の解で、xが無理数、yが無理数である。x/y=5である。(※)
このようなx/yが有理数となるような(3)の解は無限にある。(※)
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
584日高
2020/06/28(日) 16:09:55.37ID:6XyAxBIn >575
x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx,y,zは、整数比となりません。
という主張の証明をお願いします。
xを、有理数とすると、z=x+p^{1/(p-1)}が、無理数となるので、x,y,zは、整数比となりません。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx,y,zは、整数比となりません。
という主張の証明をお願いします。
xを、有理数とすると、z=x+p^{1/(p-1)}が、無理数となるので、x,y,zは、整数比となりません。
585日高
2020/06/28(日) 16:15:59.11ID:6XyAxBIn >539
∴pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
反例はp=3,x=y=1,z=2。(3)の無理数解x=y=√3,z=2√3がこれに対応する。
式が、違います。
∴pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
反例はp=3,x=y=1,z=2。(3)の無理数解x=y=√3,z=2√3がこれに対応する。
式が、違います。
586日高
2020/06/28(日) 16:20:33.76ID:6XyAxBIn >577
x,yは、共に有理数となりませんので
有理数解があるはずだ
という推論は明らかに間違っています。
違います。
x,yは、共に有理数とならないので、(3)に有理数解はない。
です。
x,yは、共に有理数となりませんので
有理数解があるはずだ
という推論は明らかに間違っています。
違います。
x,yは、共に有理数とならないので、(3)に有理数解はない。
です。
587日高
2020/06/28(日) 16:22:51.88ID:6XyAxBIn >578
ていうか、ちゃんと読めばわかるのにいちいち聞き返して、ちゃんと読めばわかるのにいちいち同じことを何度も書かせて
やっぱりあなたはこの掲示板に嫌がらせがしたいのですか?
違います。わからないので、同じことを何度も、聞いています。
ていうか、ちゃんと読めばわかるのにいちいち聞き返して、ちゃんと読めばわかるのにいちいち同じことを何度も書かせて
やっぱりあなたはこの掲示板に嫌がらせがしたいのですか?
違います。わからないので、同じことを何度も、聞いています。
588132人目の素数さん
2020/06/28(日) 16:39:32.72ID:guOOW4c7 ときどき「わかりました」って書いてるけど、そう書いた部分はわかっているの?
589132人目の素数さん
2020/06/28(日) 16:43:20.82ID:kHWXx7GJ >>586
何も違ってませんよ?
あなたの言う通り
> x,yは、共に有理数とならないので、(3)に有理数解はない。
ですので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
は間違いです。
有理数解がないと分かっているのに有理数解があるはずだと考えるわけがありません。
何も違ってませんよ?
あなたの言う通り
> x,yは、共に有理数とならないので、(3)に有理数解はない。
ですので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
は間違いです。
有理数解がないと分かっているのに有理数解があるはずだと考えるわけがありません。
590132人目の素数さん
2020/06/28(日) 16:54:55.72ID:guOOW4c7 >>569 日高
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx,y,zは、整数比とならないので、循環しないと、思います。
それって、フェルマーの最終定理と同値な命題ですよ。わかってますか?
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx,y,zは、整数比とならないので、循環しないと、思います。
それって、フェルマーの最終定理と同値な命題ですよ。わかってますか?
591132人目の素数さん
2020/06/28(日) 16:58:43.66ID:guOOW4c7 >>585 日高
> >539
> ∴pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
> 反例はp=3,x=y=1,z=2。(3)の無理数解x=y=√3,z=2√3がこれに対応する。
>
> 式が、違います。
そう、式が違います。ではx^p+y^p=z^pの場合はなぜこの現象が起こらないのですか?
証明してください。
> >539
> ∴pが奇素数のとき、x^p+7y^p=z^pは、0を除く有理数の解を持たない。
> 反例はp=3,x=y=1,z=2。(3)の無理数解x=y=√3,z=2√3がこれに対応する。
>
> 式が、違います。
そう、式が違います。ではx^p+y^p=z^pの場合はなぜこの現象が起こらないのですか?
証明してください。
592132人目の素数さん
2020/06/28(日) 18:02:46.47ID:wqbf/RH3 予想: 式が、違うからです。
593132人目の素数さん
2020/06/28(日) 18:22:29.56ID:1qy0EaUs >>584
xを,有理数とすると,z=x+p^{1/(p-1)}が,無理数となるので,x,y,zは,整数比となりません。
はい,私もまったくその通りだと思います。
xが有理数の場合は,まさに,まったく,完全に正しい主張です。
このスレであなたの証明を批判している誰であってもその正しさを疑うことはできません。
疑うとしたらサル並の知性も存在しないことを自ら認めてしまうことになるでしょう。
その主張を認め,屈服しましょう。
日高氏もその主張が完全に認められ,満足されたことと思うので,
こんどは,xが無理数の場合の証明をお願いします
xを,有理数とすると,z=x+p^{1/(p-1)}が,無理数となるので,x,y,zは,整数比となりません。
はい,私もまったくその通りだと思います。
xが有理数の場合は,まさに,まったく,完全に正しい主張です。
このスレであなたの証明を批判している誰であってもその正しさを疑うことはできません。
疑うとしたらサル並の知性も存在しないことを自ら認めてしまうことになるでしょう。
その主張を認め,屈服しましょう。
日高氏もその主張が完全に認められ,満足されたことと思うので,
こんどは,xが無理数の場合の証明をお願いします
594日高
2020/06/29(月) 06:55:39.66ID:grg5/1fA >588
ときどき「わかりました」って書いてるけど、そう書いた部分はわかっているの?
はい。
ときどき「わかりました」って書いてるけど、そう書いた部分はわかっているの?
はい。
595日高
2020/06/29(月) 07:04:02.72ID:grg5/1fA >589
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
は間違いです。
間違いの、理由を教えて下さい。
有理数解がないと分かっているのに有理数解があるはずだと考えるわけがありません。
有理数解があるはずだとは、考えていません。
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
は間違いです。
間違いの、理由を教えて下さい。
有理数解がないと分かっているのに有理数解があるはずだと考えるわけがありません。
有理数解があるはずだとは、考えていません。
596日高
2020/06/29(月) 07:08:52.52ID:grg5/1fA >590
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx,y,zは、整数比とならないので、循環しないと、思います。
それって、フェルマーの最終定理と同値な命題ですよ。わかってますか?
「それって、フェルマーの最終定理と同値な命題ですよ。」を、
詳しく説明して下さい。
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)のx,y,zは、整数比とならないので、循環しないと、思います。
それって、フェルマーの最終定理と同値な命題ですよ。わかってますか?
「それって、フェルマーの最終定理と同値な命題ですよ。」を、
詳しく説明して下さい。
597日高
2020/06/29(月) 07:11:49.76ID:grg5/1fA (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
598日高
2020/06/29(月) 07:12:55.01ID:grg5/1fA (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
599日高
2020/06/29(月) 07:14:51.23ID:grg5/1fA >591
そう、式が違います。ではx^p+y^p=z^pの場合はなぜこの現象が起こらないのですか?
証明してください。
597を、読んで下さい。
そう、式が違います。ではx^p+y^p=z^pの場合はなぜこの現象が起こらないのですか?
証明してください。
597を、読んで下さい。
600日高
2020/06/29(月) 07:17:02.11ID:grg5/1fA >592
予想: 式が、違うからです。
はい。
予想: 式が、違うからです。
はい。
601日高
2020/06/29(月) 07:32:38.28ID:grg5/1fA >593
こんどは,xが無理数の場合の証明をお願いします
xが無理数で、zが、有理数となっても、x:zは、整数比となりません。
もし、xが無理数で、zが、無理数となり、yも無理数で、x:y:zが、整数比となった
場合、共通の無理数で割ると、x,y,zは、有理数となります。
しかし、xが有理数の場合は、zが、無理数となるので、この場合は、起こりません。
こんどは,xが無理数の場合の証明をお願いします
xが無理数で、zが、有理数となっても、x:zは、整数比となりません。
もし、xが無理数で、zが、無理数となり、yも無理数で、x:y:zが、整数比となった
場合、共通の無理数で割ると、x,y,zは、有理数となります。
しかし、xが有理数の場合は、zが、無理数となるので、この場合は、起こりません。
602132人目の素数さん
2020/06/29(月) 08:47:46.47ID:zDZb3nCp >>601
>xが無理数で、zが、有理数となっても、x:zは、整数比となりません。
(3)式の右辺が無理数となる場合が前提ですから,zが有理数の場合は言及していただかなくてかまいません。
xが無理数で,zが有理数の場合 x:zが整数比とならないのは,当たり前すぎます。(3)式を参照する必要すらありません。
しかし,わざわざご指摘いただいたのですから,感謝の辞を述べさせていただきます。
「ご指摘ありがとうございます」
しかしながら,以後「zが有理数の場合は・・・」という方向でのご指摘はご無用に願います。
>もし、xが無理数で、zが、無理数となり、yも無理数で、x:y:zが、整数比となった
>場合、共通の無理数で割ると、x,y,zは、有理数となります。
>しかし、xが有理数の場合は、zが、無理数となるので、この場合は、起こりません。
3行目の,「xが有理数の場合は」はというのは,共通の無理数で割った場合ですよね。
あなたも2行目で認められるように,この場合zも共通した無理数で割るのだから,zも有理数になります。
したがって,「zが、無理数となるので,この場合は起こりません。」というのは,ちょっとした間違いですよね。
ちょっとした間違いは誰にでもあります。
気にする必要はありません。
引き続いて,x,y,zがともに無理数の場合の証明をお願いします。
(3)式に代入する,x,yがともに無理数である場合ですよ。先取りしてx,yを有理数にしてしまってはいけません。
再び「ちょっとした間違い」を引き起こすことになります。
ご用心,ご用心。
>xが無理数で、zが、有理数となっても、x:zは、整数比となりません。
(3)式の右辺が無理数となる場合が前提ですから,zが有理数の場合は言及していただかなくてかまいません。
xが無理数で,zが有理数の場合 x:zが整数比とならないのは,当たり前すぎます。(3)式を参照する必要すらありません。
しかし,わざわざご指摘いただいたのですから,感謝の辞を述べさせていただきます。
「ご指摘ありがとうございます」
しかしながら,以後「zが有理数の場合は・・・」という方向でのご指摘はご無用に願います。
>もし、xが無理数で、zが、無理数となり、yも無理数で、x:y:zが、整数比となった
>場合、共通の無理数で割ると、x,y,zは、有理数となります。
>しかし、xが有理数の場合は、zが、無理数となるので、この場合は、起こりません。
3行目の,「xが有理数の場合は」はというのは,共通の無理数で割った場合ですよね。
あなたも2行目で認められるように,この場合zも共通した無理数で割るのだから,zも有理数になります。
したがって,「zが、無理数となるので,この場合は起こりません。」というのは,ちょっとした間違いですよね。
ちょっとした間違いは誰にでもあります。
気にする必要はありません。
引き続いて,x,y,zがともに無理数の場合の証明をお願いします。
(3)式に代入する,x,yがともに無理数である場合ですよ。先取りしてx,yを有理数にしてしまってはいけません。
再び「ちょっとした間違い」を引き起こすことになります。
ご用心,ご用心。
603132人目の素数さん
2020/06/29(月) 08:59:59.60ID:zDZb3nCp >>602(続き)
どうしても,左辺のx,yを共通した無理数で割った有理数を代入したいならば,右辺も共通した無理数で割っておいて下さい。
X^p+Y^p=Z^p (X,Y,Zはともに有理数)という式が現れると思いますが,
なあに,これを満たすX,Y,Zがないことを証明すればよいだけです。
日高さんにとっては簡単なことでしょう。
がんばって証明してみて下さい。
どうしても,左辺のx,yを共通した無理数で割った有理数を代入したいならば,右辺も共通した無理数で割っておいて下さい。
X^p+Y^p=Z^p (X,Y,Zはともに有理数)という式が現れると思いますが,
なあに,これを満たすX,Y,Zがないことを証明すればよいだけです。
日高さんにとっては簡単なことでしょう。
がんばって証明してみて下さい。
604日高
2020/06/29(月) 09:35:14.11ID:grg5/1fA >579
x^p+y^p=(x+p^{1/(p-1)})^p…(3)という式は,x^p+y^p=z^pという式の一例でしかありません。
したがって(3)式で,x:y:zが整数比(自然数比)となる場合がないことを示せたとしても
z=x+p^{1/(p-1)}という形以外の場合にはx:y:zが整数比になる場合があるかも知れませから
z=x+p^{1/(p-1)}という形以外の場合は、z=x+(ap)^{1/(p-1)}となります。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)という式は,x^p+y^p=z^pという式の一例でしかありません。
したがって(3)式で,x:y:zが整数比(自然数比)となる場合がないことを示せたとしても
z=x+p^{1/(p-1)}という形以外の場合にはx:y:zが整数比になる場合があるかも知れませから
z=x+p^{1/(p-1)}という形以外の場合は、z=x+(ap)^{1/(p-1)}となります。
605日高
2020/06/29(月) 09:47:06.98ID:grg5/1fA >602
>もし、xが無理数で、zが、無理数となり、yも無理数で、x:y:zが、整数比となった
>場合、共通の無理数で割ると、x,y,zは、有理数となります。
>しかし、xが有理数の場合は、zが、無理数となるので、この場合は、起こりません。
3行目の,「xが有理数の場合は」はというのは,共通の無理数で割った場合ですよね。
違います。(3)の場合です。
>もし、xが無理数で、zが、無理数となり、yも無理数で、x:y:zが、整数比となった
>場合、共通の無理数で割ると、x,y,zは、有理数となります。
>しかし、xが有理数の場合は、zが、無理数となるので、この場合は、起こりません。
3行目の,「xが有理数の場合は」はというのは,共通の無理数で割った場合ですよね。
違います。(3)の場合です。
606132人目の素数さん
2020/06/29(月) 10:09:08.54ID:zDZb3nCp >>605
その値で割ると,x,y,zがともに有理化される共通の無理数をqとしておきます。
「qで割ると共通して有理化される」
これを忘れないで下さい!
日高さんがおっしゃるのは,(3)式の左側に1/(q^n)をかけるということですよね
(左辺式)*1/(q^n)=(x^p + y^p)/(q^p)=x^p/q^p + y^p/q^p = (x/q)^p + (y/q)^p...(A) となります。
(右辺式)がそのままならば,あなたのおっしゃることはその通りです。
でも,(左辺式)にある値をかけるのならば,等式性を維持するためには(右辺式)にも同じ値をかけないと!!!
小学生にもわかる理屈です。
日高さんほどの方が,これを忘れておられたというのはちょっとしたミスですよね
ちょっとしたミスは誰にでもあります。
気にする必要はありません。
ミスを修正して先に進めばよいだけです。
で,
z=(x+p^{1/(p-1)})とおくと
(右辺式)=z^p なので
(右辺式)*1/(q^p)=(z^p)/(q^p)=(z/q)^p ... (B)
(3)式は(A)(B)あわせて
(x/q)^p + (y/q)^p=(z/q)^p...(3)' となります。
あれっ???
私には(3)'式は
(有理数)^p + (有理数)^p = (有理数)^p
となる式を示しているように思えるのですが,日高さんはどう思われます
その値で割ると,x,y,zがともに有理化される共通の無理数をqとしておきます。
「qで割ると共通して有理化される」
これを忘れないで下さい!
日高さんがおっしゃるのは,(3)式の左側に1/(q^n)をかけるということですよね
(左辺式)*1/(q^n)=(x^p + y^p)/(q^p)=x^p/q^p + y^p/q^p = (x/q)^p + (y/q)^p...(A) となります。
(右辺式)がそのままならば,あなたのおっしゃることはその通りです。
でも,(左辺式)にある値をかけるのならば,等式性を維持するためには(右辺式)にも同じ値をかけないと!!!
小学生にもわかる理屈です。
日高さんほどの方が,これを忘れておられたというのはちょっとしたミスですよね
ちょっとしたミスは誰にでもあります。
気にする必要はありません。
ミスを修正して先に進めばよいだけです。
で,
z=(x+p^{1/(p-1)})とおくと
(右辺式)=z^p なので
(右辺式)*1/(q^p)=(z^p)/(q^p)=(z/q)^p ... (B)
(3)式は(A)(B)あわせて
(x/q)^p + (y/q)^p=(z/q)^p...(3)' となります。
あれっ???
私には(3)'式は
(有理数)^p + (有理数)^p = (有理数)^p
となる式を示しているように思えるのですが,日高さんはどう思われます
607132人目の素数さん
2020/06/29(月) 10:25:38.72ID:pOH+gUG9 >601 日高
> もし、xが無理数で、zが、無理数となり、yも無理数で、x:y:zが、整数比となった
> 場合、共通の無理数で割ると、x,y,zは、有理数となります。
> しかし、xが有理数の場合は、zが、無理数となるので、この場合は、起こりません。
この現象はx^3+7y^3=z^3については起こります。
x^3+y^3=z^3では起こらないことの証明をお願いします。
> もし、xが無理数で、zが、無理数となり、yも無理数で、x:y:zが、整数比となった
> 場合、共通の無理数で割ると、x,y,zは、有理数となります。
> しかし、xが有理数の場合は、zが、無理数となるので、この場合は、起こりません。
この現象はx^3+7y^3=z^3については起こります。
x^3+y^3=z^3では起こらないことの証明をお願いします。
608日高
2020/06/29(月) 13:17:07.72ID:grg5/1fA (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
609日高
2020/06/29(月) 13:18:12.95ID:grg5/1fA (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
610日高
2020/06/29(月) 13:28:04.79ID:grg5/1fA >602
引き続いて,x,y,zがともに無理数の場合の証明をお願いします。
(3)式に代入する,x,yがともに無理数である場合ですよ。先取りしてx,yを有理数にしてしまってはいけません。
再び「ちょっとした間違い」を引き起こすことになります。
ご用心,ご用心。
もし、x,y,zが、無理数で、x:y:zが、整数比となった場合、
共通の無理数で割ると、x,y,zは、有理数となります。
しかし、(3)のxが有理数の場合は、zが、無理数となるので、この場合は、起こりません。
引き続いて,x,y,zがともに無理数の場合の証明をお願いします。
(3)式に代入する,x,yがともに無理数である場合ですよ。先取りしてx,yを有理数にしてしまってはいけません。
再び「ちょっとした間違い」を引き起こすことになります。
ご用心,ご用心。
もし、x,y,zが、無理数で、x:y:zが、整数比となった場合、
共通の無理数で割ると、x,y,zは、有理数となります。
しかし、(3)のxが有理数の場合は、zが、無理数となるので、この場合は、起こりません。
611日高
2020/06/29(月) 14:12:22.42ID:grg5/1fA >603
X^p+Y^p=Z^p (X,Y,Zはともに有理数)という式が現れると思いますが,
なあに,これを満たすX,Y,Zがないことを証明すればよいだけです。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)
(3)のxを、有理数とすると、zは、無理数となるので、
X^p+Y^p=Z^p (X,Y,Zはともに有理数)という式が現れると思いますが,
なあに,これを満たすX,Y,Zがないことを証明すればよいだけです。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)
(3)のxを、有理数とすると、zは、無理数となるので、
612日高
2020/06/29(月) 14:14:35.40ID:grg5/1fA >611
>603
X^p+Y^p=Z^p (X,Y,Zはともに有理数)という式が現れると思いますが,
なあに,これを満たすX,Y,Zがないことを証明すればよいだけです。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)
(3)のxを、有理数とすると、zは、無理数となるので、X^p+Y^p=Z^p (X,Y,Zはともに有理数)という式は、存在しません。
>603
X^p+Y^p=Z^p (X,Y,Zはともに有理数)という式が現れると思いますが,
なあに,これを満たすX,Y,Zがないことを証明すればよいだけです。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)
(3)のxを、有理数とすると、zは、無理数となるので、X^p+Y^p=Z^p (X,Y,Zはともに有理数)という式は、存在しません。
613日高
2020/06/29(月) 14:29:41.86ID:grg5/1fA >606
z=(x+p^{1/(p-1)})とおくと
(右辺式)=z^p なので
(右辺式)*1/(q^p)=(z^p)/(q^p)=(z/q)^p ... (B)
(3)式は(A)(B)あわせて
(x/q)^p + (y/q)^p=(z/q)^p...(3)' となります。
(x/q)^p + (y/q)^p=(x/q+p^{1/(p-1)})/q)^pとならないでしょうか?
z=(x+p^{1/(p-1)})とおくと
(右辺式)=z^p なので
(右辺式)*1/(q^p)=(z^p)/(q^p)=(z/q)^p ... (B)
(3)式は(A)(B)あわせて
(x/q)^p + (y/q)^p=(z/q)^p...(3)' となります。
(x/q)^p + (y/q)^p=(x/q+p^{1/(p-1)})/q)^pとならないでしょうか?
614日高
2020/06/29(月) 14:34:59.57ID:grg5/1fA >607
x^3+y^3=z^3では起こらないことの証明をお願いします。
x^3+y^3=(x+√3)^p…(3)となるので、x,y,zは、有理数となりません。
x^3+y^3=z^3では起こらないことの証明をお願いします。
x^3+y^3=(x+√3)^p…(3)となるので、x,y,zは、有理数となりません。
615132人目の素数さん
2020/06/29(月) 14:56:34.93ID:pOH+gUG9 >>614 日高
> >607
> x^3+y^3=z^3では起こらないことの証明をお願いします。
>
> x^3+y^3=(x+√3)^p…(3)となるので、x,y,zは、有理数となりません。
私はx,y,zが有理数になるとは言っていません。ごまかしです。
それに、7のついたほうもx^3+7y^3=(x+√3)^pになるんですけどね。
> >607
> x^3+y^3=z^3では起こらないことの証明をお願いします。
>
> x^3+y^3=(x+√3)^p…(3)となるので、x,y,zは、有理数となりません。
私はx,y,zが有理数になるとは言っていません。ごまかしです。
それに、7のついたほうもx^3+7y^3=(x+√3)^pになるんですけどね。
616日高
2020/06/29(月) 15:31:26.33ID:grg5/1fA >615
> x^3+y^3=z^3では起こらないことの証明をお願いします。
「起こらない」とは、どういうことを、指すのでしょうか?
> x^3+y^3=z^3では起こらないことの証明をお願いします。
「起こらない」とは、どういうことを、指すのでしょうか?
617132人目の素数さん
2020/06/29(月) 15:46:40.38ID:pOH+gUG9618132人目の素数さん
2020/06/29(月) 16:09:13.85ID:zDZb3nCp619日高
2020/06/29(月) 17:26:33.77ID:grg5/1fA (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
620日高
2020/06/29(月) 17:28:08.99ID:grg5/1fA (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
621日高
2020/06/29(月) 17:31:04.76ID:grg5/1fA >617
どうして、それがわからないなら、>>614を書く前に質問しないんだよ。
614でごまかせたらラッキー、とか思ってないか?
ごまかすつもりは、あもりません。
もう一度、お聞きします。
「起こらない」とは、どういうことを、指すのでしょうか?
どうして、それがわからないなら、>>614を書く前に質問しないんだよ。
614でごまかせたらラッキー、とか思ってないか?
ごまかすつもりは、あもりません。
もう一度、お聞きします。
「起こらない」とは、どういうことを、指すのでしょうか?
622日高
2020/06/29(月) 17:40:09.76ID:grg5/1fA >618
z=(x+p^{1/(p-1)})とおいています。
ちょっとした読み忘れだと思います。
(3)式は(A)(B)あわせて
(x/q)^p + (y/q)^p=(z/q)^p...(3)' と、
(x/q)^p + (y/q)^p=(x/q+p^{1/(p-1)})/q)^pになると思います。
z=(x+p^{1/(p-1)})とおいています。
ちょっとした読み忘れだと思います。
(3)式は(A)(B)あわせて
(x/q)^p + (y/q)^p=(z/q)^p...(3)' と、
(x/q)^p + (y/q)^p=(x/q+p^{1/(p-1)})/q)^pになると思います。
623132人目の素数さん
2020/06/29(月) 18:58:58.06ID:zDZb3nCp >>622
>>622
日高さん,大丈夫ですか? 夕方になっているのでお酒でも飲んで酔っ払っていらっしゃるんでしょうか?
あなたは,
z=(x+p^{1/(p-1)}) と置く式の意味,いや,代入するという意味を理解していらっいますか?
ちょっと不安になってきました。
□や△や○を使って,式を書いた方がわかりやすいでしょうか?
z=(x+p^{1/(p-1)}) とおいているんだから
(x/q)^p + (y/q)^p = (z/q)^p = (x/q+p^{1/(p-1)})/q)^p なのは明らかだと思うんですが。
結合法則とか分配法則とか (1/q)^p=1/(q^p) とか説明しないといけませんか?
>>622
日高さん,大丈夫ですか? 夕方になっているのでお酒でも飲んで酔っ払っていらっしゃるんでしょうか?
あなたは,
z=(x+p^{1/(p-1)}) と置く式の意味,いや,代入するという意味を理解していらっいますか?
ちょっと不安になってきました。
□や△や○を使って,式を書いた方がわかりやすいでしょうか?
z=(x+p^{1/(p-1)}) とおいているんだから
(x/q)^p + (y/q)^p = (z/q)^p = (x/q+p^{1/(p-1)})/q)^p なのは明らかだと思うんですが。
結合法則とか分配法則とか (1/q)^p=1/(q^p) とか説明しないといけませんか?
624132人目の素数さん
2020/06/29(月) 19:35:32.91ID:zDZb3nCp >>623
大変失礼しました。
(x/q)^p + (y/q)^p=(x/q+p^{1/(p-1)})/q)^pとならないでしょうか?
であって,
(x/q)^p + (y/q)^p=(x/q+p^{1/(p-1)}/q)^pとならないでしょうか?
ではないんですね。
) が一つ余分なので式の意味が不明ですが,下の意味なら,「そうも表記できます」というのが答えになります。
もちろん (z/q)^p = (x/q+p^{1/(p-1)}/q)^p なので,単に書き換えただけですが。
それで,そう書き換えることに何の意味があるんですか?
当然,(x/q+p^{1/(p-1)}/q)も有理化されてしまうんですよ。
大変失礼しました。
(x/q)^p + (y/q)^p=(x/q+p^{1/(p-1)})/q)^pとならないでしょうか?
であって,
(x/q)^p + (y/q)^p=(x/q+p^{1/(p-1)}/q)^pとならないでしょうか?
ではないんですね。
) が一つ余分なので式の意味が不明ですが,下の意味なら,「そうも表記できます」というのが答えになります。
もちろん (z/q)^p = (x/q+p^{1/(p-1)}/q)^p なので,単に書き換えただけですが。
それで,そう書き換えることに何の意味があるんですか?
当然,(x/q+p^{1/(p-1)}/q)も有理化されてしまうんですよ。
625132人目の素数さん
2020/06/29(月) 19:41:24.98ID:x1utEA08626日高
2020/06/29(月) 19:52:00.38ID:grg5/1fA >623
z=(x+p^{1/(p-1)}) とおいているんだから
(x/q)^p + (y/q)^p = (z/q)^p = (x/q+p^{1/(p-1)})/q)^p なのは明らかだと思うんですが。
結合法則とか分配法則とか (1/q)^p=1/(q^p) とか説明しないといけませんか?
明らかです。
結合法則とか分配法則とか (1/q)^p=1/(q^p) とか説明しないといけませんか?
なぜ、(1/q)^p=1/(q^p)の説明が必要なのでしょうか?
z=(x+p^{1/(p-1)}) とおいているんだから
(x/q)^p + (y/q)^p = (z/q)^p = (x/q+p^{1/(p-1)})/q)^p なのは明らかだと思うんですが。
結合法則とか分配法則とか (1/q)^p=1/(q^p) とか説明しないといけませんか?
明らかです。
結合法則とか分配法則とか (1/q)^p=1/(q^p) とか説明しないといけませんか?
なぜ、(1/q)^p=1/(q^p)の説明が必要なのでしょうか?
627日高
2020/06/29(月) 19:57:25.13ID:grg5/1fA628日高
2020/06/29(月) 20:05:28.42ID:grg5/1fA >624
(x/q)^p + (y/q)^p=(x/q+p^{1/(p-1)}/q)^pとならないでしょうか?
すみません。間違えました。
(x/q)^p + (y/q)^p=(x/q+p^{1/(p-1)}/q)^pです。
当然,(x/q+p^{1/(p-1)}/q)も有理化されてしまうんですよ。
どういう意味でしょうか?
(x/q)^p + (y/q)^p=(x/q+p^{1/(p-1)}/q)^pとならないでしょうか?
すみません。間違えました。
(x/q)^p + (y/q)^p=(x/q+p^{1/(p-1)}/q)^pです。
当然,(x/q+p^{1/(p-1)}/q)も有理化されてしまうんですよ。
どういう意味でしょうか?
629日高
2020/06/29(月) 20:06:27.27ID:grg5/1fA (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
630日高
2020/06/29(月) 20:07:12.58ID:grg5/1fA (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
631132人目の素数さん
2020/06/29(月) 20:11:28.63ID:x1utEA08632日高
2020/06/29(月) 20:22:16.68ID:grg5/1fA633132人目の素数さん
2020/06/29(月) 20:29:07.21ID:x1utEA08634132人目の素数さん
2020/06/29(月) 20:39:36.27ID:zDZb3nCp >>628
この話は
>>605 あるいはそれ以前からの続きであって,
その値で割るとx,y,zがともに有理化される共通の無理数をqとしているのが前提だと言うことは理解されていますよね。
わかりやすいように,x/q=X , y/q=Y , z/q=Z (X,Y,Zは有理数)とすると
z=x+p^{1/(p-1)} なんですから,Z = z/q = (x+p^{1/(p-1)})/q = x/q+p^{1/(p-1)}/q
となり,
x/q+p^{1/(p-1)}/q も有理化されます。
Z^p=(z/q)^p={x/q+p^{1/(p-1)}/q}^p
となりますから,すなわち
(x/q)^p + (y/q)^p = (z/q)^p
⇔ (x/q)^p + (y/q)^p = (x/q+p^{1/(p-1)}/q)^p
⇔ X^p + Y^p = (x/q+p^{1/(p-1)}/q)^p
⇔ X^p + Y^p = Z^p
(X,Y,Zは有理数)となります。
こんな簡単な代入の理解は,日高さんなら簡単でしょう。
何か問題がありますか?
この話は
>>605 あるいはそれ以前からの続きであって,
その値で割るとx,y,zがともに有理化される共通の無理数をqとしているのが前提だと言うことは理解されていますよね。
わかりやすいように,x/q=X , y/q=Y , z/q=Z (X,Y,Zは有理数)とすると
z=x+p^{1/(p-1)} なんですから,Z = z/q = (x+p^{1/(p-1)})/q = x/q+p^{1/(p-1)}/q
となり,
x/q+p^{1/(p-1)}/q も有理化されます。
Z^p=(z/q)^p={x/q+p^{1/(p-1)}/q}^p
となりますから,すなわち
(x/q)^p + (y/q)^p = (z/q)^p
⇔ (x/q)^p + (y/q)^p = (x/q+p^{1/(p-1)}/q)^p
⇔ X^p + Y^p = (x/q+p^{1/(p-1)}/q)^p
⇔ X^p + Y^p = Z^p
(X,Y,Zは有理数)となります。
こんな簡単な代入の理解は,日高さんなら簡単でしょう。
何か問題がありますか?
635日高
2020/06/29(月) 20:42:53.02ID:grg5/1fA >633
あるいはできないふりをしてごまかそうとしているのですね。
お願いします。
あるいはできないふりをしてごまかそうとしているのですね。
お願いします。
636日高
2020/06/29(月) 20:51:55.48ID:grg5/1fA >634
(x/q)^p + (y/q)^p = (x/q+p^{1/(p-1)}/q)^p
までは、わかりますが、
(X,Y,Zは有理数)となります。
が、わかりません。
(x/q)^p + (y/q)^p = (x/q+p^{1/(p-1)}/q)^p
までは、わかりますが、
(X,Y,Zは有理数)となります。
が、わかりません。
637132人目の素数さん
2020/06/29(月) 21:47:37.14ID:zDZb3nCp >>636
つまり,
(x/q)^p + (y/q)^p = (z/q)^p
⇔ (x/q)^p + (y/q)^p = (x/q+p^{1/(p-1)}/q)^p
⇔ X^p + Y^p = (x/q+p^{1/(p-1)}/q)^p
⇔ X^p + Y^p = Z^p
(X,Y,Zは有理数)となります。
で,理解できるのは2行目までということですね。
まさか「その値で割るとx,y,zがともに有理化される共通の無理数をqとしている」
のだから
x/q(=Xとおく)が有理数になる,
てことがわからないんじゃないですよね。
日高さん,文字変数の置き換えってどういうことだかわかりますか?
ちょっと難しいのかな?
これがわからないと手の打ちようがないんですが。
つまり,
(x/q)^p + (y/q)^p = (z/q)^p
⇔ (x/q)^p + (y/q)^p = (x/q+p^{1/(p-1)}/q)^p
⇔ X^p + Y^p = (x/q+p^{1/(p-1)}/q)^p
⇔ X^p + Y^p = Z^p
(X,Y,Zは有理数)となります。
で,理解できるのは2行目までということですね。
まさか「その値で割るとx,y,zがともに有理化される共通の無理数をqとしている」
のだから
x/q(=Xとおく)が有理数になる,
てことがわからないんじゃないですよね。
日高さん,文字変数の置き換えってどういうことだかわかりますか?
ちょっと難しいのかな?
これがわからないと手の打ちようがないんですが。
638132人目の素数さん
2020/06/29(月) 21:54:16.70ID:x1utEA08639132人目の素数さん
2020/06/29(月) 22:13:51.37ID:zDZb3nCp640132人目の素数さん
2020/06/29(月) 23:03:23.23ID:zDZb3nCp というわけで,証明の真偽性の追求はひとまず置くとします。
私の場合は,です。
スレの住人の皆さんの行動を規制するつもりはありません。
そこで気になるのは,日高氏がこの証明を思いつかれた背景です。
なにせ,結論部分を除くと,フェルマーの最終定理が僅か5行で完結するというワイルズもびっくりの内容ですから。
全くの天才的な閃きによるものでしょうか。
何か参考にされた文献でもあるのでしょうか。
後者だとしたら,うなずける部分が多々あるのですが。
先ず,2行目
「(1)の両辺を積の形にすると、・・・」の部分が何の役にも立っていません。省けます。
証明を驚異的な4行完結にするために,この行は省いたほうがよいのではないでしょうか。
また,「r^(p-1)=pのとき・・・」という部分も,以下の証明で、そうおかなければならない必然性が理解できません。
x^p+y^p=z^p の右辺を無理数としたいようですが,それならば,
x^p+y^p=e^p (eは自然対数の底)...(1) とか
x^p+y^p=π^p (πは円周率)........(1) とか置いた方がエレガントで素敵なのではないでしょうか。
有理化したいときには,r=k/e (kは有理数)とかすればいいわけですし。
でも,何か参考文献がそうなっていた,というなら【証明】がそうなっている理由もわかります。
証明ができあがった過程を語っていただけませんか。
皆さんも大変興味をもたれるでしょうから。
私の場合は,です。
スレの住人の皆さんの行動を規制するつもりはありません。
そこで気になるのは,日高氏がこの証明を思いつかれた背景です。
なにせ,結論部分を除くと,フェルマーの最終定理が僅か5行で完結するというワイルズもびっくりの内容ですから。
全くの天才的な閃きによるものでしょうか。
何か参考にされた文献でもあるのでしょうか。
後者だとしたら,うなずける部分が多々あるのですが。
先ず,2行目
「(1)の両辺を積の形にすると、・・・」の部分が何の役にも立っていません。省けます。
証明を驚異的な4行完結にするために,この行は省いたほうがよいのではないでしょうか。
また,「r^(p-1)=pのとき・・・」という部分も,以下の証明で、そうおかなければならない必然性が理解できません。
x^p+y^p=z^p の右辺を無理数としたいようですが,それならば,
x^p+y^p=e^p (eは自然対数の底)...(1) とか
x^p+y^p=π^p (πは円周率)........(1) とか置いた方がエレガントで素敵なのではないでしょうか。
有理化したいときには,r=k/e (kは有理数)とかすればいいわけですし。
でも,何か参考文献がそうなっていた,というなら【証明】がそうなっている理由もわかります。
証明ができあがった過程を語っていただけませんか。
皆さんも大変興味をもたれるでしょうから。
641132人目の素数さん
2020/06/29(月) 23:40:42.85ID:x1utEA08 >>640
>>629 日高で説明します。
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
> (1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
「積の形」にするのは、「AB=CDならばA=C,B=D」が日高の公理だからです。
ついでに続けると,r=e(自然対数の底)とでもおき,
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
は(3)はrが超越数なので、yが有理数のとき、xは超越数となる。xが有理数のとき、yは超越数となる。
とすれば、どうかな……?
>>629 日高で説明します。
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
> (1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
「積の形」にするのは、「AB=CDならばA=C,B=D」が日高の公理だからです。
ついでに続けると,r=e(自然対数の底)とでもおき,
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
は(3)はrが超越数なので、yが有理数のとき、xは超越数となる。xが有理数のとき、yは超越数となる。
とすれば、どうかな……?
642132人目の素数さん
2020/06/30(火) 00:09:05.08ID:tpQ/xjnK643132人目の素数さん
2020/06/30(火) 00:26:52.97ID:tpQ/xjnK >>595
また、ちゃんと読めばわかるのにいちいち聞き返して、ちゃんと読めばわかるのにいちいち同じことを何度も書かせようとしていますね。
あなたの引用した
> 有理数解がないと分かっているのに有理数解があるはずだと考えるわけがありません。
が間違いの理由です。本当に読んでわからなかったのですか?
> 有理数解があるはずだとは、考えていません。
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
と考えていないのですか?それでは
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定しても
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないかもしれない。
つまり、無理数解があって有理数解がない場合がありえる、ということですね。
そこから得られる結論は
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定しても
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないかもしれない。
だから
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないけど
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないとはいえない。
です。
x:y:zが整数比となる無理数解があるかもしれないので、証明の中でその場合を考えてください。
また、ちゃんと読めばわかるのにいちいち聞き返して、ちゃんと読めばわかるのにいちいち同じことを何度も書かせようとしていますね。
あなたの引用した
> 有理数解がないと分かっているのに有理数解があるはずだと考えるわけがありません。
が間違いの理由です。本当に読んでわからなかったのですか?
> 有理数解があるはずだとは、考えていません。
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定すれば
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解があるはずだ
と考えていないのですか?それでは
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定しても
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないかもしれない。
つまり、無理数解があって有理数解がない場合がありえる、ということですね。
そこから得られる結論は
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があると仮定しても
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないかもしれない。
だから
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないけど
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないとはいえない。
です。
x:y:zが整数比となる無理数解があるかもしれないので、証明の中でその場合を考えてください。
644132人目の素数さん
2020/06/30(火) 00:36:46.53ID:tpQ/xjnK645日高
2020/06/30(火) 09:53:45.25ID:BAX4Z+S7 >639
関係ありませんが、
p=3,x/y=2のときのwの求め方
(2w)^3+w^3=(2w+√3)^3
2^3+1^3=(2+√3/w)^3
9=(2+√3/w)^3
9^(1/3)=2+√3/w
w=√3/{9^(1/3)-2}≒21.65
関係ありませんが、
p=3,x/y=2のときのwの求め方
(2w)^3+w^3=(2w+√3)^3
2^3+1^3=(2+√3/w)^3
9=(2+√3/w)^3
9^(1/3)=2+√3/w
w=√3/{9^(1/3)-2}≒21.65
646日高
2020/06/30(火) 10:00:15.71ID:BAX4Z+S7 >637
つまり,
(x/q)^p + (y/q)^p = (z/q)^p
⇔ (x/q)^p + (y/q)^p = (x/q+p^{1/(p-1)}/q)^p
⇔ X^p + Y^p = (x/q+p^{1/(p-1)}/q)^p
⇔ X^p + Y^p = Z^p
(X,Y,Zは有理数)となります。
で,理解できるのは2行目までということですね。
(x/q)^p + (y/q)^p = (z/q)^pのx,y,zが有理数のとき、成り立つならば
X^p + Y^p = Z^p(X,Y,Zは有理数)も、成り立ちます。
つまり,
(x/q)^p + (y/q)^p = (z/q)^p
⇔ (x/q)^p + (y/q)^p = (x/q+p^{1/(p-1)}/q)^p
⇔ X^p + Y^p = (x/q+p^{1/(p-1)}/q)^p
⇔ X^p + Y^p = Z^p
(X,Y,Zは有理数)となります。
で,理解できるのは2行目までということですね。
(x/q)^p + (y/q)^p = (z/q)^pのx,y,zが有理数のとき、成り立つならば
X^p + Y^p = Z^p(X,Y,Zは有理数)も、成り立ちます。
647日高
2020/06/30(火) 10:17:38.13ID:BAX4Z+S7 >640
また,「r^(p-1)=pのとき・・・」という部分も,以下の証明で、そうおかなければならない必然性が理解できません。
x^p+y^p=z^p の右辺を無理数としたいようですが,それならば,
x^p+y^p=e^p (eは自然対数の底)...(1) とか
x^p+y^p=π^p (πは円周率)........(1) とか置いた方がエレガントで素敵なのではないでしょうか。
有理化したいときには,r=k/e (kは有理数)とかすればいいわけですし。
aが、実数なので、k/e=(ap)^{1/(p-1)}とできますが、考え方の過程が、わかりにくいと、思います。(説明が、必要になります)
また,「r^(p-1)=pのとき・・・」という部分も,以下の証明で、そうおかなければならない必然性が理解できません。
x^p+y^p=z^p の右辺を無理数としたいようですが,それならば,
x^p+y^p=e^p (eは自然対数の底)...(1) とか
x^p+y^p=π^p (πは円周率)........(1) とか置いた方がエレガントで素敵なのではないでしょうか。
有理化したいときには,r=k/e (kは有理数)とかすればいいわけですし。
aが、実数なので、k/e=(ap)^{1/(p-1)}とできますが、考え方の過程が、わかりにくいと、思います。(説明が、必要になります)
648日高
2020/06/30(火) 10:21:35.35ID:BAX4Z+S7 >641
ついでに続けると,r=e(自然対数の底)とでもおき,
それでも、良いですが、式が一つ増えます。
ついでに続けると,r=e(自然対数の底)とでもおき,
それでも、良いですが、式が一つ増えます。
649132人目の素数さん
2020/06/30(火) 11:38:18.60ID:unfAi9RP >648 日高
「それでも、良いですが」って、君、
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
は証明できたの?
「それでも、良いですが」って、君、
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
は証明できたの?
650日高
2020/06/30(火) 12:06:57.11ID:BAX4Z+S7 >642
そしてこんなことを書いてある文献があるわけないのです。
当たり前なので、書いてある文献は、ありません。
そしてこんなことを書いてある文献があるわけないのです。
当たり前なので、書いてある文献は、ありません。
651日高
2020/06/30(火) 12:12:59.43ID:BAX4Z+S7 >643
x:y:zが整数比となる無理数解があるかもしれないので、証明の中でその場合を考えてください。
x:y:zが整数比となる無理数解があるならば、整数比となる有理数解が、あります。
x:y:zが整数比となる無理数解があるかもしれないので、証明の中でその場合を考えてください。
x:y:zが整数比となる無理数解があるならば、整数比となる有理数解が、あります。
652日高
2020/06/30(火) 12:21:46.00ID:BAX4Z+S7 p=3のとき、
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))は(3)の解で、xが無理数、yが無理数である。x/y=2である。(※)
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))、y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))は(3)の解で、xが無理数、yが無理数である。x/y=3である。(※)
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))は(3)の解で、xが無理数、yが無理数である。x/y=4である。(※)
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))は(3)の解で、xが無理数、yが無理数である。x/y=5である。(※)
このようなx/yが有理数となるような(3)の解は無限にある。(※)
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))は(3)の解で、xが無理数、yが無理数である。x/y=2である。(※)
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))、y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))は(3)の解で、xが無理数、yが無理数である。x/y=3である。(※)
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))は(3)の解で、xが無理数、yが無理数である。x/y=4である。(※)
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))は(3)の解で、xが無理数、yが無理数である。x/y=5である。(※)
このようなx/yが有理数となるような(3)の解は無限にある。(※)
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
653132人目の素数さん
2020/06/30(火) 12:31:04.17ID:n8cCAO30654132人目の素数さん
2020/06/30(火) 12:33:50.27ID:unfAi9RP655日高
2020/06/30(火) 12:48:20.54ID:BAX4Z+S7 >644
>583についてコメントをお願いします。
読めますよね?
652と思いますが、
rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
p=3のとき、x,yを√3で割ると、
(x/√3)^3+(y/√3)^3=(x/√3+r)^3
両辺に、√3^3を、かけると、
x^3+y^3=(x+√3*r)^3となるので、
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
となります。
>583についてコメントをお願いします。
読めますよね?
652と思いますが、
rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
p=3のとき、x,yを√3で割ると、
(x/√3)^3+(y/√3)^3=(x/√3+r)^3
両辺に、√3^3を、かけると、
x^3+y^3=(x+√3*r)^3となるので、
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
となります。
656日高
2020/06/30(火) 12:59:11.26ID:BAX4Z+S7 >649
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
は証明できたの?
x^p+y^p=(x+p^{1/(p-1)})^p…(3)
(3)はrが無理数なので、xを有理数とするとzは無理数となります。
x,yを、有理数とすると、式は、成り立ちません。
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
は証明できたの?
x^p+y^p=(x+p^{1/(p-1)})^p…(3)
(3)はrが無理数なので、xを有理数とするとzは無理数となります。
x,yを、有理数とすると、式は、成り立ちません。
657日高
2020/06/30(火) 13:01:03.30ID:BAX4Z+S7 >653
> 当たり前なので、書いてある文献は、ありません。
間違っているから書いてないのだ。呆け
間違いでは、ありません。
> 当たり前なので、書いてある文献は、ありません。
間違っているから書いてないのだ。呆け
間違いでは、ありません。
658132人目の素数さん
2020/06/30(火) 13:07:11.36ID:AATuKGtM >>657
> >653
> > 当たり前なので、書いてある文献は、ありません。
> 間違っているから書いてないのだ。呆け
>
> 間違いでは、ありません。
これも高木論法の「である」は「となる場合がある」なんでしょ
「A×B=C×Dならば、A=C、B=Dとなる場合がある」ならまあそうですね、となるけど、
そういう意味なら「A×B=C×Dならば、A=C、B=Dとなる場合がある」と書け、と言われるね。
「A×B=C×Dならば、A=C、B=Dである」
と書かれて
「A×B=C×Dならば、A=C、B=Dとなる場合がある」
と読み解く人はまともに数学やってる人にはいないから。
> >653
> > 当たり前なので、書いてある文献は、ありません。
> 間違っているから書いてないのだ。呆け
>
> 間違いでは、ありません。
これも高木論法の「である」は「となる場合がある」なんでしょ
「A×B=C×Dならば、A=C、B=Dとなる場合がある」ならまあそうですね、となるけど、
そういう意味なら「A×B=C×Dならば、A=C、B=Dとなる場合がある」と書け、と言われるね。
「A×B=C×Dならば、A=C、B=Dである」
と書かれて
「A×B=C×Dならば、A=C、B=Dとなる場合がある」
と読み解く人はまともに数学やってる人にはいないから。
659132人目の素数さん
2020/06/30(火) 13:14:21.81ID:n8cCAO30660日高
2020/06/30(火) 13:20:41.10ID:BAX4Z+S7 >654
> x:y:zが整数比となる無理数解があるならば、整数比となる有理数解が、あります。
どの方程式の解か述べないと無意味です。
x=kw,y=sw,z=twとおくと、(k,s,tは有理数、wは無理数)
x:y:zは、(kw):(sw):(tw)となります。
(kw):(sw):(tw)=k:s:tとなります。
> x:y:zが整数比となる無理数解があるならば、整数比となる有理数解が、あります。
どの方程式の解か述べないと無意味です。
x=kw,y=sw,z=twとおくと、(k,s,tは有理数、wは無理数)
x:y:zは、(kw):(sw):(tw)となります。
(kw):(sw):(tw)=k:s:tとなります。
661日高
2020/06/30(火) 13:25:20.84ID:BAX4Z+S7 >658
「A×B=C×Dならば、A=C、B=Dである」
と書かれて
「A×B=C×Dならば、A=C、B=Dとなる場合がある」
と読み解く人はまともに数学やってる人にはいないから。
「A×B=C×Dならば、A=Cのとき、B=Dとなる。」
です。
「A×B=C×Dならば、A=C、B=Dである」
と書かれて
「A×B=C×Dならば、A=C、B=Dとなる場合がある」
と読み解く人はまともに数学やってる人にはいないから。
「A×B=C×Dならば、A=Cのとき、B=Dとなる。」
です。
662日高
2020/06/30(火) 13:28:24.74ID:BAX4Z+S7 (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
663日高
2020/06/30(火) 13:30:44.72ID:BAX4Z+S7 (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
664132人目の素数さん
2020/06/30(火) 14:58:32.27ID:unfAi9RP665132人目の素数さん
2020/06/30(火) 15:02:27.21ID:unfAi9RP >>660 日高
> >654
> > x:y:zが整数比となる無理数解があるならば、整数比となる有理数解が、あります。
> どの方程式の解か述べないと無意味です。
>
> x=kw,y=sw,z=twとおくと、(k,s,tは有理数、wは無理数)
> x:y:zは、(kw):(sw):(tw)となります。
> (kw):(sw):(tw)=k:s:tとなります。
どの方程式の解か、書いていないじゃありませんか。
数学やる前に、コミュニケーション能力に問題ありませんか?
> >654
> > x:y:zが整数比となる無理数解があるならば、整数比となる有理数解が、あります。
> どの方程式の解か述べないと無意味です。
>
> x=kw,y=sw,z=twとおくと、(k,s,tは有理数、wは無理数)
> x:y:zは、(kw):(sw):(tw)となります。
> (kw):(sw):(tw)=k:s:tとなります。
どの方程式の解か、書いていないじゃありませんか。
数学やる前に、コミュニケーション能力に問題ありませんか?
666132人目の素数さん
2020/06/30(火) 15:04:13.45ID:unfAi9RP >661 日高
> 「A×B=C×Dならば、A=Cのとき、B=Dとなる。」
です。
2*3=1*6はどう解釈しますか?
> 「A×B=C×Dならば、A=Cのとき、B=Dとなる。」
です。
2*3=1*6はどう解釈しますか?
667日高
2020/06/30(火) 16:10:35.40ID:BAX4Z+S7 >664
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)
> x,yを、有理数とすると、式は、成り立ちません。
それ、証明できていませんよね?
x,yを、有理数とすると、左辺は有理数、右辺は無理数となります。
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)
> x,yを、有理数とすると、式は、成り立ちません。
それ、証明できていませんよね?
x,yを、有理数とすると、左辺は有理数、右辺は無理数となります。
668日高
2020/06/30(火) 16:20:05.75ID:BAX4Z+S7 >665
> > x:y:zが整数比となる無理数解があるならば、整数比となる有理数解が、あります。
> どの方程式の解か述べないと無意味です。
x=kw,y=sw,z=twとおくと、(k,s,tは有理数、wは無理数)
(kw)^p+(sw)^p=(tw)^pとなります。
両辺をw^pで、割ると
k^p+s^p=t^pとなります。
> > x:y:zが整数比となる無理数解があるならば、整数比となる有理数解が、あります。
> どの方程式の解か述べないと無意味です。
x=kw,y=sw,z=twとおくと、(k,s,tは有理数、wは無理数)
(kw)^p+(sw)^p=(tw)^pとなります。
両辺をw^pで、割ると
k^p+s^p=t^pとなります。
669132人目の素数さん
2020/06/30(火) 16:22:32.25ID:unfAi9RP >>667 日高
> >664
> > x^p+y^p=(x+p^{1/(p-1)})^p…(3)
> > x,yを、有理数とすると、式は、成り立ちません。
>
> それ、証明できていませんよね?
>
> x,yを、有理数とすると、左辺は有理数、右辺は無理数となります。
右辺が無理数になることは証明できたのですか?
> >664
> > x^p+y^p=(x+p^{1/(p-1)})^p…(3)
> > x,yを、有理数とすると、式は、成り立ちません。
>
> それ、証明できていませんよね?
>
> x,yを、有理数とすると、左辺は有理数、右辺は無理数となります。
右辺が無理数になることは証明できたのですか?
670132人目の素数さん
2020/06/30(火) 16:30:15.55ID:unfAi9RP >>668 日高
それは君の証明に穴があり得るということです。
それは君の証明に穴があり得るということです。
671日高
2020/06/30(火) 16:35:19.34ID:BAX4Z+S7 >666
> 「A×B=C×Dならば、A=Cのとき、B=Dとなる。」
です。
2*3=1*6はどう解釈しますか?
1*6を、2*1*6*(1/2)として、
2*1=C,6*(1/2)=Dとします。
A=2,B=3とすると、
「A×B=C×Dならば、A=Cのとき、B=Dとなります。」
> 「A×B=C×Dならば、A=Cのとき、B=Dとなる。」
です。
2*3=1*6はどう解釈しますか?
1*6を、2*1*6*(1/2)として、
2*1=C,6*(1/2)=Dとします。
A=2,B=3とすると、
「A×B=C×Dならば、A=Cのとき、B=Dとなります。」
672日高
2020/06/30(火) 16:47:04.26ID:BAX4Z+S7 >669
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)
右辺が無理数になることは証明できたのですか?
xが有理数のとき、(x+p^{1/(p-1)})^pを展開すると、
符号が全て+となるので、和が、有理数となることは、ありません。
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)
右辺が無理数になることは証明できたのですか?
xが有理数のとき、(x+p^{1/(p-1)})^pを展開すると、
符号が全て+となるので、和が、有理数となることは、ありません。
673日高
2020/06/30(火) 16:49:25.80ID:BAX4Z+S7 (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
674日高
2020/06/30(火) 16:50:26.61ID:BAX4Z+S7 (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
675132人目の素数さん
2020/06/30(火) 18:23:15.10ID:wFPSjU2s >>672
p=3のときはそれでもいいのですが,p≧5だったら「加算だけだから有理数にならない」のは自明とは言えなくなるんです。
補題として証明が必要になると考えておいた方がよいと思います。
スレの上の方で有理数体上の線型独立性を問題にしてるのは,そういう意味です。
ですので,思い切って上の方で提案されたように,d=e(eは自然対数の底)にして,(3)式を
x^p + y^p = (x+e)^p ... (3)
にしてしまいましょう。
証明の道すじが変わることもないと思いますし,
なーーーんの役にも立っていない無駄な複雑さが解消されて,エレガントで美しいですよ。
「右辺は,eが超越数だから,有理数にはならない」とかっこよく決められますしね。
p=3のときはそれでもいいのですが,p≧5だったら「加算だけだから有理数にならない」のは自明とは言えなくなるんです。
補題として証明が必要になると考えておいた方がよいと思います。
スレの上の方で有理数体上の線型独立性を問題にしてるのは,そういう意味です。
ですので,思い切って上の方で提案されたように,d=e(eは自然対数の底)にして,(3)式を
x^p + y^p = (x+e)^p ... (3)
にしてしまいましょう。
証明の道すじが変わることもないと思いますし,
なーーーんの役にも立っていない無駄な複雑さが解消されて,エレガントで美しいですよ。
「右辺は,eが超越数だから,有理数にはならない」とかっこよく決められますしね。
676日高
2020/06/30(火) 18:43:23.12ID:BAX4Z+S7 >675
「右辺は,eが超越数だから,有理数にはならない」とかっこよく決められますしね。
超越数とは、どんな数のことを、いうのでしょうか?
「右辺は,eが超越数だから,有理数にはならない」とかっこよく決められますしね。
超越数とは、どんな数のことを、いうのでしょうか?
677132人目の素数さん
2020/06/30(火) 18:50:27.53ID:wFPSjU2s >>676
それくらいは,ググってみて下さい。
でも,d=eとしておくと,「右辺は間違いなく無理数ですか」とかの突っ込みは入らなくなると思います。
よろしくご検討下さい。
それよりも>>675を書き込んだ後で気付きました。>>668は日高さんの書き込みなんですか。
おめでとうございます。
k^p+s^p=t^p (k,s,tは有理数)
(3)の検討によって,遂にこの式に到達されたんですね。
すばらしい。
(3)を検討していくと,この式に至る,と理解してもらうのにどれだけ苦労したか。
代入とか結合法則とかで「わかりません」といわれて諦めかけてました。
いやー,諦めるのはやはり少し早すぎましたね。
あとは,この式が成り立たない,ということの意味を理解するだけです。
あと,ほんの少しです。
がんばってみて下さい。
それくらいは,ググってみて下さい。
でも,d=eとしておくと,「右辺は間違いなく無理数ですか」とかの突っ込みは入らなくなると思います。
よろしくご検討下さい。
それよりも>>675を書き込んだ後で気付きました。>>668は日高さんの書き込みなんですか。
おめでとうございます。
k^p+s^p=t^p (k,s,tは有理数)
(3)の検討によって,遂にこの式に到達されたんですね。
すばらしい。
(3)を検討していくと,この式に至る,と理解してもらうのにどれだけ苦労したか。
代入とか結合法則とかで「わかりません」といわれて諦めかけてました。
いやー,諦めるのはやはり少し早すぎましたね。
あとは,この式が成り立たない,ということの意味を理解するだけです。
あと,ほんの少しです。
がんばってみて下さい。
678日高
2020/06/30(火) 18:59:21.72ID:BAX4Z+S7 >677
k^p+s^p=t^p (k,s,tは有理数)
あとは,この式が成り立たない,ということの意味を理解するだけです。
どういう意味でしょうか?
k^p+s^p=t^p (k,s,tは有理数)
あとは,この式が成り立たない,ということの意味を理解するだけです。
どういう意味でしょうか?
679132人目の素数さん
2020/06/30(火) 19:27:26.31ID:wFPSjU2s >>678
すみません。
気がせいてしまいました。
とりあえず式の意味のことなんか完全に忘れて下さい。
急いては事をし損じます。
昔の人は上手いことを言いますね。
気長に,慎重にです。
k^p+s^p=t^p (k,s,tは有理数)
ともかく,この式は成り立たない,とされているんですよね。
すみません。
気がせいてしまいました。
とりあえず式の意味のことなんか完全に忘れて下さい。
急いては事をし損じます。
昔の人は上手いことを言いますね。
気長に,慎重にです。
k^p+s^p=t^p (k,s,tは有理数)
ともかく,この式は成り立たない,とされているんですよね。
680日高
2020/06/30(火) 20:07:39.09ID:BAX4Z+S7 >679
k^p+s^p=t^p (k,s,tは有理数)
ともかく,この式は成り立たない,とされているんですよね。
k^p+s^p=t^p (k,s,tは有理数)
は、成り立ちません。
k^p+s^p=t^p (k,s,tは有理数)
ともかく,この式は成り立たない,とされているんですよね。
k^p+s^p=t^p (k,s,tは有理数)
は、成り立ちません。
681132人目の素数さん
2020/06/30(火) 20:14:08.61ID:wFPSjU2s >679
>k^p+s^p=t^p (k,s,tは有理数)
>
>ともかく,この式は成り立たない,とされているんですよね。
>
>k^p+s^p=t^p (k,s,tは有理数)
>は、成り立ちません。
ありがとうございます。
お言葉確かにいただきました。
スレを御覧の皆さん。
とうとうここまできました。
もうゴールしてもいいですよね。
>k^p+s^p=t^p (k,s,tは有理数)
>
>ともかく,この式は成り立たない,とされているんですよね。
>
>k^p+s^p=t^p (k,s,tは有理数)
>は、成り立ちません。
ありがとうございます。
お言葉確かにいただきました。
スレを御覧の皆さん。
とうとうここまできました。
もうゴールしてもいいですよね。
682132人目の素数さん
2020/06/30(火) 20:21:10.65ID:JchL4F79 次の関数を微分しなさいという問題があります。教えてください
y=3(x∧7+5x∧5+2x∧3+20)∧200
y=(4x∧5+2x∧6+10)(3x∧3+5x)∧10
y=3(x∧7+5x∧5+2x∧3+20)∧200
y=(4x∧5+2x∧6+10)(3x∧3+5x)∧10
683132人目の素数さん
2020/06/30(火) 20:23:00.06ID:JchL4F79 次の関数を微分しなさいという問題があります。教えてください
y=3(x∧7+5x∧5+2x∧3+20)∧200
y=(4x∧5+2x∧6+10)(3x∧3+5x)∧10
y=3(x∧7+5x∧5+2x∧3+20)∧200
y=(4x∧5+2x∧6+10)(3x∧3+5x)∧10
684日高
2020/06/30(火) 20:30:29.53ID:BAX4Z+S7 >683
次の関数を微分しなさいという問題があります。教えてください
y=3(x∧7+5x∧5+2x∧3+20)∧200
y=(4x∧5+2x∧6+10)(3x∧3+5x)∧10
わかりません。
次の関数を微分しなさいという問題があります。教えてください
y=3(x∧7+5x∧5+2x∧3+20)∧200
y=(4x∧5+2x∧6+10)(3x∧3+5x)∧10
わかりません。
685日高
2020/06/30(火) 20:32:42.95ID:BAX4Z+S7 (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
686日高
2020/06/30(火) 20:33:40.04ID:BAX4Z+S7 (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
687132人目の素数さん
2020/06/30(火) 20:38:20.34ID:TN5ne3b9 >>675
> x^p + y^p = (x+e)^p ... (3)
>
> にしてしまいましょう。
> 「右辺は,eが超越数だから,有理数にはならない」とかっこよく決められますしね。
同じことですが
「もしも有理数x,yに対し(3)が成立したらeが有理数係数の代数方程式の解となり超越性に反する」
とも言えます。
> x^p + y^p = (x+e)^p ... (3)
>
> にしてしまいましょう。
> 「右辺は,eが超越数だから,有理数にはならない」とかっこよく決められますしね。
同じことですが
「もしも有理数x,yに対し(3)が成立したらeが有理数係数の代数方程式の解となり超越性に反する」
とも言えます。
688日高
2020/06/30(火) 20:59:19.08ID:BAX4Z+S7 >687
「もしも有理数x,yに対し(3)が成立したらeが有理数係数の代数方程式の解となり超越性に反する」
とも言えます。
よくわかりません。
「もしも有理数x,yに対し(3)が成立したらeが有理数係数の代数方程式の解となり超越性に反する」
とも言えます。
よくわかりません。
690132人目の素数さん
2020/06/30(火) 23:19:06.35ID:1SdYkA/s 果たして (有理数 + e)^p が有理数にならないと言えるのかなと思ったけど、
>>687 が言えるのね。
>>687 が言えるのね。
691132人目の素数さん
2020/07/01(水) 00:42:51.65ID:ndT3IC/E >>651
> 有理数解があるはずだとは、考えていません。
> 有理数解が、あります。
矛盾しています。
何も条件がなく、他に解があろうがなかろうが関係なく、常に必ず
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないことが証明できるので
たとえどんな仮定を置いても
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3に整数比となる有理数解が、あります。
にはなりません。間違いです。
> 有理数解があるはずだとは、考えていません。
> 有理数解が、あります。
矛盾しています。
何も条件がなく、他に解があろうがなかろうが関係なく、常に必ず
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないことが証明できるので
たとえどんな仮定を置いても
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3に整数比となる有理数解が、あります。
にはなりません。間違いです。
692132人目の素数さん
2020/07/01(水) 02:29:58.75ID:ndT3IC/E >>655
> p=3のとき、x,yを√3で割ると、
なんでそんなことをするのですか?
> (x/√3)^3+(y/√3)^3=(x/√3+r)^3
この式のrっていったいどういうものですか?この式はいったいどこから湧いて出たのですか?
ちなみに
rが有理数、xが有理数、yが有理数の時x^p+y^p=(x+(ap)^{1/(p-1)})^p
このx、yは(3)の解のa^{1/(p-1)}倍らしいので、このx、yをa^{1/(p-1)}で割ったものは(3)の解であり、(3)に代入したものは等号が成り立つ。
ここで
r=(ap)^{1/(p-1)}
a=(r^(p-1))/p
a^(1/(p-1))=r/(p^(1/(p-1)))
なのでx、yをa^{1/(p-1)}で割ったもの(3)式に代入すると、
((x/r)(p^(1/(p-1))))^p+((y/r)(p^(1/(p-1))))^p=((x/r)(p^(1/(p-1)))+p^(1/(p-1)))^p…(3)
両辺に((p^{1/(p-1)})/r)^3をかけて
x^p+y^p=(x+r)^p…(3)
つまりx^p+y^p=(x+r)^pが成り立つときx^p+y^p=(x+r)^pが成り立つ。
なにも矛盾はありませんね。
> p=3のとき、x,yを√3で割ると、
なんでそんなことをするのですか?
> (x/√3)^3+(y/√3)^3=(x/√3+r)^3
この式のrっていったいどういうものですか?この式はいったいどこから湧いて出たのですか?
ちなみに
rが有理数、xが有理数、yが有理数の時x^p+y^p=(x+(ap)^{1/(p-1)})^p
このx、yは(3)の解のa^{1/(p-1)}倍らしいので、このx、yをa^{1/(p-1)}で割ったものは(3)の解であり、(3)に代入したものは等号が成り立つ。
ここで
r=(ap)^{1/(p-1)}
a=(r^(p-1))/p
a^(1/(p-1))=r/(p^(1/(p-1)))
なのでx、yをa^{1/(p-1)}で割ったもの(3)式に代入すると、
((x/r)(p^(1/(p-1))))^p+((y/r)(p^(1/(p-1))))^p=((x/r)(p^(1/(p-1)))+p^(1/(p-1)))^p…(3)
両辺に((p^{1/(p-1)})/r)^3をかけて
x^p+y^p=(x+r)^p…(3)
つまりx^p+y^p=(x+r)^pが成り立つときx^p+y^p=(x+r)^pが成り立つ。
なにも矛盾はありませんね。
693132人目の素数さん
2020/07/01(水) 02:57:08.38ID:ndT3IC/E >>692
ごめんなさい、2つの式の別々の数を1つの文字でごっちゃに書くという愚かなことをしてしまいました
すみません書き直します
このx、y、r、aは(5)式のx、y、r、a: rが有理数、xが有理数、yが有理数の時x^p+y^p=(x+(ap)^{1/(p-1)})^p
このx、y、r、aは(5)式のx、y、r、a: このx、yは(3)の解のa^{1/(p-1)}倍らしいので、このx、yをa^{1/(p-1)}で割ったものは(3)の解である。つまり、(3)に代入したものは等号が成り立つ。
ここで
このx、y、r、aは(5)式のx、y、r、a: r=(ap)^{1/(p-1)}
このx、y、r、aは(5)式のx、y、r、a: a=(r^(p-1))/p
このx、y、r、aは(5)式のx、y、r、a: a^(1/(p-1))=r/(p^(1/(p-1)))
このx、y、r、aは(5)式のx、y、r、a: なのでx、yをa^{1/(p-1)}で割ったもの(3)式に代入すると、
このx、y、r、aは(5)式のx、y、r、a: ((x/r)(p^(1/(p-1))))^p+((y/r)(p^(1/(p-1))))^p=((x/r)(p^(1/(p-1)))+p^(1/(p-1)))^p…(3)
このx、y、r、aは(5)式のx、y、r、a: 両辺に((p^{1/(p-1)})/r)^3をかけて
このx、y、r、aは(5)式のx、y、r、a: x^p+y^p=(x+r)^p…(3)
このx、y、r、aは(5)式のx、y、r、a: つまりx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)が成り立つときx^p+y^p=(x+r)^p…(3)が成り立つ。
なにも矛盾はありませんね。
ごめんなさい、2つの式の別々の数を1つの文字でごっちゃに書くという愚かなことをしてしまいました
すみません書き直します
このx、y、r、aは(5)式のx、y、r、a: rが有理数、xが有理数、yが有理数の時x^p+y^p=(x+(ap)^{1/(p-1)})^p
このx、y、r、aは(5)式のx、y、r、a: このx、yは(3)の解のa^{1/(p-1)}倍らしいので、このx、yをa^{1/(p-1)}で割ったものは(3)の解である。つまり、(3)に代入したものは等号が成り立つ。
ここで
このx、y、r、aは(5)式のx、y、r、a: r=(ap)^{1/(p-1)}
このx、y、r、aは(5)式のx、y、r、a: a=(r^(p-1))/p
このx、y、r、aは(5)式のx、y、r、a: a^(1/(p-1))=r/(p^(1/(p-1)))
このx、y、r、aは(5)式のx、y、r、a: なのでx、yをa^{1/(p-1)}で割ったもの(3)式に代入すると、
このx、y、r、aは(5)式のx、y、r、a: ((x/r)(p^(1/(p-1))))^p+((y/r)(p^(1/(p-1))))^p=((x/r)(p^(1/(p-1)))+p^(1/(p-1)))^p…(3)
このx、y、r、aは(5)式のx、y、r、a: 両辺に((p^{1/(p-1)})/r)^3をかけて
このx、y、r、aは(5)式のx、y、r、a: x^p+y^p=(x+r)^p…(3)
このx、y、r、aは(5)式のx、y、r、a: つまりx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)が成り立つときx^p+y^p=(x+r)^p…(3)が成り立つ。
なにも矛盾はありませんね。
694132人目の素数さん
2020/07/01(水) 03:33:00.62ID:ndT3IC/E >>693さらに間違えてました
> 両辺に((p^{1/(p-1)})/r)^3をかけて
のところは 両辺を((p^{1/(p-1)})/r)^3で割って
の間違いです。
ちなみにこのとき
(3)はもともとr=p^{1/(p-1)}が成り立つとき限定の式だったのが、一緒に((p^{1/(p-1)})/r)で割られたので
r=rが成り立つとき、に変化し、r=rは常に成り立つので、(3)は常に成り立つ式に変化しました。
> 両辺に((p^{1/(p-1)})/r)^3をかけて
のところは 両辺を((p^{1/(p-1)})/r)^3で割って
の間違いです。
ちなみにこのとき
(3)はもともとr=p^{1/(p-1)}が成り立つとき限定の式だったのが、一緒に((p^{1/(p-1)})/r)で割られたので
r=rが成り立つとき、に変化し、r=rは常に成り立つので、(3)は常に成り立つ式に変化しました。
695132人目の素数さん
2020/07/01(水) 06:28:32.11ID:OfGYD1/a r=p^{1/(p-1)}を定数、0≠aを実数として、
X^p+Y^p=Z^p の解(X, Y, Z)=(x, y, x+r)
a倍↓↑1/a倍
X^p+Y^p=Z^p の解(X, Y, Z)=(ax, ay, ax+ar)
あるいは
X^p+Y^p=Z^p の解(X, Y, Z)=(x/a, y/a, x/a+r)
a倍↓↑1/a倍
X^p+Y^p=Z^p の解(X, Y, Z)=(x, y, x+ar)
という解の対応を考えます。
Z-Xがどんな値でもaを取り替えれば対応できます。
X^p+Y^p=Z^p の解(X, Y, Z)=(ax, ay, ax+ar)が整数比だったとして、
abx, aby, abx+abr が整数となるようにbを取ると、
abrが整数でrが無理数なので、abは無理数です。
abx, abyが整数でabが無理数なので、xもyも無理数です。
したがって、対応する「X^p+Y^p=Z^p の解(X, Y, Z)=(x, y, x+r)」は有理数解ではありません。
これは「X^p+Y^p=Z^p の解(X, Y, Z)=(x, y, x+r)に有理数解は存在しない」と矛盾はしません。
「xもyも無理数」を見落として「矛盾する」と思い込んでいませんか?
X^p+Y^p=Z^p の解(X, Y, Z)=(x, y, x+r)
a倍↓↑1/a倍
X^p+Y^p=Z^p の解(X, Y, Z)=(ax, ay, ax+ar)
あるいは
X^p+Y^p=Z^p の解(X, Y, Z)=(x/a, y/a, x/a+r)
a倍↓↑1/a倍
X^p+Y^p=Z^p の解(X, Y, Z)=(x, y, x+ar)
という解の対応を考えます。
Z-Xがどんな値でもaを取り替えれば対応できます。
X^p+Y^p=Z^p の解(X, Y, Z)=(ax, ay, ax+ar)が整数比だったとして、
abx, aby, abx+abr が整数となるようにbを取ると、
abrが整数でrが無理数なので、abは無理数です。
abx, abyが整数でabが無理数なので、xもyも無理数です。
したがって、対応する「X^p+Y^p=Z^p の解(X, Y, Z)=(x, y, x+r)」は有理数解ではありません。
これは「X^p+Y^p=Z^p の解(X, Y, Z)=(x, y, x+r)に有理数解は存在しない」と矛盾はしません。
「xもyも無理数」を見落として「矛盾する」と思い込んでいませんか?
696日高
2020/07/01(水) 08:03:33.69ID:Z2Psq4E0 (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
697日高
2020/07/01(水) 08:04:45.77ID:Z2Psq4E0 (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
699日高
2020/07/01(水) 08:13:13.55ID:Z2Psq4E0 >690
果たして (有理数 + e)^p が有理数にならないと言えるのかなと思ったけど、
>>687 が言えるのね。
果たして (有理数 + e)^p が有理数にならないと言えるのかな
言う方法を、知りたいです。
果たして (有理数 + e)^p が有理数にならないと言えるのかなと思ったけど、
>>687 が言えるのね。
果たして (有理数 + e)^p が有理数にならないと言えるのかな
言う方法を、知りたいです。
700日高
2020/07/01(水) 08:15:48.85ID:Z2Psq4E0 >691
たとえどんな仮定を置いても
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3に整数比となる有理数解が、あります。
にはなりません。間違いです。
どうしてでしょうか?
たとえどんな仮定を置いても
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3に整数比となる有理数解が、あります。
にはなりません。間違いです。
どうしてでしょうか?
701132人目の素数さん
2020/07/01(水) 08:24:47.26ID:XPvRuz4X 日高さんの主張は
「A×B=C×Dならば
A=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」
ですよね?
この方法はあまり意味がないと思います。
たとえば、この方法を使って、次の実数xの方程式
x(x+1)=1×5 を解いてみてください。
「A×B=C×Dならば
A=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」
ですよね?
この方法はあまり意味がないと思います。
たとえば、この方法を使って、次の実数xの方程式
x(x+1)=1×5 を解いてみてください。
702日高
2020/07/01(水) 08:27:04.17ID:Z2Psq4E0 >692
> (x/√3)^3+(y/√3)^3=(x/√3+r)^3
この式のrっていったいどういうものですか?この式はいったいどこから湧いて出たのですか?
655です。x,y,rは、有理数です。
> (x/√3)^3+(y/√3)^3=(x/√3+r)^3
この式のrっていったいどういうものですか?この式はいったいどこから湧いて出たのですか?
655です。x,y,rは、有理数です。
703日高
2020/07/01(水) 09:58:12.44ID:Z2Psq4E0 >701
x(x+1)=1×5 を解いてみてください。
右辺の1×5を、変形して(√21-1)/2×5*(2/(√21-1)とします。
x=(√21-1)/2,(x+1)=5*(2/(√21-1)となります。
x(x+1)=1×5 を解いてみてください。
右辺の1×5を、変形して(√21-1)/2×5*(2/(√21-1)とします。
x=(√21-1)/2,(x+1)=5*(2/(√21-1)となります。
704132人目の素数さん
2020/07/01(水) 13:22:45.80ID:XPvRuz4X >>703
> 右辺の1×5を、変形して(√21-1)/2×5*(2/(√21-1)とします。
>x=(√21-1)/2,(x+1)=5*(2/(√21-1)となります。
(√21-1)/2 はどうやって求めましたか?
おそらく二次方程式の解の公式を用いたと思いますがいかがでしょう。
> 右辺の1×5を、変形して(√21-1)/2×5*(2/(√21-1)とします。
>x=(√21-1)/2,(x+1)=5*(2/(√21-1)となります。
(√21-1)/2 はどうやって求めましたか?
おそらく二次方程式の解の公式を用いたと思いますがいかがでしょう。
705132人目の素数さん
2020/07/01(水) 13:27:54.73ID:wWcfTRRv 数学掲示板群 ttp://x0000.net/forum.aspx?id=1
学術の巨大掲示板群 - アルファ・ラボ ttp://x0000.net
数学 物理学 化学 生物学 天文学 地理地学
IT 電子 工学 言語学 国語 方言 など
PS 連続と離散を統一した!
ttp://x0000.net/topic.aspx?id=3709-0
微分幾何学入門
ttp://x0000.net/topic.aspx?id=3694-0
学術の巨大掲示板群 - アルファ・ラボ ttp://x0000.net
数学 物理学 化学 生物学 天文学 地理地学
IT 電子 工学 言語学 国語 方言 など
PS 連続と離散を統一した!
ttp://x0000.net/topic.aspx?id=3709-0
微分幾何学入門
ttp://x0000.net/topic.aspx?id=3694-0
706日高
2020/07/01(水) 15:34:22.78ID:Z2Psq4E0 >704
(√21-1)/2 はどうやって求めましたか?
おそらく二次方程式の解の公式を用いたと思いますがいかがでしょう。
はい。
(√21-1)/2 はどうやって求めましたか?
おそらく二次方程式の解の公式を用いたと思いますがいかがでしょう。
はい。
707132人目の素数さん
2020/07/01(水) 16:10:40.00ID:ZWfqR3fb >>699
(3)を x^p + y^p = (x+e)^p にしてしまいましょう,と提案してしまったので,一応説明しておきます。
「eが超越数である」ことは既知であるとします。
具体的にどう示すのか,というのは「eが超越数であることの証明」と検索して下さい。
x=a (aは有理数)のとき,右辺式 (a+e)^p=k (kは有理数)が成り立っていると仮定します。
ここで,f(x)=(x+a)^p - k と定義すると,
(x+a)^p は xのp次多項式であり,aが有理数であることから,
二項定理により展開した各項の係数は有理数となり,kも有理数ですから
f(x)は有理係数の代数方程式となります。
ここで,x=eを代入してみると,f(e)=(e+a)^p - k = k-k = 0 となりますが,
この結果はeが f(x)=0 の解であることを示しているので,eが超越数であることに反します。
よって(a+e)^p=k (kは有理数)が成り立つとの仮定は誤りであり,(a+e)^pは無理数です。
すなわち,xが有理数の場合,右辺は無理数となります。
(3)を x^p + y^p = (x+e)^p にしてしまいましょう,と提案してしまったので,一応説明しておきます。
「eが超越数である」ことは既知であるとします。
具体的にどう示すのか,というのは「eが超越数であることの証明」と検索して下さい。
x=a (aは有理数)のとき,右辺式 (a+e)^p=k (kは有理数)が成り立っていると仮定します。
ここで,f(x)=(x+a)^p - k と定義すると,
(x+a)^p は xのp次多項式であり,aが有理数であることから,
二項定理により展開した各項の係数は有理数となり,kも有理数ですから
f(x)は有理係数の代数方程式となります。
ここで,x=eを代入してみると,f(e)=(e+a)^p - k = k-k = 0 となりますが,
この結果はeが f(x)=0 の解であることを示しているので,eが超越数であることに反します。
よって(a+e)^p=k (kは有理数)が成り立つとの仮定は誤りであり,(a+e)^pは無理数です。
すなわち,xが有理数の場合,右辺は無理数となります。
708132人目の素数さん
2020/07/01(水) 16:41:04.04ID:ZWfqR3fb709日高
2020/07/01(水) 20:22:11.13ID:Z2Psq4E0 >694
r=rが成り立つとき、に変化し、r=rは常に成り立つので、(3)は常に成り立つ式に変化しました。
すみません。意味を、読み取れません。
r=rが成り立つとき、に変化し、r=rは常に成り立つので、(3)は常に成り立つ式に変化しました。
すみません。意味を、読み取れません。
710日高
2020/07/01(水) 20:31:42.52ID:Z2Psq4E0 >705
数学掲示板群 ttp://x0000.net/forum.aspx?id=1
?
数学掲示板群 ttp://x0000.net/forum.aspx?id=1
?
711日高
2020/07/01(水) 20:34:11.56ID:Z2Psq4E0 >707
x=a (aは有理数)のとき,右辺式 (a+e)^p=k (kは有理数)が成り立っていると仮定します。
ここで,f(x)=(x+a)^p - k と定義すると,
(x+a)^p は xのp次多項式であり,aが有理数であることから,
二項定理により展開した各項の係数は有理数となり,kも有理数ですから
f(x)は有理係数の代数方程式となります。
ここで,x=eを代入してみると,f(e)=(e+a)^p - k = k-k = 0 となりますが,
この結果はeが f(x)=0 の解であることを示しているので,eが超越数であることに反します。
よって(a+e)^p=k (kは有理数)が成り立つとの仮定は誤りであり,(a+e)^pは無理数です。
すなわち,xが有理数の場合,右辺は無理数となります。
すみません。理解できません。
x=a (aは有理数)のとき,右辺式 (a+e)^p=k (kは有理数)が成り立っていると仮定します。
ここで,f(x)=(x+a)^p - k と定義すると,
(x+a)^p は xのp次多項式であり,aが有理数であることから,
二項定理により展開した各項の係数は有理数となり,kも有理数ですから
f(x)は有理係数の代数方程式となります。
ここで,x=eを代入してみると,f(e)=(e+a)^p - k = k-k = 0 となりますが,
この結果はeが f(x)=0 の解であることを示しているので,eが超越数であることに反します。
よって(a+e)^p=k (kは有理数)が成り立つとの仮定は誤りであり,(a+e)^pは無理数です。
すなわち,xが有理数の場合,右辺は無理数となります。
すみません。理解できません。
712日高
2020/07/01(水) 20:35:28.42ID:Z2Psq4E0 >708
くれぐれも右辺をそのまま展開してしまわないように。
e,e^2,e^3,....,e^p が出現して,その線型独立性が問題になってしまうので,
全然簡単になりませんw
すみません。理解できません。
くれぐれも右辺をそのまま展開してしまわないように。
e,e^2,e^3,....,e^p が出現して,その線型独立性が問題になってしまうので,
全然簡単になりませんw
すみません。理解できません。
713日高
2020/07/01(水) 20:37:43.30ID:Z2Psq4E0 (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
714日高
2020/07/01(水) 20:38:42.94ID:Z2Psq4E0 (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
715日高
2020/07/01(水) 21:06:57.00ID:Z2Psq4E0 >695
「xもyも無理数」を見落として「矛盾する」と思い込んでいませんか?
「xもyも無理数」とは、どの式のx,yでしょうか?
「矛盾する」とは、どういう意味でしょうか?
「xもyも無理数」を見落として「矛盾する」と思い込んでいませんか?
「xもyも無理数」とは、どの式のx,yでしょうか?
「矛盾する」とは、どういう意味でしょうか?
716132人目の素数さん
2020/07/01(水) 22:52:42.84ID:ndT3IC/E >>700
お願いですから書いてあることをちゃんと読んでください。
あなたの引用したhttp://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>691にちゃんと書いてあります。
> 何も条件がなく、他に解があろうがなかろうが関係なく、常に必ず
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないことが証明できるので
これが理由です。
にほんごわかりますか?
「なになに」なので、「なんとか」です。
とか
「なんとか」なのは、「なになに」だからです。
みたいに「なので」とか「ので」とか、「だから」とか「から」とかかいてあったら、そのまえの「なになに」のぶぶんが「なんとか」のりゆうです。
おねがいですからへんじをかきこむまえにせめておなじれすばんごうにかいてあることぐらいはちゃんとよんでください。
お願いですから書いてあることをちゃんと読んでください。
あなたの引用したhttp://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>691にちゃんと書いてあります。
> 何も条件がなく、他に解があろうがなかろうが関係なく、常に必ず
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないことが証明できるので
これが理由です。
にほんごわかりますか?
「なになに」なので、「なんとか」です。
とか
「なんとか」なのは、「なになに」だからです。
みたいに「なので」とか「ので」とか、「だから」とか「から」とかかいてあったら、そのまえの「なになに」のぶぶんが「なんとか」のりゆうです。
おねがいですからへんじをかきこむまえにせめておなじれすばんごうにかいてあることぐらいはちゃんとよんでください。
717132人目の素数さん
2020/07/01(水) 23:20:13.07ID:ndT3IC/E >>702
つまりこういうことですか
rが有理数、xが有理数、yが有理数の時、x^p+y^p=(x+r)^pとする。
ここで右辺のx+rというのはzそのものなのだけど、なぜかzはそのままにしてx、yだけを√3で割ると
(x/√3)^3+(y/√3)^3=(x/√3+r)^3
になる。
なんでzをそのままにして、xとyだけを√3で割ったのですか?その操作に何の意味があるのですか?
あなたには、あなたの間違いと同じ間違いをするとこんなにおかしいことが起こる、というのを見せても理解してもらえない、とよくわかっていますけど
i+j=1とする。
i,jを√3で割る。
i/√3+j/√3=1
両辺に√3をかける。
i+j=√3
よってi+j=1をみたす有理数i,jは存在しない。
と同じぐらい意味不明です。このxとyだけを√3で割る部分は。
つまりこういうことですか
rが有理数、xが有理数、yが有理数の時、x^p+y^p=(x+r)^pとする。
ここで右辺のx+rというのはzそのものなのだけど、なぜかzはそのままにしてx、yだけを√3で割ると
(x/√3)^3+(y/√3)^3=(x/√3+r)^3
になる。
なんでzをそのままにして、xとyだけを√3で割ったのですか?その操作に何の意味があるのですか?
あなたには、あなたの間違いと同じ間違いをするとこんなにおかしいことが起こる、というのを見せても理解してもらえない、とよくわかっていますけど
i+j=1とする。
i,jを√3で割る。
i/√3+j/√3=1
両辺に√3をかける。
i+j=√3
よってi+j=1をみたす有理数i,jは存在しない。
と同じぐらい意味不明です。このxとyだけを√3で割る部分は。
718132人目の素数さん
2020/07/01(水) 23:48:14.23ID:ndT3IC/E >>702
あ、あなたの間違いが分かりました
あなたは、>>696の中で「rが有理数のときは、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。」と書いている。
つまりrが有理数の時の式x^p+y^p=(x+r)^p…(5)の解をa^{1/(p-1)}でわると(3)の解になる
(x / a^{1/(p-1)})^p + (y / a^{1/(p-1)})^p = (x / a^{1/(p-1)})^p + p^{1/(p-1)} )^3…(3)(この式のp^{1/(p-1)} は無理数)
となる、ということだが、あなたはなぜか x^p+y^p=(x+r)^p…(5)の解をa^{1/(p-1)}で割ったものを(5)の解として代入した式を書いた
(x / a^{1/(p-1)})^p + (y / a^{1/(p-1)})^p = (x / a^{1/(p-1)})^p + r )^3…(5) (この式のrは有理数)
おかしいに決まってる
1+2=3のとき、1と2だけを2で割って
1/2+2/2=3
とするようなものだ
証明を書くなら等式の性質ぐらい守ってください。
あ、あなたの間違いが分かりました
あなたは、>>696の中で「rが有理数のときは、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。」と書いている。
つまりrが有理数の時の式x^p+y^p=(x+r)^p…(5)の解をa^{1/(p-1)}でわると(3)の解になる
(x / a^{1/(p-1)})^p + (y / a^{1/(p-1)})^p = (x / a^{1/(p-1)})^p + p^{1/(p-1)} )^3…(3)(この式のp^{1/(p-1)} は無理数)
となる、ということだが、あなたはなぜか x^p+y^p=(x+r)^p…(5)の解をa^{1/(p-1)}で割ったものを(5)の解として代入した式を書いた
(x / a^{1/(p-1)})^p + (y / a^{1/(p-1)})^p = (x / a^{1/(p-1)})^p + r )^3…(5) (この式のrは有理数)
おかしいに決まってる
1+2=3のとき、1と2だけを2で割って
1/2+2/2=3
とするようなものだ
証明を書くなら等式の性質ぐらい守ってください。
719132人目の素数さん
2020/07/02(木) 02:01:43.58ID:ghyip+ME 日高は計算もしないで願望を並べているだけだと思う。
720132人目の素数さん
2020/07/02(木) 07:58:53.83ID:nzf75L+r >>706
x(x+1)=5
>(√21-1)/2 はどうやって求めましたか?
>おそらく二次方程式の解の公式を用いたと思いますがいかがでしょう。
>はい。
解の公式を用いた時点でx(x+1)5の解は求まります。
つまり、「A×B=C×Dならば
A=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは役に立っていません。
あなたはどう考えますか?
x(x+1)=5
>(√21-1)/2 はどうやって求めましたか?
>おそらく二次方程式の解の公式を用いたと思いますがいかがでしょう。
>はい。
解の公式を用いた時点でx(x+1)5の解は求まります。
つまり、「A×B=C×Dならば
A=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは役に立っていません。
あなたはどう考えますか?
721日高
2020/07/02(木) 08:12:26.76ID:xY61k1nx >720
解の公式を用いた時点でx(x+1)5の解は求まります。
つまり、「A×B=C×Dならば
A=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは役に立っていません。
あなたはどう考えますか?
「A×B=C×Dならば
A=Cのとき、B=Dとなる。」とすれば、解が、求められるわけでは、ありません。
解の公式を用いた時点でx(x+1)5の解は求まります。
つまり、「A×B=C×Dならば
A=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは役に立っていません。
あなたはどう考えますか?
「A×B=C×Dならば
A=Cのとき、B=Dとなる。」とすれば、解が、求められるわけでは、ありません。
722日高
2020/07/02(木) 08:19:42.07ID:xY61k1nx (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
723日高
2020/07/02(木) 08:23:21.41ID:xY61k1nx (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
724日高
2020/07/02(木) 08:25:23.76ID:xY61k1nx >719
日高は計算もしないで願望を並べているだけだと思う。
どの部分のことでしょうか?
日高は計算もしないで願望を並べているだけだと思う。
どの部分のことでしょうか?
725日高
2020/07/02(木) 08:30:31.25ID:xY61k1nx >718
1+2=3のとき、1と2だけを2で割って
1/2+2/2=3
とするようなものだ
証明を書くなら等式の性質ぐらい守ってください。
どの部分のことでしょうか?
1+2=3のとき、1と2だけを2で割って
1/2+2/2=3
とするようなものだ
証明を書くなら等式の性質ぐらい守ってください。
どの部分のことでしょうか?
726日高
2020/07/02(木) 08:45:17.80ID:xY61k1nx >707
(3)を x^p + y^p = (x+e)^p にしてしまいましょう,と提案してしまったので,一応説明しておきます。
やはり、r=eとするのは、無理だと思います。
(3)を x^p + y^p = (x+e)^p にしてしまいましょう,と提案してしまったので,一応説明しておきます。
やはり、r=eとするのは、無理だと思います。
727132人目の素数さん
2020/07/02(木) 12:29:20.91ID:nzf75L+r >>721
> 「A×B=C×DならばA=Cのとき、B=Dとなる。」とすれば、解が、求められるわけでは、ありません。
では「A×B=C×DならばA=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは方程式x(x+1)=5に対して、何の役に立っているのでしょうか。教えてください。
> 「A×B=C×DならばA=Cのとき、B=Dとなる。」とすれば、解が、求められるわけでは、ありません。
では「A×B=C×DならばA=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは方程式x(x+1)=5に対して、何の役に立っているのでしょうか。教えてください。
728132人目の素数さん
2020/07/02(木) 12:32:38.56ID:AJN0me92729日高
2020/07/02(木) 13:31:40.72ID:xY61k1nx >728
> やはり、r=eとするのは、無理だと思います。
どういう意味でしょうか。
x^3+y^3=(x+e)^3とした場合、
rが、有理数の場合はどうなるのでしょうか?
> やはり、r=eとするのは、無理だと思います。
どういう意味でしょうか。
x^3+y^3=(x+e)^3とした場合、
rが、有理数の場合はどうなるのでしょうか?
730日高
2020/07/02(木) 13:41:06.75ID:xY61k1nx >727
では「A×B=C×DならばA=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは方程式x(x+1)=5に対して、何の役に立っているのでしょうか。教えてください。
x(x+1)=5の右辺が、文字の積ならば、「A×B=C×DならばA=Cのとき、B=Dとなる。」
が、役に立つと思います。
では「A×B=C×DならばA=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは方程式x(x+1)=5に対して、何の役に立っているのでしょうか。教えてください。
x(x+1)=5の右辺が、文字の積ならば、「A×B=C×DならばA=Cのとき、B=Dとなる。」
が、役に立つと思います。
731132人目の素数さん
2020/07/02(木) 16:31:29.27ID:AJN0me92732132人目の素数さん
2020/07/02(木) 17:42:48.97ID:AJN0me92733日高
2020/07/02(木) 17:43:12.17ID:xY61k1nx (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,y,zは(3)のときのx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,y,zは(3)のときのx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
734日高
2020/07/02(木) 17:46:12.59ID:xY61k1nx (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
735日高
2020/07/02(木) 18:07:40.82ID:xY61k1nx >731
r=p^{1/(p-1)}とした場合、rが有理数の場合はどうなるのでしょうか?
r=(ap)^{1/(p-1)}となります。
r=p^{1/(p-1)}とした場合、rが有理数の場合はどうなるのでしょうか?
r=(ap)^{1/(p-1)}となります。
736132人目の素数さん
2020/07/02(木) 18:09:32.69ID:AJN0me92 >>735 日高
r=eとした場合は?
r=eとした場合は?
737日高
2020/07/02(木) 18:17:19.39ID:xY61k1nx >732
> rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
> ∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)の両辺に、(a^{1/(p-1)})^3をかけると、
(x*a^{1/(p-1)})^3+(y*a^{1/(p-1)})^3=(x*a^{1/(p-1)}+(ap)^{1/(p-1)})^3
となります。
> rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
> ∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)の両辺に、(a^{1/(p-1)})^3をかけると、
(x*a^{1/(p-1)})^3+(y*a^{1/(p-1)})^3=(x*a^{1/(p-1)}+(ap)^{1/(p-1)})^3
となります。
738日高
2020/07/02(木) 18:24:18.20ID:xY61k1nx 736>
r=eとした場合は?
r=e,r=(ap)^{1/(p-1)}なので、
e=(ap)^{1/(p-1)}となるはずですが、
e=(ap)^{1/(p-1)}となりえるのでしょうか?
r=eとした場合は?
r=e,r=(ap)^{1/(p-1)}なので、
e=(ap)^{1/(p-1)}となるはずですが、
e=(ap)^{1/(p-1)}となりえるのでしょうか?
739132人目の素数さん
2020/07/02(木) 20:02:30.50ID:nzf75L+r >>730
> x(x+1)=5の右辺が、文字の積ならば、「A×B=C×DならばA=Cのとき、B=Dとなる。」
が、役に立つと思います。
なるほど。では問題を変えましょう。
実数xの方程式 (2x+7)(x-3)=(x+4)(3x-2)
を「A×B=C×DならばA=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」これを使って解いてみてください。
> x(x+1)=5の右辺が、文字の積ならば、「A×B=C×DならばA=Cのとき、B=Dとなる。」
が、役に立つと思います。
なるほど。では問題を変えましょう。
実数xの方程式 (2x+7)(x-3)=(x+4)(3x-2)
を「A×B=C×DならばA=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」これを使って解いてみてください。
740132人目の素数さん
2020/07/02(木) 20:47:30.22ID:5jVjqvaA741132人目の素数さん
2020/07/02(木) 23:26:25.59ID:5jVjqvaA 実数全体のなす集合は非可算集合、超越数でない実数全体のなす集合は可算集合。
だから超越数は存在するわけで、その一つをとる、とすればeの超越性の証明は不要になる。
だから超越数は存在するわけで、その一つをとる、とすればeの超越性の証明は不要になる。
742132人目の素数さん
2020/07/03(金) 00:27:56.10ID:FHdvTSrN743132人目の素数さん
2020/07/03(金) 02:16:53.25ID:6ReGFMrr >>725
>>>718
> 1+2=3のとき、1と2だけを2で割って
> 1/2+2/2=3
> とするようなものだ
>
> 証明を書くなら等式の性質ぐらい守ってください。
>
> どの部分のことでしょうか?
それはhttp://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>718の1つ前の>>717に書いてありますよ。
なるべくいつも違うやり方で説明しようと努力しているので、読んでもらいたいんですけどね。
>>717再掲
rが有理数、xが有理数、yが有理数の時、x^p+y^p=(x+r)^pとする。
ここで右辺のx+rというのはzそのものなのだけど、なぜかzはそのままにしてx、yだけを√3で割ると
(x/√3)^3+(y/√3)^3=(x/√3+r)^3
になる。
なんでzをそのままにして、xとyだけを√3で割ったのですか?
等式が成り立たなくなるに決まってるじゃないですか。
>>>718
> 1+2=3のとき、1と2だけを2で割って
> 1/2+2/2=3
> とするようなものだ
>
> 証明を書くなら等式の性質ぐらい守ってください。
>
> どの部分のことでしょうか?
それはhttp://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>718の1つ前の>>717に書いてありますよ。
なるべくいつも違うやり方で説明しようと努力しているので、読んでもらいたいんですけどね。
>>717再掲
rが有理数、xが有理数、yが有理数の時、x^p+y^p=(x+r)^pとする。
ここで右辺のx+rというのはzそのものなのだけど、なぜかzはそのままにしてx、yだけを√3で割ると
(x/√3)^3+(y/√3)^3=(x/√3+r)^3
になる。
なんでzをそのままにして、xとyだけを√3で割ったのですか?
等式が成り立たなくなるに決まってるじゃないですか。
744132人目の素数さん
2020/07/03(金) 02:46:10.46ID:6ReGFMrr http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>716の件はどうなったでしょうか?
あなたが書いた>>700
> >691
> たとえどんな仮定を置いても
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3に整数比となる有理数解が、あります。
>
> にはなりません。間違いです。
>
> どうしてでしょうか?
に対して,>>716で
> お願いですから書いてあることをちゃんと読んでください。
> あなたの引用したhttp://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>691にちゃんと書いてあります。
>
>> 何も条件がなく、他に解があろうがなかろうが関係なく、常に必ず
>> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないことが証明できるので
>
> これが理由です。
とお答えしたのですが。
あなたが書いた>>700
> >691
> たとえどんな仮定を置いても
> x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
> x^3+y^3=(x+√3)^3に整数比となる有理数解が、あります。
>
> にはなりません。間違いです。
>
> どうしてでしょうか?
に対して,>>716で
> お願いですから書いてあることをちゃんと読んでください。
> あなたの引用したhttp://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>691にちゃんと書いてあります。
>
>> 何も条件がなく、他に解があろうがなかろうが関係なく、常に必ず
>> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないことが証明できるので
>
> これが理由です。
とお答えしたのですが。
745日高
2020/07/03(金) 07:48:13.59ID:zTYqZmDQ >739
実数xの方程式 (2x+7)(x-3)=(x+4)(3x-2)
を「A×B=C×DならばA=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」これを使って解いてみてください。
(2x+7)(x-3)=(x+4)(3x-2)ならば、
(2x+7)=a(x+4)のとき、
(x-3)=(3x-2)(1/a)となる。
xを、求めるには、公式を使う必要があります。
実数xの方程式 (2x+7)(x-3)=(x+4)(3x-2)
を「A×B=C×DならばA=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」これを使って解いてみてください。
(2x+7)(x-3)=(x+4)(3x-2)ならば、
(2x+7)=a(x+4)のとき、
(x-3)=(3x-2)(1/a)となる。
xを、求めるには、公式を使う必要があります。
746132人目の素数さん
2020/07/03(金) 08:02:38.77ID:0tobW5Wm >>745
> (2x+7)(x-3)=(x+4)(3x-2)ならば、
(2x+7)=a(x+4)のとき、
(x-3)=(3x-2)(1/a)となる。
>xを、求めるには、公式を使う必要があります。
では
(2x+7)=a(x+4)のとき、
(x-3)=(3x-2)(1/a)となる。
の続きの計算過程を細かく書いてください。
> (2x+7)(x-3)=(x+4)(3x-2)ならば、
(2x+7)=a(x+4)のとき、
(x-3)=(3x-2)(1/a)となる。
>xを、求めるには、公式を使う必要があります。
では
(2x+7)=a(x+4)のとき、
(x-3)=(3x-2)(1/a)となる。
の続きの計算過程を細かく書いてください。
748日高
2020/07/03(金) 11:14:40.20ID:zTYqZmDQ >740
> e=(ap)^{1/(p-1)}となりえるのでしょうか?
a={e^(p-1)}/pとするだけのことでは?
そうすると、計算が、合いますね。
> e=(ap)^{1/(p-1)}となりえるのでしょうか?
a={e^(p-1)}/pとするだけのことでは?
そうすると、計算が、合いますね。
749日高
2020/07/03(金) 11:27:51.45ID:zTYqZmDQ >741
実数全体のなす集合は非可算集合、超越数でない実数全体のなす集合は可算集合。
だから超越数は存在するわけで、その一つをとる、とすればeの超越性の証明は不要になる。
r=p^{1/(p-1)}の場合は、r^(p-1)=pより、求められますが、
eは、どうして求めたらよいのでしょうか?
x^p+y^p=(x+r)^pから、どうして、r=eを、求めることができるのでしょうか?
実数全体のなす集合は非可算集合、超越数でない実数全体のなす集合は可算集合。
だから超越数は存在するわけで、その一つをとる、とすればeの超越性の証明は不要になる。
r=p^{1/(p-1)}の場合は、r^(p-1)=pより、求められますが、
eは、どうして求めたらよいのでしょうか?
x^p+y^p=(x+r)^pから、どうして、r=eを、求めることができるのでしょうか?
750132人目の素数さん
2020/07/03(金) 12:32:01.75ID:GVV5RHi2 z-xが特別な値になる場合とそうでない場合、と場合わけするだけなら、その値を導き出す必要は皆無ですね。
これまでにも散々無駄だと指摘されていますけど。
これまでにも散々無駄だと指摘されていますけど。
751132人目の素数さん
2020/07/03(金) 13:25:24.79ID:4YbBpjYt752日高
2020/07/03(金) 15:42:11.28ID:zTYqZmDQ >742
「文字の積ならば」とはどういう意味でしょうか。
融通が、効くという意味です。
「文字の積ならば」とはどういう意味でしょうか。
融通が、効くという意味です。
753日高
2020/07/03(金) 15:46:55.29ID:zTYqZmDQ >744
>> 何も条件がなく、他に解があろうがなかろうが関係なく、常に必ず
>> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないことが証明できるので
>
> これが理由です。
とお答えしたのですが。
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないことが証明できるので
はい、整数比となる有理数解がないことが証明できます。
>> 何も条件がなく、他に解があろうがなかろうが関係なく、常に必ず
>> x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないことが証明できるので
>
> これが理由です。
とお答えしたのですが。
x^3+y^3=(x+√3)^3にx:y:zが整数比となる有理数解がないことが証明できるので
はい、整数比となる有理数解がないことが証明できます。
754日高
2020/07/03(金) 16:55:57.31ID:zTYqZmDQ >746
(2x+7)(x-3)=(x+4)(3x-2)ならば、
(2x+7)=a(x+4)のとき、
(x-3)=(3x-2)(1/a)となる。
の続きの計算過程を細かく書いてください。
x=(-9±√29)/2を代入して下さい。
(2x+7)(x-3)=(x+4)(3x-2)ならば、
(2x+7)=a(x+4)のとき、
(x-3)=(3x-2)(1/a)となる。
の続きの計算過程を細かく書いてください。
x=(-9±√29)/2を代入して下さい。
755日高
2020/07/03(金) 17:05:26.86ID:zTYqZmDQ >750
z-xが特別な値になる場合とそうでない場合、と場合わけするだけなら、その値を導き出す必要は皆無ですね。
これまでにも散々無駄だと指摘されていますけど。
どういう意味でしょうか?
z-xが特別な値になる場合とそうでない場合、と場合わけするだけなら、その値を導き出す必要は皆無ですね。
これまでにも散々無駄だと指摘されていますけど。
どういう意味でしょうか?
756日高
2020/07/03(金) 17:11:05.11ID:zTYqZmDQ >751
> eは、どうして求めたらよいのでしょうか?
e=1+1/1!+1/2!+1/3!+...
x^p+y^p=(x+r)^p
この式からどうしてe=1+1/1!+1/2!+1/3!+...が求められるのでしょうか?
> eは、どうして求めたらよいのでしょうか?
e=1+1/1!+1/2!+1/3!+...
x^p+y^p=(x+r)^p
この式からどうしてe=1+1/1!+1/2!+1/3!+...が求められるのでしょうか?
757日高
2020/07/03(金) 17:12:42.34ID:zTYqZmDQ (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,y,zは(3)のときのx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,y,zは(3)のときのx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
758日高
2020/07/03(金) 17:16:44.27ID:zTYqZmDQ (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2は、0を除く有理数の解を持つ。
759132人目の素数さん
2020/07/03(金) 17:41:24.00ID:4YbBpjYt >>752 日高
> >742
> 「文字の積ならば」とはどういう意味でしょうか。
>
> 融通が、効くという意味です。
A=2,B=3,C=1,D=6だとAB=CDですがA=C,B=Dとなりますか?
> >742
> 「文字の積ならば」とはどういう意味でしょうか。
>
> 融通が、効くという意味です。
A=2,B=3,C=1,D=6だとAB=CDですがA=C,B=Dとなりますか?
760日高
2020/07/03(金) 17:58:55.88ID:zTYqZmDQ >759
A=2,B=3,C=1,D=6だとAB=CDですがA=C,B=Dとなりますか?
数字のままだと、
2*3=1*6なので、
2=1,3=6となりません。
A=2,B=3,C=1,D=6だとAB=CDですがA=C,B=Dとなりますか?
数字のままだと、
2*3=1*6なので、
2=1,3=6となりません。
761132人目の素数さん
2020/07/03(金) 18:02:21.01ID:4YbBpjYt >>760 日高
AB=1*6だと何が言えますか?
AB=1*6だと何が言えますか?
762日高
2020/07/03(金) 18:37:58.73ID:zTYqZmDQ >761
AB=1*6だと何が言えますか?
A=1,B=6が言えます。
AB=1*6だと何が言えますか?
A=1,B=6が言えます。
763132人目の素数さん
2020/07/04(土) 05:23:56.87ID:iFK5b+yk >>753
> はい、整数比となる有理数解がないことが証明できます。
あなたの書いたこの理由で
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3に整数比となる有理数解が、あります。
は間違っています。
よって、
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3に整数比となる有理数解が、ありますが
実際にはx^3+y^3=(x+√3)^3に整数比となる有理数解が、ないので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がありません
という理屈は間違っています。
つまり
実際にはx^3+y^3=(x+√3)^3に整数比となる有理数解が、ないことから
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないといえる、根拠が、ありません。
よって
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるかどうか調べていない証明は、間違いです。
> はい、整数比となる有理数解がないことが証明できます。
あなたの書いたこの理由で
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3に整数比となる有理数解が、あります。
は間違っています。
よって、
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるならば、
x^3+y^3=(x+√3)^3に整数比となる有理数解が、ありますが
実際にはx^3+y^3=(x+√3)^3に整数比となる有理数解が、ないので
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がありません
という理屈は間違っています。
つまり
実際にはx^3+y^3=(x+√3)^3に整数比となる有理数解が、ないことから
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないといえる、根拠が、ありません。
よって
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解があるかどうか調べていない証明は、間違いです。
764132人目の素数さん
2020/07/04(土) 05:39:25.36ID:iFK5b+yk >>743に関する返答がありませんが、
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>655において、
x^3+y^3=(x+r)^3
この式の右辺のx+rはzそのものなのだけど、あなたは等式の性質を無視して、zをそのままにして、xとyだけ
> p=3のとき、x,yを√3で割ると、
> (x/√3)^3+(y/√3)^3=(x/√3+r)^3
という操作をしました。この操作は
1+2=3のとき、1と2だけを2で割って
1/2+2/2=3
とするようなもので、おかしくなるに決まっています。
おかしくなったの理由は、等式の性質を無視したからです。
証明を書くなら等式の性質ぐらい守ってください。
そしてこんなおかしな操作をした結果の文
> x^3+y^3=(x+√3*r)^3となるので、
> ∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
> となります。
も、当然間違っています。
間違っている理由は、、等式の性質を無視したからです。
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>655において、
x^3+y^3=(x+r)^3
この式の右辺のx+rはzそのものなのだけど、あなたは等式の性質を無視して、zをそのままにして、xとyだけ
> p=3のとき、x,yを√3で割ると、
> (x/√3)^3+(y/√3)^3=(x/√3+r)^3
という操作をしました。この操作は
1+2=3のとき、1と2だけを2で割って
1/2+2/2=3
とするようなもので、おかしくなるに決まっています。
おかしくなったの理由は、等式の性質を無視したからです。
証明を書くなら等式の性質ぐらい守ってください。
そしてこんなおかしな操作をした結果の文
> x^3+y^3=(x+√3*r)^3となるので、
> ∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
> となります。
も、当然間違っています。
間違っている理由は、、等式の性質を無視したからです。
765日高
2020/07/04(土) 05:41:21.43ID:FHoYwuvh (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
766日高
2020/07/04(土) 05:55:14.84ID:FHoYwuvh >763
実際にはx^3+y^3=(x+√3)^3に整数比となる有理数解が、ないことから
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないといえる、根拠が、ありません。
s,t,kが有理数、wが無理数のとき、(sw)^p+(tw)^p=(kw)^pは、s^p+t^p=k^pと等しい。
が、根拠となります。
実際にはx^3+y^3=(x+√3)^3に整数比となる有理数解が、ないことから
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないといえる、根拠が、ありません。
s,t,kが有理数、wが無理数のとき、(sw)^p+(tw)^p=(kw)^pは、s^p+t^p=k^pと等しい。
が、根拠となります。
767日高
2020/07/04(土) 05:56:06.21ID:FHoYwuvh (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,y,zは(3)のときのx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,y,zは(3)のときのx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
768日高
2020/07/04(土) 06:00:42.24ID:FHoYwuvh >764
> x^3+y^3=(x+√3*r)^3となるので、
> ∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
> となります。
これは、私が書いたのでしょうか?
> x^3+y^3=(x+√3*r)^3となるので、
> ∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
> となります。
これは、私が書いたのでしょうか?
769132人目の素数さん
2020/07/04(土) 06:09:02.40ID:iFK5b+yk >>768
あなたの引用した>>764に書いた通り、
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>655において、あなたが書いた文章です。
あなたの引用した>>764に書いた通り、
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>655において、あなたが書いた文章です。
770日高
2020/07/04(土) 06:51:51.15ID:FHoYwuvh rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
p=3のとき、x,yを√3で割ると、
(x/√3)^3+(y/√3)^3=(x/√3+r)^3
両辺に、√3^3を、かけると、
x^3+y^3=(x+√3*r)^3となるので、
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
となります。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
p=3のとき、x,yを√3で割ると、
(x/√3)^3+(y/√3)^3=(x/√3+r)^3
両辺に、√3^3を、かけると、
x^3+y^3=(x+√3*r)^3となるので、
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たない。
となります。
771日高
2020/07/04(土) 07:00:20.33ID:FHoYwuvh >769
私が書いた文章でした。
(x/√3)^3+(y/√3)^3=(x/√3+r)^3と
x^3+y^3=(x+√3*r)^3は、同じということを、言いました。
私が書いた文章でした。
(x/√3)^3+(y/√3)^3=(x/√3+r)^3と
x^3+y^3=(x+√3*r)^3は、同じということを、言いました。
772132人目の素数さん
2020/07/04(土) 07:20:42.57ID:iFK5b+yk >>771
それ部分よりまえの部分の問題なんですよ。
なんで式の両辺でなく、x、yを√3で割ったんですか?
なんで、x、yをa^{1/(p-1)}で割ったものが(3)の解になる、という話の時に
x、yを√3で割ったものを(3)式でなくx^p+y^p=(x+r)^p…(5)式に代入したのですか?
それ部分よりまえの部分の問題なんですよ。
なんで式の両辺でなく、x、yを√3で割ったんですか?
なんで、x、yをa^{1/(p-1)}で割ったものが(3)の解になる、という話の時に
x、yを√3で割ったものを(3)式でなくx^p+y^p=(x+r)^p…(5)式に代入したのですか?
773132人目の素数さん
2020/07/04(土) 08:21:57.12ID:5maP2zij 誤解を減らすために大文字を変数とし、
pは奇素数,rとaは適当な定数とします。
式の両辺にa^pをかけることで次のように解が対応します。
X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
↓↑ Z=X+r
X^p + Y^p = (X+r)^p の解(X, Y)=(x, y)
a倍↓↑(1/a)倍
X^p + Y^p = (X+ar)^p の解(X, Y)=(ax, ay)
↓↑ Z=X+r
X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+ar)
日高はなぜかこう対応させている模様。
X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
a倍↓↑(1/a)倍
X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+r)
pは奇素数,rとaは適当な定数とします。
式の両辺にa^pをかけることで次のように解が対応します。
X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
↓↑ Z=X+r
X^p + Y^p = (X+r)^p の解(X, Y)=(x, y)
a倍↓↑(1/a)倍
X^p + Y^p = (X+ar)^p の解(X, Y)=(ax, ay)
↓↑ Z=X+r
X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+ar)
日高はなぜかこう対応させている模様。
X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
a倍↓↑(1/a)倍
X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+r)
774132人目の素数さん
2020/07/04(土) 08:26:28.55ID:5maP2zij 一部誤記があったため修正。
解の対応はこうです。
X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
↓↑ Z=X+r
X^p + Y^p = (X+r)^p の解(X, Y)=(x, y)
a倍↓↑(1/a)倍
X^p + Y^p = (X+ar)^p の解(X, Y)=(ax, ay)
↓↑ Z=X+ar
X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+ar)
解の対応はこうです。
X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
↓↑ Z=X+r
X^p + Y^p = (X+r)^p の解(X, Y)=(x, y)
a倍↓↑(1/a)倍
X^p + Y^p = (X+ar)^p の解(X, Y)=(ax, ay)
↓↑ Z=X+ar
X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+ar)
775132人目の素数さん
2020/07/04(土) 12:24:27.73ID:ou1myOuV >>754
> (2x+7)(x-3)=(x+4)(3x-2)ならば、
(2x+7)=a(x+4)のとき、
(x-3)=(3x-2)(1/a)となる。
の続きの計算過程を細かく書いてください。
>x=(-9±√29)/2を代入して下さい。
そのx=(-9±√29)/2はおそらく
(2x+7)(x-3)=(x+4)(3x-2)を展開して整理し
x^2 +9x +13=0 として二次方程式の解の公式を適用して求めたのでしょう。
つまり、「A×B=C×DならばA=Cのとき、B=Dとなる。A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは全く役に立っていません。
同様に、あなたの書いたフェルマーの最終定理についての証明でも、全く役に立っていません。
> (2x+7)(x-3)=(x+4)(3x-2)ならば、
(2x+7)=a(x+4)のとき、
(x-3)=(3x-2)(1/a)となる。
の続きの計算過程を細かく書いてください。
>x=(-9±√29)/2を代入して下さい。
そのx=(-9±√29)/2はおそらく
(2x+7)(x-3)=(x+4)(3x-2)を展開して整理し
x^2 +9x +13=0 として二次方程式の解の公式を適用して求めたのでしょう。
つまり、「A×B=C×DならばA=Cのとき、B=Dとなる。A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは全く役に立っていません。
同様に、あなたの書いたフェルマーの最終定理についての証明でも、全く役に立っていません。
776日高
2020/07/04(土) 14:38:31.25ID:FHoYwuvh >772
なんで式の両辺でなく、x、yを√3で割ったんですか?
なんで、x、yをa^{1/(p-1)}で割ったものが(3)の解になる、という話の時に
x、yを√3で割ったものを(3)式でなくx^p+y^p=(x+r)^p…(5)式に代入したのですか?
すみませんが、「x、yをa^{1/(p-1)}で割ったものが(3)の解になる、という話」
は、どこで、でてきたのでしょうか?
なんで式の両辺でなく、x、yを√3で割ったんですか?
なんで、x、yをa^{1/(p-1)}で割ったものが(3)の解になる、という話の時に
x、yを√3で割ったものを(3)式でなくx^p+y^p=(x+r)^p…(5)式に代入したのですか?
すみませんが、「x、yをa^{1/(p-1)}で割ったものが(3)の解になる、という話」
は、どこで、でてきたのでしょうか?
777日高
2020/07/04(土) 14:46:36.05ID:FHoYwuvh >774
X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
↓↑ Z=X+r
X^p + Y^p = (X+r)^p の解(X, Y)=(x, y)
a倍↓↑(1/a)倍
X^p + Y^p = (X+ar)^p の解(X, Y)=(ax, ay)
↓↑ Z=X+ar
X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+ar)
よく、理解できないので、解説していただけないでしょうか。
X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
↓↑ Z=X+r
X^p + Y^p = (X+r)^p の解(X, Y)=(x, y)
a倍↓↑(1/a)倍
X^p + Y^p = (X+ar)^p の解(X, Y)=(ax, ay)
↓↑ Z=X+ar
X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+ar)
よく、理解できないので、解説していただけないでしょうか。
778日高
2020/07/04(土) 14:50:53.97ID:FHoYwuvh >775
つまり、「A×B=C×DならばA=Cのとき、B=Dとなる。A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは全く役に立っていません。
このことは、xの値を求めるためには、役にたちません。
つまり、「A×B=C×DならばA=Cのとき、B=Dとなる。A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは全く役に立っていません。
このことは、xの値を求めるためには、役にたちません。
779132人目の素数さん
2020/07/04(土) 14:58:37.14ID:iFK5b+yk780132人目の素数さん
2020/07/04(土) 14:58:38.47ID:bLb6/CAD781132人目の素数さん
2020/07/04(土) 15:15:26.38ID:ou1myOuV782日高
2020/07/04(土) 15:37:49.26ID:FHoYwuvh >779
((3)の解のx)のa^{1/(p-1)}倍=((5)の解のx)
であって
((5)の解のx)÷a^{1/(p-1)}=((3)の解のx)
違いますか?
はい。そうです。
((3)の解のx)のa^{1/(p-1)}倍=((5)の解のx)
であって
((5)の解のx)÷a^{1/(p-1)}=((3)の解のx)
違いますか?
はい。そうです。
783日高
2020/07/04(土) 15:41:03.01ID:FHoYwuvh >780
> A=1,B=6が言えます。
A=2,B=3でAB=1*6でもそう言えますか?
いえません。
> A=1,B=6が言えます。
A=2,B=3でAB=1*6でもそう言えますか?
いえません。
784日高
2020/07/04(土) 15:44:24.85ID:FHoYwuvh >781
では一体何の役に立っているのでしょうか?
A=Cとした場合は、B=Dとなります。
では一体何の役に立っているのでしょうか?
A=Cとした場合は、B=Dとなります。
785132人目の素数さん
2020/07/04(土) 15:45:20.46ID:iFK5b+yk >>782
そうですか。
>>776の
> すみませんが、「x、yをa^{1/(p-1)}で割ったものが(3)の解になる、という話」
の出所がわかってよかったですね。
わかったところで、
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>772について、返答をお願いします。
そうですか。
>>776の
> すみませんが、「x、yをa^{1/(p-1)}で割ったものが(3)の解になる、という話」
の出所がわかってよかったですね。
わかったところで、
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>772について、返答をお願いします。
786日高
2020/07/04(土) 15:46:36.15ID:FHoYwuvh (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,y,zは(3)のときのx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,y,zは(3)のときのx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
787日高
2020/07/04(土) 15:47:35.60ID:FHoYwuvh (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
788日高
2020/07/04(土) 15:58:36.80ID:FHoYwuvh >785
772>
なんで、x、yをa^{1/(p-1)}で割ったものが(3)の解になる、という話の時に
x、yをa^{1/(p-1)}で割ったものが(3)の解にはなりません。
772>
なんで、x、yをa^{1/(p-1)}で割ったものが(3)の解になる、という話の時に
x、yをa^{1/(p-1)}で割ったものが(3)の解にはなりません。
789132人目の素数さん
2020/07/04(土) 16:04:43.93ID:iFK5b+yk790132人目の素数さん
2020/07/04(土) 16:10:14.63ID:iFK5b+yk http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>763のも、読んでください。
それと、私の上記のような書き方は意味がありますか?
それとも、>>763のように番号だけでも内容を読み直してもらえるのでしょうか?
それと、私の上記のような書き方は意味がありますか?
それとも、>>763のように番号だけでも内容を読み直してもらえるのでしょうか?
791132人目の素数さん
2020/07/04(土) 16:16:32.83ID:bLb6/CAD >>783 日高
> >780
>
> > A=1,B=6が言えます。
>
> A=2,B=3でAB=1*6でもそう言えますか?
>
> いえません。
ではAB=1*6でAもBもいくつだか不明な場合は何が言えますか?
> >780
>
> > A=1,B=6が言えます。
>
> A=2,B=3でAB=1*6でもそう言えますか?
>
> いえません。
ではAB=1*6でAもBもいくつだか不明な場合は何が言えますか?
792132人目の素数さん
2020/07/04(土) 17:08:24.64ID:r2x+Ma/l >>777
> >774
> X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
> ↓↑ Z=X+r
> X^p + Y^p = (X+r)^p の解(X, Y)=(x, y)
> a倍↓↑(1/a)倍
> X^p + Y^p = (X+ar)^p の解(X, Y)=(ax, ay)
> ↓↑ Z=X+ar
> X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+ar)
>
> よく、理解できないので、解説していただけないでしょうか。
一体なにが「よく、理解できない」んですか?
それではなにを解説すればよいのかわかりません。
一応こちらの意図としては、
ある方程式に(ある形の)解がある
⇔別の方程式に(ある形の)解がある
という同値関係を表現しています。
式に解を代入して比較するだけなので、むずかしいことはないでしょう。
> X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
が存在するならば、
> X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+r)
が存在する、
と考えて(あるいは誤解して)いるように見えたので、そんなことはありませんという説明です。
> >774
> X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
> ↓↑ Z=X+r
> X^p + Y^p = (X+r)^p の解(X, Y)=(x, y)
> a倍↓↑(1/a)倍
> X^p + Y^p = (X+ar)^p の解(X, Y)=(ax, ay)
> ↓↑ Z=X+ar
> X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+ar)
>
> よく、理解できないので、解説していただけないでしょうか。
一体なにが「よく、理解できない」んですか?
それではなにを解説すればよいのかわかりません。
一応こちらの意図としては、
ある方程式に(ある形の)解がある
⇔別の方程式に(ある形の)解がある
という同値関係を表現しています。
式に解を代入して比較するだけなので、むずかしいことはないでしょう。
> X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
が存在するならば、
> X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+r)
が存在する、
と考えて(あるいは誤解して)いるように見えたので、そんなことはありませんという説明です。
793日高
2020/07/04(土) 17:19:43.97ID:FHoYwuvh >789
x、yを√3で割ったものを(3)式でなくx^p+y^p=(x+r)^p…(5)式に代入したのですか?
何番で、代入したのでしょうか?前後の文章が、知りたいです。
x、yを√3で割ったものを(3)式でなくx^p+y^p=(x+r)^p…(5)式に代入したのですか?
何番で、代入したのでしょうか?前後の文章が、知りたいです。
794日高
2020/07/04(土) 17:27:58.73ID:FHoYwuvh >790
実際にはx^3+y^3=(x+√3)^3に整数比となる有理数解が、ないことから
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないといえる、根拠が、ありません。
根拠は、(sw)^3+(tw)^3=(uw)^3と、s^3+t^3=u^3は、同じということです。
但しs,t,uは、有理数、wは無理数とします。
実際にはx^3+y^3=(x+√3)^3に整数比となる有理数解が、ないことから
x^3+y^3=(x+√3)^3にx:y:zが整数比となる無理数解がないといえる、根拠が、ありません。
根拠は、(sw)^3+(tw)^3=(uw)^3と、s^3+t^3=u^3は、同じということです。
但しs,t,uは、有理数、wは無理数とします。
795日高
2020/07/04(土) 17:32:41.43ID:FHoYwuvh >791
ではAB=1*6でAもBもいくつだか不明な場合は何が言えますか?
A=1,B=6
A=2,B=3
A=6,B=1
A=3,B=2
がいえます。
ではAB=1*6でAもBもいくつだか不明な場合は何が言えますか?
A=1,B=6
A=2,B=3
A=6,B=1
A=3,B=2
がいえます。
796132人目の素数さん
2020/07/04(土) 17:34:11.96ID:iFK5b+yk797日高
2020/07/04(土) 18:29:52.89ID:FHoYwuvh >792
> X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
が存在するならば、
> X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+r)
が存在する、
と考えて(あるいは誤解して)いるように見えたので、そんなことはありませんという説明です。
> X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+r)
が存在すると考えていません。
> X^p + Y^p = Z^p の解(X, Y, Z)=(x, y, x+r)
が存在するならば、
> X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+r)
が存在する、
と考えて(あるいは誤解して)いるように見えたので、そんなことはありませんという説明です。
> X^p + Y^p = Z^p の解(X, Y, Z)=(ax, ay, ax+r)
が存在すると考えていません。
798日高
2020/07/04(土) 18:35:58.73ID:FHoYwuvh >796
あなたが書いた文章です。
文章を、コピーしていただけないでしょうか?
あなたが書いた文章です。
文章を、コピーしていただけないでしょうか?
799日高
2020/07/04(土) 18:37:21.07ID:FHoYwuvh (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,y,zは(3)のときのx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,y,zは(3)のときのx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
800日高
2020/07/04(土) 18:38:44.37ID:FHoYwuvh (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
801132人目の素数さん
2020/07/04(土) 20:00:34.63ID:iFK5b+yk >>796の書き方でこれまで読んでくれてたのに、どうして読んでくれなくなったのですか?
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>655で、あなたはこう書いたでしょ
> rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
> ∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
>
> p=3のとき、x,yを√3で割ると、
> (x/√3)^3+(y/√3)^3=(x/√3+r)^3
どう考えても最後の式は(3)じゃないでしょ、右辺にp^(1/(p-1))の項がないから
x,yを√3で割ると、この式になるというのだから
元の式はx^p+y^p=(x+r)^pと考えられる
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>655で、あなたはこう書いたでしょ
> rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
> ∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
>
> p=3のとき、x,yを√3で割ると、
> (x/√3)^3+(y/√3)^3=(x/√3+r)^3
どう考えても最後の式は(3)じゃないでしょ、右辺にp^(1/(p-1))の項がないから
x,yを√3で割ると、この式になるというのだから
元の式はx^p+y^p=(x+r)^pと考えられる
802132人目の素数さん
2020/07/04(土) 20:09:37.36ID:iFK5b+yk >>794
s,t,uは、有理数、wは無理数とします。
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
s^3+t^3=u^3はフェルマーの定理の式x^p+y^p=z^pそのものですから、s、t、uはフェルマーの定理の式の解です。
s、t、uは、r^(p-1)=pを満たしませんが、フェルマーの定理の式にそんな条件はどこにもないので相変わらずs、t、uはフェルマーの定理の式の解です。
たとえば5,12,13はr^(2-1)=2を満たしませんが、ピタゴラスの定理の式にそんな条件はどこにもないので相変わらず、5,12,13はピタゴラスの定理の解です。
それと同じです。
s,t,uは、有理数、wは無理数とします。
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
s^3+t^3=u^3はフェルマーの定理の式x^p+y^p=z^pそのものですから、s、t、uはフェルマーの定理の式の解です。
s、t、uは、r^(p-1)=pを満たしませんが、フェルマーの定理の式にそんな条件はどこにもないので相変わらずs、t、uはフェルマーの定理の式の解です。
たとえば5,12,13はr^(2-1)=2を満たしませんが、ピタゴラスの定理の式にそんな条件はどこにもないので相変わらず、5,12,13はピタゴラスの定理の解です。
それと同じです。
803132人目の素数さん
2020/07/04(土) 20:39:32.24ID:iFK5b+yk >>802つづき
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
s^3+t^3=u^3はフェルマーの定理の式x^p+y^p=z^pそのものですから、s、t、uはフェルマーの定理の式の解です。
s、t、uは、r^(p-1)=pを満さないので、当然x^p+y^p=(x+p^{1/(p-1)})^p…(3)を満たす解ではありません。
(3)を満たす有理数解がなくても、そもそもs、t、uは(3)を満たさないフェルマーの定理の式の解なので、関係ありません。
5,12,13がr^(2-1)=2を満たさないピタゴラスの定理の式の解であるのと同じです。
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
s^3+t^3=u^3はフェルマーの定理の式x^p+y^p=z^pそのものですから、s、t、uはフェルマーの定理の式の解です。
s、t、uは、r^(p-1)=pを満さないので、当然x^p+y^p=(x+p^{1/(p-1)})^p…(3)を満たす解ではありません。
(3)を満たす有理数解がなくても、そもそもs、t、uは(3)を満たさないフェルマーの定理の式の解なので、関係ありません。
5,12,13がr^(2-1)=2を満たさないピタゴラスの定理の式の解であるのと同じです。
804日高
2020/07/04(土) 20:48:05.77ID:FHoYwuvh >801
元の式はx^p+y^p=(x+r)^pと考えられる
x,yを√3で割ると、この式になるというのだから
(x/√3)^3+(y/√3)^3=(x/√3+r)^3
そうですね。
元の式はx^p+y^p=(x+r)^pと考えられる
x,yを√3で割ると、この式になるというのだから
(x/√3)^3+(y/√3)^3=(x/√3+r)^3
そうですね。
805132人目の素数さん
2020/07/04(土) 20:59:17.65ID:I0YtyZxX806日高
2020/07/04(土) 21:11:21.21ID:FHoYwuvh >802
たとえば5,12,13はr^(2-1)=2を満たしませんが、ピタゴラスの定理の式にそんな条件はどこにもないので相変わらず、5,12,13はピタゴラスの定理の解です。
それと同じです。
x=5/4,y=12/4とすれば、
x^2+y^2=(x+2)^2を満たします。
たとえば5,12,13はr^(2-1)=2を満たしませんが、ピタゴラスの定理の式にそんな条件はどこにもないので相変わらず、5,12,13はピタゴラスの定理の解です。
それと同じです。
x=5/4,y=12/4とすれば、
x^2+y^2=(x+2)^2を満たします。
807132人目の素数さん
2020/07/04(土) 21:12:52.10ID:iFK5b+yk808日高
2020/07/04(土) 21:15:01.99ID:FHoYwuvh >803
5,12,13がr^(2-1)=2を満たさないピタゴラスの定理の式の解であるのと同じです。
x=5/4,y=12/4とすれば、
x^2+y^2=(x+2)^2を満たします。
5,12,13がr^(2-1)=2を満たさないピタゴラスの定理の式の解であるのと同じです。
x=5/4,y=12/4とすれば、
x^2+y^2=(x+2)^2を満たします。
809日高
2020/07/04(土) 21:15:52.08ID:FHoYwuvh (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,y,zは(3)のときのx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,y,zは(3)のときのx,y,zのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
810132人目の素数さん
2020/07/04(土) 21:16:14.53ID:iFK5b+yk >>804
納得したなら答えてくださいよ。
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>655で、あなたはこう書いたでしょ
> rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
> ∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
>
> p=3のとき、x,yを√3で割ると、
> (x/√3)^3+(y/√3)^3=(x/√3+r)^3
なぜx,yを√3で割ったのですか?
なぜそのx、yを√3で割ったものをx^p+y^p=(x+r)^pに代入したのですか?
納得したなら答えてくださいよ。
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>655で、あなたはこう書いたでしょ
> rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
> ∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
>
> p=3のとき、x,yを√3で割ると、
> (x/√3)^3+(y/√3)^3=(x/√3+r)^3
なぜx,yを√3で割ったのですか?
なぜそのx、yを√3で割ったものをx^p+y^p=(x+r)^pに代入したのですか?
811日高
2020/07/04(土) 21:16:35.20ID:FHoYwuvh (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
812日高
2020/07/04(土) 21:19:53.08ID:FHoYwuvh >810
なぜx,yを√3で割ったのですか?
私もその原因を知りたいです。
なぜx,yを√3で割ったのですか?
私もその原因を知りたいです。
813132人目の素数さん
2020/07/04(土) 22:25:47.06ID:iFK5b+yk >>812
じゃあhttp://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>655の書き込みには特に意味はなく、
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>583(再掲)
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
p=3のとき、
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))は(3)の解で、xが無理数、yが無理数である。x/y=2である。(※)
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))、y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))は(3)の解で、xが無理数、yが無理数である。x/y=3である。(※)
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))は(3)の解で、xが無理数、yが無理数である。x/y=4である。(※)
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))は(3)の解で、xが無理数、yが無理数である。x/y=5である。(※)
このようなx/yが有理数となるような(3)の解は無限にある。(※)
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
は正しく、>>809は間違っている、ということでいいですか?
じゃあhttp://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>655の書き込みには特に意味はなく、
http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>583(再掲)
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
p=3のとき、
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))は(3)の解で、xが無理数、yが無理数である。x/y=2である。(※)
x=3√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))、y=√3(9+3(2^(2/3))(7^(1/3))+(2^(4/3))(7^(2/3)))は(3)の解で、xが無理数、yが無理数である。x/y=3である。(※)
x=4√3(16+4(65^(1/3))+65^(2/3))、y=√3(16+4(65^(1/3))+65^(2/3))は(3)の解で、xが無理数、yが無理数である。x/y=4である。(※)
x=5(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))、y=(3^(1/6))(25(3^(1/3))+15(14^(1/3))+3(42^(2/3)))は(3)の解で、xが無理数、yが無理数である。x/y=5である。(※)
このようなx/yが有理数となるような(3)の解は無限にある。(※)
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
rが有理数、xが有理数、yが有理数の時、x,yをa^{1/(p-1)}で割ればxが無理数、yが無理数となって無限に存在する(※)の場合のうちのどれかになる。
∴pが奇素数のとき、x^p+y^p=z^pは、0を除く有理数の解を持たないとはいえない。
は正しく、>>809は間違っている、ということでいいですか?
814132人目の素数さん
2020/07/05(日) 00:00:55.27ID:s927eTSN815日高
2020/07/05(日) 06:19:15.87ID:Q2KuEG6O >807
5,12,13はr^(2-1)=2を満たさないピタゴラスの定理の式の解である、
5,12,13はx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
5/4, 12/4, 13/4 と、
5,12,13は比が同じです。
5,12,13はr^(2-1)=2を満たさないピタゴラスの定理の式の解である、
5,12,13はx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
5/4, 12/4, 13/4 と、
5,12,13は比が同じです。
816日高
2020/07/05(日) 06:54:38.85ID:Q2KuEG6O (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)の解は、(3)の解のa2倍となるので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)の解は、(3)の解のa2倍となるので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
817日高
2020/07/05(日) 07:12:30.52ID:Q2KuEG6O (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrは有理数となるが、(5)の解x,yは(3)の解x,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrは有理数となるが、(5)の解x,yは(3)の解x,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
818日高
2020/07/05(日) 08:50:01.47ID:Q2KuEG6O >813
p=3のとき、
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))は(3)の解で、xが無理数、yが無理数である。x/y=2である。(※)
(6(3^(1/6))+4√3+3(3^(5/6)))=wとおくと、
(xw)^3+(yw)^3=(xw+√3)^3,両辺を、w^3で割ると、
x^3+y^3=(x+√3/w)^3…x,y,zは、整数比となりません。
このx,y,zを、√3倍すると、
√3x,√3y,√3(x+√3/w)…x,y,zは、整数比となりません。
p=3のとき、
x=2(6(3^(1/6))+4√3+3(3^(5/6)))、y=6(3^(1/6))+4√3+3(3^(5/6))は(3)の解で、xが無理数、yが無理数である。x/y=2である。(※)
(6(3^(1/6))+4√3+3(3^(5/6)))=wとおくと、
(xw)^3+(yw)^3=(xw+√3)^3,両辺を、w^3で割ると、
x^3+y^3=(x+√3/w)^3…x,y,zは、整数比となりません。
このx,y,zを、√3倍すると、
√3x,√3y,√3(x+√3/w)…x,y,zは、整数比となりません。
819日高
2020/07/05(日) 09:03:57.61ID:Q2KuEG6O >818
訂正
このx,y,zを、√a倍すると、
√ax,√ay,√a(x+√3/w)…x,y,zは、整数比となりません。
訂正
このx,y,zを、√a倍すると、
√ax,√ay,√a(x+√3/w)…x,y,zは、整数比となりません。
820日高
2020/07/05(日) 09:36:24.32ID:Q2KuEG6O >814
「A×B=C×DならばA=Cのとき、B=Dとなる。A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは何の役に立っているのでしょうか?
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
が、言えます。
「A×B=C×DならばA=Cのとき、B=Dとなる。A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは何の役に立っているのでしょうか?
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
が、言えます。
821132人目の素数さん
2020/07/05(日) 10:04:14.96ID:SLiG2plM >>820
> >814
> 「A×B=C×DならばA=Cのとき、B=Dとなる。A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは何の役に立っているのでしょうか?
>
> (1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
> が、言えます。
「r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p」
が成り立つことは、代入するだけで明らかですな。
そんな変形をする意味は皆無。
> >814
> 「A×B=C×DならばA=Cのとき、B=Dとなる。A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことは何の役に立っているのでしょうか?
>
> (1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
> が、言えます。
「r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p」
が成り立つことは、代入するだけで明らかですな。
そんな変形をする意味は皆無。
822日高
2020/07/05(日) 10:33:47.95ID:Q2KuEG6O >821
「r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p」
が成り立つことは、代入するだけで明らかですな。
どの式に代入したら、明らかなのでしょうか?
「r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p」
が成り立つことは、代入するだけで明らかですな。
どの式に代入したら、明らかなのでしょうか?
823132人目の素数さん
2020/07/05(日) 12:00:19.40ID:fBDnSfMy >>822
> どの式に代入したら、明らかなのでしょうか?
r^(p-1)=p なんだから当然 r=p^{1/(p-1)}、
これを x^p+y^p=(x+r)^p に代入。
はて?どこか難しいところがありますかね?
> どの式に代入したら、明らかなのでしょうか?
r^(p-1)=p なんだから当然 r=p^{1/(p-1)}、
これを x^p+y^p=(x+r)^p に代入。
はて?どこか難しいところがありますかね?
824132人目の素数さん
2020/07/05(日) 13:07:15.41ID:yLeAk3fK >>823
日高の「PのときQ」は「PかつQ」の意味なので要注意。
日高の「PのときQ」は「PかつQ」の意味なので要注意。
825日高
2020/07/05(日) 14:02:49.04ID:Q2KuEG6O >823
r^(p-1)=p なんだから当然 r=p^{1/(p-1)}、
これを x^p+y^p=(x+r)^p に代入。
他に、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)
に、代入しても、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となります。
r^(p-1)=p なんだから当然 r=p^{1/(p-1)}、
これを x^p+y^p=(x+r)^p に代入。
他に、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)
に、代入しても、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となります。
826132人目の素数さん
2020/07/05(日) 14:32:33.24ID:PLGstlDo 数学掲示板群 ttp://x0000.net/forum.aspx?id=1
学術の巨大掲示板群 - アルファ・ラボ ttp://x0000.net
数学 物理学 化学 生物学 天文学 地理地学
IT 電子 工学 言語学 国語 方言 など
PS 連続と離散を統一した!
ttp://x0000.net/topic.aspx?id=3709-0
微分幾何学入門
ttp://x0000.net/topic.aspx?id=3694-0
学術の巨大掲示板群 - アルファ・ラボ ttp://x0000.net
数学 物理学 化学 生物学 天文学 地理地学
IT 電子 工学 言語学 国語 方言 など
PS 連続と離散を統一した!
ttp://x0000.net/topic.aspx?id=3709-0
微分幾何学入門
ttp://x0000.net/topic.aspx?id=3694-0
827132人目の素数さん
2020/07/05(日) 14:59:18.74ID:tFFsgTrV >>815
それで結局
5,12,13はr^(2-1)=2を満たさないピタゴラスの定理の式の解である
は正しいか、間違っているか、どちらですか?
いずれにしろ
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
s、t、uは(3)を満たさないフェルマーの定理の式の解です。
s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})とすれば
x^p+y^p=(x+p^{1/(p-1)})^p…(3)を満たします。
s/(a^{1/(p-1)})、t/(a^{1/(p-1)})、u/(a^{1/(p-1)})と
s、t、uは比が同じです
それで結局
5,12,13はr^(2-1)=2を満たさないピタゴラスの定理の式の解である
は正しいか、間違っているか、どちらですか?
いずれにしろ
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
s、t、uは(3)を満たさないフェルマーの定理の式の解です。
s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})とすれば
x^p+y^p=(x+p^{1/(p-1)})^p…(3)を満たします。
s/(a^{1/(p-1)})、t/(a^{1/(p-1)})、u/(a^{1/(p-1)})と
s、t、uは比が同じです
828132人目の素数さん
2020/07/05(日) 15:03:54.78ID:tFFsgTrV829日高
2020/07/05(日) 15:49:46.39ID:Q2KuEG6O (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrは有理数となるが、(5)の解x,yは(3)の解x,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrは有理数となるが、(5)の解x,yは(3)の解x,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
830日高
2020/07/05(日) 15:59:59.82ID:Q2KuEG6O (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)の解は、(3)の解のa2倍となるので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)の解は、(3)の解のa2倍となるので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
831日高
2020/07/05(日) 16:01:48.83ID:Q2KuEG6O >826
数学掲示板群 ttp://x0000.net/forum.aspx?id=1
???
数学掲示板群 ttp://x0000.net/forum.aspx?id=1
???
832日高
2020/07/05(日) 16:07:01.72ID:Q2KuEG6O >827
5,12,13はr^(2-1)=2を満たさないピタゴラスの定理の式の解である
は正しいか、間違っているか、どちらですか?
正しいです。
x^2+y^2=(x+a2)^2…(5)となります。
>s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
満たしません。
5,12,13はr^(2-1)=2を満たさないピタゴラスの定理の式の解である
は正しいか、間違っているか、どちらですか?
正しいです。
x^2+y^2=(x+a2)^2…(5)となります。
>s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
満たしません。
833132人目の素数さん
2020/07/05(日) 16:18:11.68ID:tFFsgTrV >>832
> 満たしません。
どうしてそう思うのですか?
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
(u-s)^(p-1)=apが成り立つようにaを定義すれば(u-s)=(ap)^(1/(p-1))となるので
s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
> 満たしません。
どうしてそう思うのですか?
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
(u-s)^(p-1)=apが成り立つようにaを定義すれば(u-s)=(ap)^(1/(p-1))となるので
s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
834日高
2020/07/05(日) 16:24:00.70ID:Q2KuEG6O >827
>x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})とすれば
x^p+y^p=(x+p^{1/(p-1)})^p…(3)を満たします。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)は、満たしません。
>x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})とすれば
x^p+y^p=(x+p^{1/(p-1)})^p…(3)を満たします。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)は、満たしません。
835132人目の素数さん
2020/07/05(日) 16:43:30.80ID:tFFsgTrV >>834
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)は、満たしません。
どうしてそう思うのですか?実際に計算してみましたか?
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})を(3)に代入する前にちょっと計算して
(u-s)=(ap)^{1/(p-1)}
a^(1/(p-1))=(u-s)/(p^(1/(p-1)))
なので、代入すると
(s/((u-s)/(p^(1/(p-1))))^p+(t/((u-s)/(p^(1/(p-1))))^p=(s/(u-s)/(p^(1/(p-1)))+p^{1/(p-1)})^p
両辺を(p^{1/(p-1)}~pで割って
(s/(u-s))^p+(t/(u-s))^p=(s/(u-s)+1})^p
両辺に(u-s)^pをかけて
s^p+t^p=(s+(u-s))^p
s^p+t^p=u^p
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たすので、この等式は成り立ちます。
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)は、満たしません。
どうしてそう思うのですか?実際に計算してみましたか?
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})を(3)に代入する前にちょっと計算して
(u-s)=(ap)^{1/(p-1)}
a^(1/(p-1))=(u-s)/(p^(1/(p-1)))
なので、代入すると
(s/((u-s)/(p^(1/(p-1))))^p+(t/((u-s)/(p^(1/(p-1))))^p=(s/(u-s)/(p^(1/(p-1)))+p^{1/(p-1)})^p
両辺を(p^{1/(p-1)}~pで割って
(s/(u-s))^p+(t/(u-s))^p=(s/(u-s)+1})^p
両辺に(u-s)^pをかけて
s^p+t^p=(s+(u-s))^p
s^p+t^p=u^p
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たすので、この等式は成り立ちます。
836日高
2020/07/05(日) 16:53:53.33ID:Q2KuEG6O >833
(u-s)^(p-1)=apが成り立つようにaを定義すれば(u-s)=(ap)^(1/(p-1))となるので
s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
(u-s)=(ap)^(1/(p-1))は、有理数となりますが、
x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)は、満たしません。
(u-s)^(p-1)=apが成り立つようにaを定義すれば(u-s)=(ap)^(1/(p-1))となるので
s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
(u-s)=(ap)^(1/(p-1))は、有理数となりますが、
x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)は、満たしません。
837132人目の素数さん
2020/07/05(日) 16:58:21.82ID:tFFsgTrV >>836
> x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)は、満たしません。
どうしてそう思うのですか?
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
(u-s)^(p-1)=apが成り立つようにaを定義すれば(u-s)=(ap)^(1/(p-1))となるので
s^3+t^3=u^3
=(s+(u-s))^3
=(s+(ap)^(1/(p-1)))^3
成り立ちます。
> x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)は、満たしません。
どうしてそう思うのですか?
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
(u-s)^(p-1)=apが成り立つようにaを定義すれば(u-s)=(ap)^(1/(p-1))となるので
s^3+t^3=u^3
=(s+(u-s))^3
=(s+(ap)^(1/(p-1)))^3
成り立ちます。
838日高
2020/07/05(日) 19:56:16.33ID:Q2KuEG6O >828
そのときはたまたまzが整数比とならなかっただけかもしれません。
pとwの組み合わせ次第では整数比となるものがあるかもしれません。
根拠は?
そのときはたまたまzが整数比とならなかっただけかもしれません。
pとwの組み合わせ次第では整数比となるものがあるかもしれません。
根拠は?
839日高
2020/07/05(日) 19:57:15.19ID:Q2KuEG6O (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrは有理数となるが、(5)の解x,yは(3)の解x,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrは有理数となるが、(5)の解x,yは(3)の解x,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
840日高
2020/07/05(日) 19:58:07.23ID:Q2KuEG6O (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)の解は、(3)の解のa2倍となるので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【定理】p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)の解は、(3)の解のa2倍となるので、yが有理数のとき、xは有理数となる。
∴p=2のとき、x^2+y^2=z^2の解x,y,zは、ともに有理数となる。
841132人目の素数さん
2020/07/05(日) 20:01:54.31ID:NhGcByJx842132人目の素数さん
2020/07/05(日) 20:13:23.50ID:tFFsgTrV843日高
2020/07/05(日) 20:17:58.47ID:Q2KuEG6O >835
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)は、満たしません。
どうしてそう思うのですか?実際に計算してみましたか?
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})を(3)に代入する前にちょっと計算して
(u-s)=(ap)^{1/(p-1)}
(u-s)=(ap)^{1/(p-1)}の根拠は?
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)は、満たしません。
どうしてそう思うのですか?実際に計算してみましたか?
(sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})を(3)に代入する前にちょっと計算して
(u-s)=(ap)^{1/(p-1)}
(u-s)=(ap)^{1/(p-1)}の根拠は?
844日高
2020/07/05(日) 20:31:24.55ID:Q2KuEG6O >841
「ともに」ってどういう意味?
「x,y,zとも」という意味です。
「とならない」「となる」ってどういう意味?
の形「とならない」という意味です。
の形「となる」という意味です。
「ともに」ってどういう意味?
「x,y,zとも」という意味です。
「とならない」「となる」ってどういう意味?
の形「とならない」という意味です。
の形「となる」という意味です。
845日高
2020/07/05(日) 20:36:00.89ID:Q2KuEG6O >841
「ともに」ってどういう意味?
「x,y,zとも」という意味です。
「とならない」「となる」ってどういう意味?
の形「とならない」という意味です。
の形「となる」という意味です。
「ともに」ってどういう意味?
「x,y,zとも」という意味です。
「とならない」「となる」ってどういう意味?
の形「とならない」という意味です。
の形「となる」という意味です。
846132人目の素数さん
2020/07/05(日) 20:51:03.42ID:NhGcByJx >>845 日高
> 「とならない」「となる」ってどういう意味?
> の形「とならない」という意味です。
> の形「となる」という意味です。
意味がわからない。「とならない」「となる」ということばを使わずに説明してください。
> 「とならない」「となる」ってどういう意味?
> の形「とならない」という意味です。
> の形「となる」という意味です。
意味がわからない。「とならない」「となる」ということばを使わずに説明してください。
847132人目の素数さん
2020/07/05(日) 20:58:38.88ID:tFFsgTrV >>843
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
あなたの証明にあるこれを使っただけですが
あえて言うなら、r=z-xで定義されるrとpに対して
a=(r^(p-1))/p
という数aを定義することができ、このとき
r^(p-1)=apが必ず成り立ちます。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
あなたの証明にあるこれを使っただけですが
あえて言うなら、r=z-xで定義されるrとpに対して
a=(r^(p-1))/p
という数aを定義することができ、このとき
r^(p-1)=apが必ず成り立ちます。
848132人目の素数さん
2020/07/05(日) 21:14:33.55ID:tFFsgTrV849132人目の素数さん
2020/07/05(日) 21:26:14.44ID:NhGcByJx >>848
「となる」の意味が常人とは異なるものかと思われ。
「となる」の意味が常人とは異なるものかと思われ。
850132人目の素数さん
2020/07/05(日) 21:35:06.40ID:tFFsgTrV851132人目の素数さん
2020/07/05(日) 22:49:11.29ID:zwGRmHf/ 赤ちゃんか幼児の面倒を見ているみたいだね
852132人目の素数さん
2020/07/06(月) 01:00:51.80ID:uwlcoxuT >>820
> (1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
が、言えます。
>>825
> 他に、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)
に、代入しても、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となります。
>>823でも言及していますが
r^(p-1)=pのときつまりr=p^{1/(p-1)}のとき
これを x^p+y^p=(x+r)^p に代入すると
x^p+y^p=(x+p^{1/(p-1)})^pを得る。
あなたが>>820や>>825で行っている
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}
のような複雑な式変形をする必要はありません。
式を積の形にする意味はなく
「A×B=C×DならばA=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことも役に立っていません。
> (1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
が、言えます。
>>825
> 他に、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)
に、代入しても、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となります。
>>823でも言及していますが
r^(p-1)=pのときつまりr=p^{1/(p-1)}のとき
これを x^p+y^p=(x+r)^p に代入すると
x^p+y^p=(x+p^{1/(p-1)})^pを得る。
あなたが>>820や>>825で行っている
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}
のような複雑な式変形をする必要はありません。
式を積の形にする意味はなく
「A×B=C×DならばA=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことも役に立っていません。
853日高
2020/07/06(月) 07:25:14.47ID:lFPclH6X (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
854日高
2020/07/06(月) 07:32:49.06ID:lFPclH6X (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2の解は、整数比となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2の解は、整数比となる。
【定理】p=2のとき、x^2+y^2=z^2の解は、整数比となる。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2の解は、整数比となる。
855日高
2020/07/06(月) 07:44:07.58ID:lFPclH6X >846
意味がわからない。「とならない」「となる」ということばを使わずに説明してください。
他の言葉が、見つかりません。
意味がわからない。「とならない」「となる」ということばを使わずに説明してください。
他の言葉が、見つかりません。
856日高
2020/07/06(月) 07:51:56.96ID:lFPclH6X >847
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
あなたの証明にあるこれを使っただけですが
x+(ap)^{1/(p-1)}が、有理数のとき、(5)のx,yは整数比となりません。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
あなたの証明にあるこれを使っただけですが
x+(ap)^{1/(p-1)}が、有理数のとき、(5)のx,yは整数比となりません。
857日高
2020/07/06(月) 08:02:11.44ID:lFPclH6X (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、有理数の解を持つ。
858132人目の素数さん
2020/07/06(月) 08:04:27.57ID:0AvWYk4P859日高
2020/07/06(月) 08:06:14.09ID:lFPclH6X (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、有理数の解を持たない。
860日高
2020/07/06(月) 08:10:36.05ID:lFPclH6X >848
x=1,y=√2,z=√3はx^2+y^2=z^2の解x,y,zですがともに有理数となりません。
よってこの定理は間違いです。
857に、訂正します。
x=1,y=√2,z=√3はx^2+y^2=z^2の解x,y,zですがともに有理数となりません。
よってこの定理は間違いです。
857に、訂正します。
861日高
2020/07/06(月) 08:15:56.08ID:lFPclH6X >852
「A×B=C×DならばA=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことも役に立っていません。
どうしてでしょうか?
「A×B=C×DならばA=Cのとき、B=Dとなる。
A≠Cのとき、aを実数としてA=C×a、B=D×(1/a)となる。」このことも役に立っていません。
どうしてでしょうか?
862日高
2020/07/06(月) 08:18:22.97ID:lFPclH6X >858
2. 「整数比となる」とあるが、この書き方は「すべての解が整数比となる」を意味する。
もちろん、すべての解が整数比とは限らない。
【反例】1^2+1^2=(√2)^2.
857に、訂正します。
2. 「整数比となる」とあるが、この書き方は「すべての解が整数比となる」を意味する。
もちろん、すべての解が整数比とは限らない。
【反例】1^2+1^2=(√2)^2.
857に、訂正します。
863日高
2020/07/06(月) 08:22:43.53ID:lFPclH6X (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
864日高
2020/07/06(月) 08:23:59.05ID:lFPclH6X (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
865132人目の素数さん
2020/07/06(月) 08:44:35.44ID:xOUKiYCo >>857
> (ピタゴラスの定理)
> 【定理】p=2のとき、x^2+y^2=z^2は、有理数の解を持つ。
> 【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
ここで右辺を展開して両辺からx^2を引くと
y^2=2rx+r^2
これはxに関して1次式なので0≠r ならばx=の形に変形できて
x=(y^2-r^2)/2r
以上より、0≠rが有理数かつyが有理数とすれば、xもまた有理数である解が存在する。
証明終わり。
> (1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
> (2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
rは有理数であれば十分で、2にする必要もなければ、それを見つける過程も不要である。
> (3)はrが有理数なので、yが有理数のとき、xは有理数となる。
前述の通り、証明はここで終わってよい。
以下には間違いもあるが、そもそも不要な記述なのでいちいち指摘はしない。
> (2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
> (4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
> (5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
> ∴p=2のとき、x^2+y^2=z^2は、有理数の解を持つ。
> (ピタゴラスの定理)
> 【定理】p=2のとき、x^2+y^2=z^2は、有理数の解を持つ。
> 【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
ここで右辺を展開して両辺からx^2を引くと
y^2=2rx+r^2
これはxに関して1次式なので0≠r ならばx=の形に変形できて
x=(y^2-r^2)/2r
以上より、0≠rが有理数かつyが有理数とすれば、xもまた有理数である解が存在する。
証明終わり。
> (1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
> (2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
rは有理数であれば十分で、2にする必要もなければ、それを見つける過程も不要である。
> (3)はrが有理数なので、yが有理数のとき、xは有理数となる。
前述の通り、証明はここで終わってよい。
以下には間違いもあるが、そもそも不要な記述なのでいちいち指摘はしない。
> (2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
> (4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
> (5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
> ∴p=2のとき、x^2+y^2=z^2は、有理数の解を持つ。
866日高
2020/07/06(月) 09:29:56.30ID:lFPclH6X >865
rは有理数であれば十分で、2にする必要もなければ、それを見つける過程も不要である。
その通りですが、これは、pが奇素数の場合も、考えかたは、同じということを、
示すためです。
rは有理数であれば十分で、2にする必要もなければ、それを見つける過程も不要である。
その通りですが、これは、pが奇素数の場合も、考えかたは、同じということを、
示すためです。
867日高
2020/07/06(月) 09:33:16.13ID:lFPclH6X >848
x=1,y=√2,z=√3はx^2+y^2=z^2の解x,y,zですがともに有理数となりません。
よってこの定理は間違いです。
どういう意味でしょうか?
x=1,y=√2,z=√3はx^2+y^2=z^2の解x,y,zですがともに有理数となりません。
よってこの定理は間違いです。
どういう意味でしょうか?
868日高
2020/07/06(月) 09:43:35.43ID:lFPclH6X >858
「整数比となることがある」すなわち「整数比の解が存在する」ならば正しい。
このつもりで書いたならあなたは主張の書き方がおかしいし、この主張が証明できたと考えているなら証明がおかしい。
「整数比の解が存在する」という意味です。
この証明のどの部分がおかしいのでしょうか?
「整数比となることがある」すなわち「整数比の解が存在する」ならば正しい。
このつもりで書いたならあなたは主張の書き方がおかしいし、この主張が証明できたと考えているなら証明がおかしい。
「整数比の解が存在する」という意味です。
この証明のどの部分がおかしいのでしょうか?
869132人目の素数さん
2020/07/06(月) 10:26:15.37ID:uwlcoxuT870日高
2020/07/06(月) 10:47:57.43ID:lFPclH6X >869
>r^(p-1)=pのときつまりr=p^{1/(p-1)}のとき
>これを x^p+y^p=(x+r)^p に代入すると
>x^p+y^p=(x+p^{1/(p-1)})^pを得る。
からです。
r=p^{1/(p-1)}となる理由が必要では、ないでしょうか?
>r^(p-1)=pのときつまりr=p^{1/(p-1)}のとき
>これを x^p+y^p=(x+r)^p に代入すると
>x^p+y^p=(x+p^{1/(p-1)})^pを得る。
からです。
r=p^{1/(p-1)}となる理由が必要では、ないでしょうか?
871132人目の素数さん
2020/07/06(月) 12:27:30.59ID:FrR5H/Kr >>868
> >858
> 「整数比となることがある」すなわち「整数比の解が存在する」ならば正しい。
> このつもりで書いたならあなたは主張の書き方がおかしいし、この主張が証明できたと考えているなら証明がおかしい。
>
> 「整数比の解が存在する」という意味です。
> この証明のどの部分がおかしいのでしょうか?
「この主張」とは「すべての解が整数比となる」です。
「反例の存在から明らかに偽である主張が証明されている」ならば「証明が間違っている」ことになりますね。
主張を修正されたようなので、もはやどうでもいいことですが。
> >858
> 「整数比となることがある」すなわち「整数比の解が存在する」ならば正しい。
> このつもりで書いたならあなたは主張の書き方がおかしいし、この主張が証明できたと考えているなら証明がおかしい。
>
> 「整数比の解が存在する」という意味です。
> この証明のどの部分がおかしいのでしょうか?
「この主張」とは「すべての解が整数比となる」です。
「反例の存在から明らかに偽である主張が証明されている」ならば「証明が間違っている」ことになりますね。
主張を修正されたようなので、もはやどうでもいいことですが。
872132人目の素数さん
2020/07/06(月) 12:38:38.88ID:FrR5H/Kr >>870
> >869
> >r^(p-1)=pのときつまりr=p^{1/(p-1)}のとき
> >これを x^p+y^p=(x+r)^p に代入すると
> >x^p+y^p=(x+p^{1/(p-1)})^pを得る。
> からです。
>
> r=p^{1/(p-1)}となる理由が必要では、ないでしょうか?
pが奇素数であることから、y^pはすべての実数を取りうる。
したがって、任意のrおよび任意のxに対して
x^p+y^p=(x+r)^p
を満たすyが存在する。
rがどんな値でも解があるのなら、その値になる理由なんぞ考える必要はなかろう。
> >869
> >r^(p-1)=pのときつまりr=p^{1/(p-1)}のとき
> >これを x^p+y^p=(x+r)^p に代入すると
> >x^p+y^p=(x+p^{1/(p-1)})^pを得る。
> からです。
>
> r=p^{1/(p-1)}となる理由が必要では、ないでしょうか?
pが奇素数であることから、y^pはすべての実数を取りうる。
したがって、任意のrおよび任意のxに対して
x^p+y^p=(x+r)^p
を満たすyが存在する。
rがどんな値でも解があるのなら、その値になる理由なんぞ考える必要はなかろう。
873日高
2020/07/06(月) 14:13:42.93ID:lFPclH6X >872
pが奇素数であることから、y^pはすべての実数を取りうる。
したがって、任意のrおよび任意のxに対して
x^p+y^p=(x+r)^p
を満たすyが存在する。
rがどんな値でも解があるのなら、その値になる理由なんぞ考える必要はなかろう。
よく、意味が理解できませんが、
x^p+y^p=(x+r)^pの解x,yが、有理数となるか、無理数となるかが、重要だと
思います。
pが奇素数であることから、y^pはすべての実数を取りうる。
したがって、任意のrおよび任意のxに対して
x^p+y^p=(x+r)^p
を満たすyが存在する。
rがどんな値でも解があるのなら、その値になる理由なんぞ考える必要はなかろう。
よく、意味が理解できませんが、
x^p+y^p=(x+r)^pの解x,yが、有理数となるか、無理数となるかが、重要だと
思います。
874日高
2020/07/06(月) 14:16:32.88ID:lFPclH6X (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
875日高
2020/07/06(月) 14:17:40.04ID:lFPclH6X (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
876132人目の素数さん
2020/07/06(月) 15:14:08.56ID:eba3rINN >>874日高
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
は日高語では
「(2)はr^(p-1)=pでありかつx^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある」
の意味なので要注意。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
は日高語では
「(2)はr^(p-1)=pでありかつx^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある」
の意味なので要注意。
877日高
2020/07/06(月) 15:36:45.45ID:lFPclH6X >876
「(2)はr^(p-1)=pでありかつx^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある」
の意味なので要注意。
よく、意味が理解できませんが、
r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となります。
「(2)はr^(p-1)=pでありかつx^p+y^p=(x+p^{1/(p-1)})^p…(3)となる場合がある」
の意味なので要注意。
よく、意味が理解できませんが、
r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となります。
878132人目の素数さん
2020/07/06(月) 16:13:53.42ID:eba3rINN >>877 日高
> よく、意味が理解できませんが、
> r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となります。
「r^(p-1)=pが成り立たない」または「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
の意味ですか?
> よく、意味が理解できませんが、
> r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となります。
「r^(p-1)=pが成り立たない」または「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
の意味ですか?
879日高
2020/07/06(月) 16:37:20.58ID:lFPclH6X >878
「r^(p-1)=pが成り立たない」または「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
の意味ですか?
よく、意味がわからないので、解説していただけないでしょうか。
「r^(p-1)=pが成り立たない」または「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
の意味ですか?
よく、意味がわからないので、解説していただけないでしょうか。
880132人目の素数さん
2020/07/06(月) 16:57:29.61ID:eba3rINN881日高
2020/07/06(月) 17:16:08.31ID:lFPclH6X >879
「r^(p-1)=pが成り立たない」または「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
の意味ですか?
この文章の意味が、読み取れません。
「r^(p-1)=pが成り立たない」または「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
の意味ですか?
この文章の意味が、読み取れません。
882132人目の素数さん
2020/07/06(月) 17:22:03.25ID:eba3rINN >>877 日高
> よく、意味が理解できませんが、
> r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となります。
「r^(p-1)=pが成り立つ」かつ「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
の意味ですか?
> よく、意味が理解できませんが、
> r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となります。
「r^(p-1)=pが成り立つ」かつ「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
の意味ですか?
883日高
2020/07/06(月) 17:58:55.14ID:lFPclH6X >882
「r^(p-1)=pが成り立つ」かつ「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
の意味ですか?
「r^(p-1)=pが成り立つ」ので、「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
の意味です。
「r^(p-1)=pが成り立つ」かつ「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
の意味ですか?
「r^(p-1)=pが成り立つ」ので、「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
の意味です。
884132人目の素数さん
2020/07/06(月) 18:09:16.22ID:eba3rINN >>883 日高
> >882
> 「r^(p-1)=pが成り立つ」かつ「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
> の意味ですか?
>
> 「r^(p-1)=pが成り立つ」ので、「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
> の意味です。
「ので」は意味が不明確なので使わないで。
私のこの質問には「はい」「いいえ」で答えてください。
> >882
> 「r^(p-1)=pが成り立つ」かつ「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
> の意味ですか?
>
> 「r^(p-1)=pが成り立つ」ので、「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
> の意味です。
「ので」は意味が不明確なので使わないで。
私のこの質問には「はい」「いいえ」で答えてください。
885日高
2020/07/06(月) 18:58:18.70ID:lFPclH6X >884
「r^(p-1)=pが成り立つ」かつ「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
> の意味ですか?
この場合の、「かつ」の意味を、教えて下さい。
「r^(p-1)=pが成り立つ」かつ「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
> の意味ですか?
この場合の、「かつ」の意味を、教えて下さい。
886日高
2020/07/06(月) 18:59:48.42ID:lFPclH6X (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
887日高
2020/07/06(月) 19:00:31.08ID:lFPclH6X (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
888132人目の素数さん
2020/07/06(月) 19:47:58.21ID:ma6UAcOi >>885 日高
> >884
> 「r^(p-1)=pが成り立つ」かつ「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
> > の意味ですか?
>
> この場合の、「かつ」の意味を、教えて下さい。
「でない」と「または」の意味はわかりますか?
もしわかれば、「PかつQ」は「《『Pでない』または『Qでない』》でない」です。
> >884
> 「r^(p-1)=pが成り立つ」かつ「x^p+y^p=(x+p^{1/(p-1)})^p…(3)が成り立つ」
> > の意味ですか?
>
> この場合の、「かつ」の意味を、教えて下さい。
「でない」と「または」の意味はわかりますか?
もしわかれば、「PかつQ」は「《『Pでない』または『Qでない』》でない」です。
889日高
2020/07/06(月) 20:15:33.31ID:lFPclH6X >888
「でない」と「または」の意味はわかりますか?
もしわかれば、「PかつQ」は「《『Pでない』または『Qでない』》でない」です。
わかりません。
「でない」と「または」の意味はわかりますか?
もしわかれば、「PかつQ」は「《『Pでない』または『Qでない』》でない」です。
わかりません。
890132人目の素数さん
2020/07/06(月) 20:41:30.27ID:cmcdM8mk 日高は偽ピタゴラスやめるべき
891日高
2020/07/06(月) 20:54:55.99ID:lFPclH6X >890
日高は偽ピタゴラスやめるべき
どの部分が、偽でしょうか?
日高は偽ピタゴラスやめるべき
どの部分が、偽でしょうか?
892132人目の素数さん
2020/07/06(月) 21:17:02.48ID:ma6UAcOi 直角三角形が出てこない
893132人目の素数さん
2020/07/07(火) 00:15:28.93ID:b2FG3vbJ >>887
> 【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
この定理はピタゴラスの定理でもなんでもありません。
でたらめを書いて掲示板に嫌がらせをするのはやめてください。
> 【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
この定理はピタゴラスの定理でもなんでもありません。
でたらめを書いて掲示板に嫌がらせをするのはやめてください。
894132人目の素数さん
2020/07/07(火) 01:46:08.80ID:b2FG3vbJ >>856
はい、ウソです。
x+(ap)^{1/(p-1)}が、有理数のとき、(5)のx,yは整数比となる組み合わせは無限にあります。
証明はhttp://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>356と同じです。
どうせまた同じことを書けと書かれるだろうから、先に書きます。
ある奇素数pについて、次の方程式を考える。
(2w)^p+w^p=((2w)+ap^{1/(p-1)})^p…(3-A)
右辺を左辺に移項して
(2w)^p+w^p-((2w)+ap^{1/(p-1)})^p=0…(3-B)
これはwについてのp次方程式であり、pが奇素数なので(3-B)を満たす実数w(もちろんそれは(3-A)も満たす)が少なくとも1つ必ず存在する。
ここで、x=2w,y=wとおく。これを(3-A)に代入して
x^p+y^p=(x+ap^{1/(p-1)})^p…(3-C)
wが少なくとも1つ存在するので、(3-C)を満たすx,yが少なくとも1つ必ず存在する。
この時、x/y=2
同様のやり方で、x/y=3、x/y=4、…となるようなx,yを無限に見つけることができる。
はい、ウソです。
x+(ap)^{1/(p-1)}が、有理数のとき、(5)のx,yは整数比となる組み合わせは無限にあります。
証明はhttp://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>356と同じです。
どうせまた同じことを書けと書かれるだろうから、先に書きます。
ある奇素数pについて、次の方程式を考える。
(2w)^p+w^p=((2w)+ap^{1/(p-1)})^p…(3-A)
右辺を左辺に移項して
(2w)^p+w^p-((2w)+ap^{1/(p-1)})^p=0…(3-B)
これはwについてのp次方程式であり、pが奇素数なので(3-B)を満たす実数w(もちろんそれは(3-A)も満たす)が少なくとも1つ必ず存在する。
ここで、x=2w,y=wとおく。これを(3-A)に代入して
x^p+y^p=(x+ap^{1/(p-1)})^p…(3-C)
wが少なくとも1つ存在するので、(3-C)を満たすx,yが少なくとも1つ必ず存在する。
この時、x/y=2
同様のやり方で、x/y=3、x/y=4、…となるようなx,yを無限に見つけることができる。
895132人目の素数さん
2020/07/07(火) 02:50:04.38ID:b2FG3vbJ http://rio2016.5ch.net/test/read.cgi/math/1591485843/の>>827
s,t,uは、有理数、wは無理数とします。
> (sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
> s、t、uは(3)を満たさないフェルマーの定理の式の解です。
> s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
>
> x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})とすれば
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)を満たします。
> s/(a^{1/(p-1)})、t/(a^{1/(p-1)})、u/(a^{1/(p-1)})と
> s、t、uは比が同じです
に対するあなたの書き込み
832は833で否定されました。s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
u-s=(ap)^{1/(p-1)}が成り立つようにaを決めたのだから当然です。
834は835で否定されました。x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})はx^p+y^p=(x+p^{1/(p-1)})^p…(3)を満たします。
代入すればすぐわかります。
836は837で否定されました。s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
u-s=(ap)^{1/(p-1)}が成り立つようにaを決めたのだから当然です。
843の疑問は847で返答しました。すべてのr、pの組に対して必ずa=(r^(p-1))/pとなるようなaが定義でき、そのときr=u-s=(ap)^{1/(p-1)}です。
u-s=(ap)^{1/(p-1)}が成り立つようにaを決めたのだから当然です。
856は894で否定されました。x+(ap)^{1/(p-1)}が、有理数のとき、(5)のx,yは整数比となる組み合わせは無限にあります。
rが有理数でも無理数でも関係ありません。
まだ何かありますか?
s,t,uは、有理数、wは無理数とします。
> (sw)^3+(tw)^3=(uw)^3を満たす3つの数がある時、その3つの数はs^3+t^3=u^3を満たします。
> s、t、uは(3)を満たさないフェルマーの定理の式の解です。
> s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
>
> x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})とすれば
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)を満たします。
> s/(a^{1/(p-1)})、t/(a^{1/(p-1)})、u/(a^{1/(p-1)})と
> s、t、uは比が同じです
に対するあなたの書き込み
832は833で否定されました。s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
u-s=(ap)^{1/(p-1)}が成り立つようにaを決めたのだから当然です。
834は835で否定されました。x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})はx^p+y^p=(x+p^{1/(p-1)})^p…(3)を満たします。
代入すればすぐわかります。
836は837で否定されました。s、t、uはx^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)を満たします。
u-s=(ap)^{1/(p-1)}が成り立つようにaを決めたのだから当然です。
843の疑問は847で返答しました。すべてのr、pの組に対して必ずa=(r^(p-1))/pとなるようなaが定義でき、そのときr=u-s=(ap)^{1/(p-1)}です。
u-s=(ap)^{1/(p-1)}が成り立つようにaを決めたのだから当然です。
856は894で否定されました。x+(ap)^{1/(p-1)}が、有理数のとき、(5)のx,yは整数比となる組み合わせは無限にあります。
rが有理数でも無理数でも関係ありません。
まだ何かありますか?
896日高
2020/07/07(火) 05:39:25.62ID:VfB+Nhzb (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
897日高
2020/07/07(火) 05:40:08.36ID:VfB+Nhzb (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
898日高
2020/07/07(火) 05:44:21.12ID:VfB+Nhzb >892
直角三角形が出てこない
直角三角形が出てこないと、駄目でしょうか?
直角三角形が出てこない
直角三角形が出てこないと、駄目でしょうか?
899日高
2020/07/07(火) 05:46:35.81ID:VfB+Nhzb >893
> 【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
この定理はピタゴラスの定理でもなんでもありません。
でたらめを書いて掲示板に嫌がらせをするのはやめてください。
どうしてでしょうか?
> 【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
この定理はピタゴラスの定理でもなんでもありません。
でたらめを書いて掲示板に嫌がらせをするのはやめてください。
どうしてでしょうか?
900日高
2020/07/07(火) 05:51:28.16ID:VfB+Nhzb >894
はい、ウソです。
x+(ap)^{1/(p-1)}が、有理数のとき、(5)のx,yは整数比となる組み合わせは無限にあります。
そうですが、
x+(ap)^{1/(p-1)}が、有理数のとき、(5)のx,y,zが、整数比となる組み合わせが、あるでしょうか?
はい、ウソです。
x+(ap)^{1/(p-1)}が、有理数のとき、(5)のx,yは整数比となる組み合わせは無限にあります。
そうですが、
x+(ap)^{1/(p-1)}が、有理数のとき、(5)のx,y,zが、整数比となる組み合わせが、あるでしょうか?
901132人目の素数さん
2020/07/07(火) 05:53:02.47ID:ejLzTUjQ 「ピタゴラスの定理」の主張には、解が有理数かどうかはまったくでてこない。
902日高
2020/07/07(火) 05:58:19.26ID:VfB+Nhzb >901
「ピタゴラスの定理」の主張には、解が有理数かどうかはまったくでてこない。
有理数の組み合わせの、分母を、払うと、整数の組み合わせとなります。
「ピタゴラスの定理」の主張には、解が有理数かどうかはまったくでてこない。
有理数の組み合わせの、分母を、払うと、整数の組み合わせとなります。
903132人目の素数さん
2020/07/07(火) 06:20:33.87ID:HSsisS28 >>902
> >901
> 「ピタゴラスの定理」の主張には、解が有理数かどうかはまったくでてこない。
>
> 有理数の組み合わせの、分母を、払うと、整数の組み合わせとなります。
だから何?
そんなものをピタゴラスの定理とは呼ばない。
歴史を改竄しようとしているのか?
> >901
> 「ピタゴラスの定理」の主張には、解が有理数かどうかはまったくでてこない。
>
> 有理数の組み合わせの、分母を、払うと、整数の組み合わせとなります。
だから何?
そんなものをピタゴラスの定理とは呼ばない。
歴史を改竄しようとしているのか?
904日高
2020/07/07(火) 07:20:06.82ID:VfB+Nhzb >895
> x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})とすれば
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)を満たします。
x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})とすれば
s^p+t^p=z^pとなります。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)に、
x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})を代入すると、
{s/(a^{1/(p-1)})}^p+{t/(a^{1/(p-1)})}^p=(s/(a^{1/(p-1)})+p^{1/(p-1)})^p
となります。
> x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})とすれば
> x^p+y^p=(x+p^{1/(p-1)})^p…(3)を満たします。
x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})とすれば
s^p+t^p=z^pとなります。
x^p+y^p=(x+p^{1/(p-1)})^p…(3)に、
x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})を代入すると、
{s/(a^{1/(p-1)})}^p+{t/(a^{1/(p-1)})}^p=(s/(a^{1/(p-1)})+p^{1/(p-1)})^p
となります。
905日高
2020/07/07(火) 09:35:51.26ID:VfB+Nhzb >904
訂正
x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})とすれば
s^p+t^p=u^pとなります。
訂正
x=s/(a^{1/(p-1)})、y=t/(a^{1/(p-1)})、z=u/(a^{1/(p-1)})とすれば
s^p+t^p=u^pとなります。
906日高
2020/07/07(火) 09:36:47.88ID:VfB+Nhzb (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
907日高
2020/07/07(火) 09:37:27.74ID:VfB+Nhzb (ピタゴラスの定理)
【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【定理】p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
908日高
2020/07/07(火) 10:08:12.57ID:VfB+Nhzb (ピタゴラスの定理)
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^2+y^2=z^2は、0以外の有理数の解を持つ。
909日高
2020/07/07(火) 10:09:27.26ID:VfB+Nhzb (ピタゴラスの定理)
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
910132人目の素数さん
2020/07/07(火) 17:28:07.35ID:+zpG3GLF ピタゴラス数とピタゴラスの定理は違うものだからな
911日高
2020/07/07(火) 17:56:49.48ID:VfB+Nhzb >910
ピタゴラス数とピタゴラスの定理は違うものだからな
どちらも、a^2+b^2=c^2ではないでしょうか?
ピタゴラス数とピタゴラスの定理は違うものだからな
どちらも、a^2+b^2=c^2ではないでしょうか?
912132人目の素数さん
2020/07/07(火) 18:28:31.09ID:HSsisS28 >>911
> >910
> ピタゴラス数とピタゴラスの定理は違うものだからな
>
> どちらも、a^2+b^2=c^2ではないでしょうか?
式に名前がついているのではない。
妄想嘘つき野郎は消えろ。
> >910
> ピタゴラス数とピタゴラスの定理は違うものだからな
>
> どちらも、a^2+b^2=c^2ではないでしょうか?
式に名前がついているのではない。
妄想嘘つき野郎は消えろ。
913132人目の素数さん
2020/07/07(火) 18:40:03.43ID:xLddq9kt 消えなくてもいい、勉強しろ。
914日高
2020/07/07(火) 18:42:59.57ID:VfB+Nhzb >912
式に名前がついているのではない。
どういう意味でしょうか?
式に名前がついているのではない。
どういう意味でしょうか?
915132人目の素数さん
2020/07/07(火) 19:38:04.38ID:ovBwHWl+ >>911
> >910
> ピタゴラス数とピタゴラスの定理は違うものだからな
>
> どちらも、a^2+b^2=c^2ではないでしょうか?
使われる式が同じなら全部同じものなの?
愚か以外の形容が思いつかないんだが。
> >910
> ピタゴラス数とピタゴラスの定理は違うものだからな
>
> どちらも、a^2+b^2=c^2ではないでしょうか?
使われる式が同じなら全部同じものなの?
愚か以外の形容が思いつかないんだが。
916日高
2020/07/07(火) 19:45:33.24ID:VfB+Nhzb >915
使われる式が同じなら全部同じものなの?
愚か以外の形容が思いつかないんだが。
愚かでしょうか?
使われる式が同じなら全部同じものなの?
愚か以外の形容が思いつかないんだが。
愚かでしょうか?
917132人目の素数さん
2020/07/07(火) 20:13:00.64ID:JrzLSb34 ピタゴラス曰く「万物は数なり」。よって定理も数なり。
ゆえにピタゴラス定理はピタゴラス数なり。
ゆえにピタゴラス定理はピタゴラス数なり。
918日高
2020/07/07(火) 20:20:07.58ID:VfB+Nhzb >917
ピタゴラス曰く「万物は数なり」。よって定理も数なり。
ゆえにピタゴラス定理はピタゴラス数なり。
どういう意味でしょうか?
ピタゴラス曰く「万物は数なり」。よって定理も数なり。
ゆえにピタゴラス定理はピタゴラス数なり。
どういう意味でしょうか?
919日高
2020/07/07(火) 20:21:53.07ID:VfB+Nhzb (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
920日高
2020/07/07(火) 20:23:09.90ID:VfB+Nhzb (ピタゴラスの定理)
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
921132人目の素数さん
2020/07/07(火) 20:51:11.51ID:JrzLSb34 >>919 日高
> (フェルマーの最終定理)
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
フェルマーの最終定理を証明するためにはp=4の場合も必要。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
> (1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
この変形はまったく無駄。
日高はAB=CDを導いて初めてA=Cのときを検討できると思っているらしい。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
そういう場合を考えたければ考えればよいだけのこと。
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
ここはいま一つ怪しい。rを超越数にとるほうが確実であろう。
> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
「a=r^(p-1)/pとおく」と書かないと通用しないよ。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)は(1)と全く同じ式である。意味不明。
> (5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
だからどうした? 意味不明。
> ∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
言えてないよ。
> (フェルマーの最終定理)
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
フェルマーの最終定理を証明するためにはp=4の場合も必要。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
> (1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
この変形はまったく無駄。
日高はAB=CDを導いて初めてA=Cのときを検討できると思っているらしい。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
そういう場合を考えたければ考えればよいだけのこと。
> (3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
ここはいま一つ怪しい。rを超越数にとるほうが確実であろう。
> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
「a=r^(p-1)/pとおく」と書かないと通用しないよ。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)は(1)と全く同じ式である。意味不明。
> (5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
だからどうした? 意味不明。
> ∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
言えてないよ。
922日高
2020/07/07(火) 21:14:10.23ID:VfB+Nhzb >921
> (5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
だからどうした? 意味不明。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(5)の解は(3)の解の等倍となるので、x,yは、ともに有理数となりません。
> (5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
だからどうした? 意味不明。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(5)の解は(3)の解の等倍となるので、x,yは、ともに有理数となりません。
923132人目の素数さん
2020/07/07(火) 21:34:21.02ID:JrzLSb34 >>922 日高
言いたいことがあるなら証明の中に書いて。
言いたいことがあるなら証明の中に書いて。
924132人目の素数さん
2020/07/07(火) 22:22:05.69ID:oANbhIsj アホの日高は
でたらめピタゴラスをやめろ
でたらめピタゴラスをやめろ
925132人目の素数さん
2020/07/07(火) 23:59:49.39ID:HSsisS28926132人目の素数さん
2020/07/08(水) 00:41:20.67ID:2VTA3iwl >>900
あるともないとも証明されていないので、あるともないとも言えません。
あるとかないとか言いたいのなら、いずれにしろ、それを証明してください。
あるとかないとか証明できるまで、あるともないとも言ってはいけません。
言ったらそれはインチキです。
あるともないとも証明されていないので、あるともないとも言えません。
あるとかないとか言いたいのなら、いずれにしろ、それを証明してください。
あるとかないとか証明できるまで、あるともないとも言ってはいけません。
言ったらそれはインチキです。
927132人目の素数さん
2020/07/08(水) 00:46:19.62ID:2VTA3iwl928132人目の素数さん
2020/07/08(水) 00:55:40.99ID:2VTA3iwl >>904
aはr^(p-1)=apで定義されるある数です。
aはrとpを使ってa=r^(p-1)/pと書けるのだから、
> {s/(a^{1/(p-1)})}^p+{t/(a^{1/(p-1)})}^p=(s/(a^{1/(p-1)})+p^{1/(p-1)})^p
はもっと計算して簡単に書けます。ちゃんと簡単に書いてください。
それとも無駄にややこしく書いて人をだまそうとするインチキ野郎ですか?
インチキで人をだます嫌がらせ行為ならやめてください。
aはr^(p-1)=apで定義されるある数です。
aはrとpを使ってa=r^(p-1)/pと書けるのだから、
> {s/(a^{1/(p-1)})}^p+{t/(a^{1/(p-1)})}^p=(s/(a^{1/(p-1)})+p^{1/(p-1)})^p
はもっと計算して簡単に書けます。ちゃんと簡単に書いてください。
それとも無駄にややこしく書いて人をだまそうとするインチキ野郎ですか?
インチキで人をだます嫌がらせ行為ならやめてください。
929日高
2020/07/08(水) 06:01:36.40ID:DSvDI01x (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
930日高
2020/07/08(水) 06:02:59.79ID:DSvDI01x (ピタゴラスの定理)
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
931日高
2020/07/08(水) 06:20:17.00ID:DSvDI01x >923
言いたいことがあるなら証明の中に書いて。
証明の中に書いています。
言いたいことがあるなら証明の中に書いて。
証明の中に書いています。
932日高
2020/07/08(水) 06:22:18.05ID:DSvDI01x >924
でたらめピタゴラスをやめろ
どの部分がでたらめでしょうか?
でたらめピタゴラスをやめろ
どの部分がでたらめでしょうか?
933日高
2020/07/08(水) 06:25:44.32ID:DSvDI01x >925
だって中学程度の数学の勉強だってやるつもりはないと明言してたし。
中学程度の数学の勉強で、十分だと、思います。
だって中学程度の数学の勉強だってやるつもりはないと明言してたし。
中学程度の数学の勉強で、十分だと、思います。
934132人目の素数さん
2020/07/08(水) 06:32:23.64ID:psLaN8it >>933
> >925
> だって中学程度の数学の勉強だってやるつもりはないと明言してたし。
>
> 中学程度の数学の勉強で、十分だと、思います。
じゃあ中学程度の数学の勉強をしてから出直してこい。
ピタゴラスの定理が何を表すかも理解出来ないなら、勉強しなおせ。
50年くらい。
> >925
> だって中学程度の数学の勉強だってやるつもりはないと明言してたし。
>
> 中学程度の数学の勉強で、十分だと、思います。
じゃあ中学程度の数学の勉強をしてから出直してこい。
ピタゴラスの定理が何を表すかも理解出来ないなら、勉強しなおせ。
50年くらい。
935日高
2020/07/08(水) 06:34:57.61ID:DSvDI01x >926
あるともないとも証明されていないので、あるともないとも言えません。
あるとかないとか言いたいのなら、いずれにしろ、それを証明してください。
929を、読んで下さい。
あるともないとも証明されていないので、あるともないとも言えません。
あるとかないとか言いたいのなら、いずれにしろ、それを証明してください。
929を、読んで下さい。
936日高
2020/07/08(水) 06:38:33.23ID:DSvDI01x >927
ピタゴラスの定理は「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」です。
このことは、a^2+b^2=c^2ということでは、ないでしょうか?
ピタゴラスの定理は「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」です。
このことは、a^2+b^2=c^2ということでは、ないでしょうか?
937日高
2020/07/08(水) 06:47:48.65ID:DSvDI01x >928
> {s/(a^{1/(p-1)})}^p+{t/(a^{1/(p-1)})}^p=(s/(a^{1/(p-1)})+p^{1/(p-1)})^p
はもっと計算して簡単に書けます。ちゃんと簡単に書いてください。
s^p+t^p={s+p^{1/(p-1)}/(a^{1/(p-1)})}^pとなります。
> {s/(a^{1/(p-1)})}^p+{t/(a^{1/(p-1)})}^p=(s/(a^{1/(p-1)})+p^{1/(p-1)})^p
はもっと計算して簡単に書けます。ちゃんと簡単に書いてください。
s^p+t^p={s+p^{1/(p-1)}/(a^{1/(p-1)})}^pとなります。
938日高
2020/07/08(水) 06:50:39.67ID:DSvDI01x >934
ピタゴラスの定理が何を表すかも理解出来ないなら、勉強しなおせ。
どの部分がが、理解できていないのでしょうか?
ピタゴラスの定理が何を表すかも理解出来ないなら、勉強しなおせ。
どの部分がが、理解できていないのでしょうか?
939日高
2020/07/08(水) 06:51:43.16ID:DSvDI01x (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
940日高
2020/07/08(水) 06:52:32.14ID:DSvDI01x (ピタゴラスの定理)
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
941132人目の素数さん
2020/07/08(水) 06:58:53.90ID:DS9+fP+c >>936
> >927
> ピタゴラスの定理は「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」です。
>
> このことは、a^2+b^2=c^2ということでは、ないでしょうか?
「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」には「辺の長さが有理数となりえるかどうか」については記述がない。
つまり「3辺の長さが有理数となる直角三角形が存在する」は「ピタゴラスの定理」の主張する内容と異なる。
> >927
> ピタゴラスの定理は「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」です。
>
> このことは、a^2+b^2=c^2ということでは、ないでしょうか?
「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」には「辺の長さが有理数となりえるかどうか」については記述がない。
つまり「3辺の長さが有理数となる直角三角形が存在する」は「ピタゴラスの定理」の主張する内容と異なる。
942132人目の素数さん
2020/07/08(水) 08:04:43.77ID:psLaN8it >>938
> >934
> ピタゴラスの定理が何を表すかも理解出来ないなら、勉強しなおせ。
>
> どの部分がが、理解できていないのでしょうか?
ほら。問題点が分からないんでしょ。
理解できていない証拠。
はっきり言って、中学数学の入門すら全く身についていない。
> >934
> ピタゴラスの定理が何を表すかも理解出来ないなら、勉強しなおせ。
>
> どの部分がが、理解できていないのでしょうか?
ほら。問題点が分からないんでしょ。
理解できていない証拠。
はっきり言って、中学数学の入門すら全く身についていない。
943日高
2020/07/08(水) 08:45:35.79ID:DSvDI01x >941
「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」には「辺の長さが有理数となりえるかどうか」については記述がない。
この場合の直角を挟む2辺の長さは、有理数ではないでしょうか?
「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」には「辺の長さが有理数となりえるかどうか」については記述がない。
この場合の直角を挟む2辺の長さは、有理数ではないでしょうか?
944日高
2020/07/08(水) 08:47:46.98ID:DSvDI01x >942
> どの部分が、理解できていないのでしょうか?
ほら。問題点が分からないんでしょ。
理解できていない証拠。
どの部分かを、教えて下さい。
> どの部分が、理解できていないのでしょうか?
ほら。問題点が分からないんでしょ。
理解できていない証拠。
どの部分かを、教えて下さい。
945132人目の素数さん
2020/07/08(水) 08:58:20.43ID:+Kz/XjPg >>943
> >941
> 「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」には「辺の長さが有理数となりえるかどうか」については記述がない。
>
> この場合の直角を挟む2辺の長さは、有理数ではないでしょうか?
いいえ。
「ピタゴラスの定理」は「辺の長さが有理数であるか否か」に関わらず成り立つ定理です。
定理に書かれていないのに有理数と決めつけないでください。
> >941
> 「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」には「辺の長さが有理数となりえるかどうか」については記述がない。
>
> この場合の直角を挟む2辺の長さは、有理数ではないでしょうか?
いいえ。
「ピタゴラスの定理」は「辺の長さが有理数であるか否か」に関わらず成り立つ定理です。
定理に書かれていないのに有理数と決めつけないでください。
946日高
2020/07/08(水) 09:02:02.18ID:DSvDI01x >943
訂正
「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」
この場合の辺の長さは、有理数ではないでしょうか?
訂正
「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」
この場合の辺の長さは、有理数ではないでしょうか?
947日高
2020/07/08(水) 09:07:38.37ID:DSvDI01x >945
いいえ。
「ピタゴラスの定理」は「辺の長さが有理数であるか否か」に関わらず成り立つ定理です。
定理に書かれていないのに有理数と決めつけないでください。
ということは、有理数の場合でも、成り立つということですね。
いいえ。
「ピタゴラスの定理」は「辺の長さが有理数であるか否か」に関わらず成り立つ定理です。
定理に書かれていないのに有理数と決めつけないでください。
ということは、有理数の場合でも、成り立つということですね。
948132人目の素数さん
2020/07/08(水) 09:17:26.57ID:+Kz/XjPg >>947
> >945
> いいえ。
> 「ピタゴラスの定理」は「辺の長さが有理数であるか否か」に関わらず成り立つ定理です。
> 定理に書かれていないのに有理数と決めつけないでください。
>
> ということは、有理数の場合でも、成り立つということですね。
いいえ。
「ピタゴラスの定理」の主張として「辺の長さが有理数となるか否か」については記述されていません。
したがって「ピタゴラスの定理」において「辺の長さが有理数となるか否か」は不明です。
重ねて言いますが、書かれていないことを決めつけないでください。
> >945
> いいえ。
> 「ピタゴラスの定理」は「辺の長さが有理数であるか否か」に関わらず成り立つ定理です。
> 定理に書かれていないのに有理数と決めつけないでください。
>
> ということは、有理数の場合でも、成り立つということですね。
いいえ。
「ピタゴラスの定理」の主張として「辺の長さが有理数となるか否か」については記述されていません。
したがって「ピタゴラスの定理」において「辺の長さが有理数となるか否か」は不明です。
重ねて言いますが、書かれていないことを決めつけないでください。
949132人目の素数さん
2020/07/08(水) 09:20:21.47ID:+Kz/XjPg950日高
2020/07/08(水) 09:37:14.87ID:DSvDI01x (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
951日高
2020/07/08(水) 09:38:14.30ID:DSvDI01x (ピタゴラスの定理)
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
952日高
2020/07/08(水) 09:40:33.81ID:DSvDI01x >948
「ピタゴラスの定理」において「辺の長さが有理数となるか否か」は不明です。
どういう意味でしょうか?
「ピタゴラスの定理」において「辺の長さが有理数となるか否か」は不明です。
どういう意味でしょうか?
953日高
2020/07/08(水) 09:42:36.28ID:DSvDI01x >949
「ピタゴラスの定理」と呼べるか、という意味では一貫して「いいえ」です。
よく、意味がわかりません。
「ピタゴラスの定理」と呼べるか、という意味では一貫して「いいえ」です。
よく、意味がわかりません。
954132人目の素数さん
2020/07/08(水) 10:32:41.03ID:psLaN8it955日高
2020/07/08(水) 10:36:05.58ID:DSvDI01x >954
十分に説明されているのに分からないんじゃん。
よく、理解できません。
十分に説明されているのに分からないんじゃん。
よく、理解できません。
956132人目の素数さん
2020/07/08(水) 10:38:34.61ID:psLaN8it >>955
> >954
> 十分に説明されているのに分からないんじゃん。
>
> よく、理解できません。
理解できないのはお前が勉強してなさすぎるから。
間違っていることが分からないからといって、間違いを広めるのは迷惑。
既に死ぬほど指摘してもらっているんだから、始めから全て熟読して理解できない部分を自分で勉強しなおせ。
> >954
> 十分に説明されているのに分からないんじゃん。
>
> よく、理解できません。
理解できないのはお前が勉強してなさすぎるから。
間違っていることが分からないからといって、間違いを広めるのは迷惑。
既に死ぬほど指摘してもらっているんだから、始めから全て熟読して理解できない部分を自分で勉強しなおせ。
957日高
2020/07/08(水) 11:02:58.01ID:DSvDI01x >956
> 十分に説明されているのに分からないんじゃん。
>> よく、理解できません。
間違い部分が、わかりません。
> 十分に説明されているのに分からないんじゃん。
>> よく、理解できません。
間違い部分が、わかりません。
958132人目の素数さん
2020/07/08(水) 12:51:07.22ID:HH0J5N00 >>957 日高
わからないだろうね。わかるレベルまで数学を勉強していないから。
わからないだろうね。わかるレベルまで数学を勉強していないから。
959132人目の素数さん
2020/07/08(水) 13:09:20.06ID:it2UXoEh 30°、60°、90°の直角三角形はピタゴラスの定理を満たしているんでしょうか、
満たしてないんでしょうか?
満たしてないんでしょうか?
960日高
2020/07/08(水) 13:25:52.49ID:DSvDI01x >958
わからないだろうね。わかるレベルまで数学を勉強していないから。
なにが、わからないのでしようか>
わからないだろうね。わかるレベルまで数学を勉強していないから。
なにが、わからないのでしようか>
961日高
2020/07/08(水) 13:28:54.12ID:DSvDI01x >959
30°、60°、90°の直角三角形はピタゴラスの定理を満たしているんでしょうか、
満たしてないんでしょうか?
30°、60°、90°の直角三角形はピタゴラスの定理を満たしていません。
30°、60°、90°の直角三角形はピタゴラスの定理を満たしているんでしょうか、
満たしてないんでしょうか?
30°、60°、90°の直角三角形はピタゴラスの定理を満たしていません。
962132人目の素数さん
2020/07/08(水) 14:35:03.01ID:psLaN8it >>957
> 間違い部分が、わかりません。
だから何?
おまえが勉強不足だからわからないんでしょ。
さんざん説明されているし。
実際はわからないんじゃなくて、自分が正しいという妄想に取りつかれているだけだろうが。
> 間違い部分が、わかりません。
だから何?
おまえが勉強不足だからわからないんでしょ。
さんざん説明されているし。
実際はわからないんじゃなくて、自分が正しいという妄想に取りつかれているだけだろうが。
963日高
2020/07/08(水) 15:33:15.23ID:DSvDI01x >962
さんざん説明されているし。
納得のいく説明が、ありません。
さんざん説明されているし。
納得のいく説明が、ありません。
964132人目の素数さん
2020/07/08(水) 15:37:17.62ID:nmLwZIcy 納得させる必要ないけどな。
一人で納得しないでいれば良いんじゃない。
一人で納得しないでいれば良いんじゃない。
965日高
2020/07/08(水) 15:39:09.50ID:DSvDI01x (ピタゴラスの定理)
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
例
x^2+y^2=(x+2)^2…(3)となる。
x=3,y=4,z=5
3^2+4^2=(3+2)^2
3^2+4^2=5^2
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
例
x^2+y^2=(x+2)^2…(3)となる。
x=3,y=4,z=5
3^2+4^2=(3+2)^2
3^2+4^2=5^2
966日高
2020/07/08(水) 15:42:21.62ID:DSvDI01x >964
納得させる必要ないけどな。
納得のいく説明が、あれば、ありがたいです。
納得させる必要ないけどな。
納得のいく説明が、あれば、ありがたいです。
967日高
2020/07/08(水) 16:10:07.51ID:DSvDI01x (フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
例
x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)
p=3,a=3,x=3
3^3+y^3=(3+3)
(5)のx,y,zは、(3)のx,y,zのa^{1/(p-1)倍となるので、x,yが、ともに
有理数となることはない。
よって、yは無理数となる。
【定理】pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pは、0以外の有理数の解を持たない。
例
x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)
p=3,a=3,x=3
3^3+y^3=(3+3)
(5)のx,y,zは、(3)のx,y,zのa^{1/(p-1)倍となるので、x,yが、ともに
有理数となることはない。
よって、yは無理数となる。
968132人目の素数さん
2020/07/08(水) 16:55:11.56ID:psLaN8it969132人目の素数さん
2020/07/08(水) 16:58:09.21ID:1TQyE/0D まず勉強しよう
970日高
2020/07/08(水) 18:34:39.41ID:DSvDI01x >968
> 納得のいく説明が、ありません。
おまえが妄想に取りつかれていて中学程度の数学を勉強できていないからだろ。
最後まで、指摘していただければ、納得できると思います。
> 納得のいく説明が、ありません。
おまえが妄想に取りつかれていて中学程度の数学を勉強できていないからだろ。
最後まで、指摘していただければ、納得できると思います。
971日高
2020/07/08(水) 18:36:14.11ID:DSvDI01x >969
まず勉強しよう
何を、勉強すれば、良いのでしょうか?
まず勉強しよう
何を、勉強すれば、良いのでしょうか?
972132人目の素数さん
2020/07/08(水) 18:38:53.38ID:HH0J5N00973日高
2020/07/08(水) 18:47:43.52ID:DSvDI01x >972
最後までって日高が納得するまで?
数学ですから、答えは、一つだと思います。
最後までって日高が納得するまで?
数学ですから、答えは、一つだと思います。
974132人目の素数さん
2020/07/08(水) 18:50:12.19ID:RJXcXC/l ピタゴラスの定理
「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」
30°、60°、90°の直角三角形の3辺の長さは1:√3:2。
「直角を挟む2辺の長さ」は1, √3
「斜辺の長さ」は2
1^2+(√3)^2=2^2
> 30°、60°、90°の直角三角形はピタゴラスの定理を満たしていません。
?
「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」
30°、60°、90°の直角三角形の3辺の長さは1:√3:2。
「直角を挟む2辺の長さ」は1, √3
「斜辺の長さ」は2
1^2+(√3)^2=2^2
> 30°、60°、90°の直角三角形はピタゴラスの定理を満たしていません。
?
975132人目の素数さん
2020/07/08(水) 19:06:49.90ID:psLaN8it >>973
> >972
> 最後までって日高が納得するまで?
>
> 数学ですから、答えは、一つだと思います。
いいえ。
日高が使っているのは数学ではありません。
最低限の数学の勉強をしていないので。
そのときによって意味が変わるような言い方をしているから、答えは一つに決まらない。
おかしい言葉使いを指摘されても無視しているだろうが。
> >972
> 最後までって日高が納得するまで?
>
> 数学ですから、答えは、一つだと思います。
いいえ。
日高が使っているのは数学ではありません。
最低限の数学の勉強をしていないので。
そのときによって意味が変わるような言い方をしているから、答えは一つに決まらない。
おかしい言葉使いを指摘されても無視しているだろうが。
976132人目の素数さん
2020/07/08(水) 19:21:53.89ID:HDxweAVM このスレの日高も、完全数スレの高木も小学生化の知能の害基地
同一人物だったりして
同一人物だったりして
977132人目の素数さん
2020/07/08(水) 20:09:17.31ID:5po4IIgN978日高
2020/07/08(水) 20:16:04.69ID:DSvDI01x >974
> 30°、60°、90°の直角三角形はピタゴラスの定理を満たしていません。
私も、そう思います。
> 30°、60°、90°の直角三角形はピタゴラスの定理を満たしていません。
私も、そう思います。
979日高
2020/07/08(水) 20:19:57.41ID:DSvDI01x >975
おかしい言葉使いを指摘されても無視しているだろうが
おかしい言葉使いをいつ指摘されたのでしょうか?なんという言葉でしょうか?
おかしい言葉使いを指摘されても無視しているだろうが
おかしい言葉使いをいつ指摘されたのでしょうか?なんという言葉でしょうか?
980日高
2020/07/08(水) 20:22:50.70ID:DSvDI01x >977
答えはただ一つ。日高の証明なるものは大間違い。
「大間違い。」は、どの部分でしょうか?
答えはただ一つ。日高の証明なるものは大間違い。
「大間違い。」は、どの部分でしょうか?
981132人目の素数さん
2020/07/08(水) 20:27:51.57ID:5po4IIgN >>980 日高
> >977
> 答えはただ一つ。日高の証明なるものは大間違い。
>
> 「大間違い。」は、どの部分でしょうか?
すでに何度も指摘されている。理解できないのは日高だけ。
日高のやっていることは
将棋のルールを理解できない幼児が「敵の王将をとれば勝ち」とだけ覚え
いきなり手を出して王将をとって「勝った!」と宣言しているようなもの。
> >977
> 答えはただ一つ。日高の証明なるものは大間違い。
>
> 「大間違い。」は、どの部分でしょうか?
すでに何度も指摘されている。理解できないのは日高だけ。
日高のやっていることは
将棋のルールを理解できない幼児が「敵の王将をとれば勝ち」とだけ覚え
いきなり手を出して王将をとって「勝った!」と宣言しているようなもの。
982日高
2020/07/08(水) 20:31:32.51ID:DSvDI01x (ピタゴラスの定理)
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
例
x^2+y^2=(x+2)^2…(3)となる。
x=5,y=12
5/4^2+12/4^2=(5/4+2)^2
5/4^2+12/4^2=13/4^2
z=13/4
【定理】p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)のrが有理数のとき、(5)の解は(3)の解のa2倍となる。
∴p=2のとき、x^p+y^p=z^pは、0以外の有理数の解を持つ。
例
x^2+y^2=(x+2)^2…(3)となる。
x=5,y=12
5/4^2+12/4^2=(5/4+2)^2
5/4^2+12/4^2=13/4^2
z=13/4
983日高
2020/07/08(水) 20:33:22.65ID:DSvDI01x >981
日高のやっていることは
将棋のルールを理解できない幼児が「敵の王将をとれば勝ち」とだけ覚え
いきなり手を出して王将をとって「勝った!」と宣言しているようなもの。
どの部分のことでしょうか?
日高のやっていることは
将棋のルールを理解できない幼児が「敵の王将をとれば勝ち」とだけ覚え
いきなり手を出して王将をとって「勝った!」と宣言しているようなもの。
どの部分のことでしょうか?
984日高
2020/07/08(水) 20:36:29.78ID:DSvDI01x >976
このスレの日高も、完全数スレの高木も小学生化の知能の害基地
同一人物だったりして
何故そう思うのか、根拠が、知りたいです。
このスレの日高も、完全数スレの高木も小学生化の知能の害基地
同一人物だったりして
何故そう思うのか、根拠が、知りたいです。
985132人目の素数さん
2020/07/08(水) 20:36:53.91ID:psLaN8it >>979
> >975
> おかしい言葉使いを指摘されても無視しているだろうが
>
> おかしい言葉使いをいつ指摘されたのでしょうか?なんという言葉でしょうか?
過去ログ全部読めよ。
聞いてごまかすな。ゴミが。
> >975
> おかしい言葉使いを指摘されても無視しているだろうが
>
> おかしい言葉使いをいつ指摘されたのでしょうか?なんという言葉でしょうか?
過去ログ全部読めよ。
聞いてごまかすな。ゴミが。
986132人目の素数さん
2020/07/08(水) 20:37:28.17ID:psLaN8it >>983
> >981
> 日高のやっていることは
> 将棋のルールを理解できない幼児が「敵の王将をとれば勝ち」とだけ覚え
> いきなり手を出して王将をとって「勝った!」と宣言しているようなもの。
>
> どの部分のことでしょうか?
根拠は?と聞かれて、日高が答えた答え全部。
> >981
> 日高のやっていることは
> 将棋のルールを理解できない幼児が「敵の王将をとれば勝ち」とだけ覚え
> いきなり手を出して王将をとって「勝った!」と宣言しているようなもの。
>
> どの部分のことでしょうか?
根拠は?と聞かれて、日高が答えた答え全部。
987132人目の素数さん
2020/07/08(水) 20:38:30.25ID:psLaN8it ひたすら疑問を一言述べればごまかせると思っているのか。
妄想迷惑老人。
妄想迷惑老人。
988日高
2020/07/08(水) 20:47:22.93ID:DSvDI01x >985
過去ログ全部読めよ。
教えていただけないでしょうか?
過去ログ全部読めよ。
教えていただけないでしょうか?
989132人目の素数さん
2020/07/08(水) 20:48:29.64ID:ah06X5+D 日高くんは数学やのうてレスバがしたかったんやなって
990日高
2020/07/08(水) 20:50:09.15ID:DSvDI01x >986
> どの部分のことでしょうか?
根拠は?と聞かれて、日高が答えた答え全部。
「根拠は?と聞かれて、日高が答えた答え」
を、教えていただけないでしょうか。
> どの部分のことでしょうか?
根拠は?と聞かれて、日高が答えた答え全部。
「根拠は?と聞かれて、日高が答えた答え」
を、教えていただけないでしょうか。
991日高
2020/07/08(水) 20:56:45.08ID:DSvDI01x >987
ひたすら疑問を一言述べればごまかせると思っているのか。
妄想迷惑老人。
数学板なので、何故かを、尋ねているだけです。
ひたすら疑問を一言述べればごまかせると思っているのか。
妄想迷惑老人。
数学板なので、何故かを、尋ねているだけです。
992日高
2020/07/08(水) 20:58:42.40ID:DSvDI01x >989
日高くんは数学やのうてレスバがしたかったんやなって
「レスバ」の意味を教えていただけないでしょうか。
日高くんは数学やのうてレスバがしたかったんやなって
「レスバ」の意味を教えていただけないでしょうか。
993132人目の素数さん
2020/07/08(水) 21:18:10.57ID:psLaN8it994132人目の素数さん
2020/07/08(水) 21:19:31.56ID:psLaN8it >>990
> >986
> > どの部分のことでしょうか?
> 根拠は?と聞かれて、日高が答えた答え全部。
>
> 「根拠は?と聞かれて、日高が答えた答え」
> を、教えていただけないでしょうか。
自分で過去ログ全部読めよ。
> >986
> > どの部分のことでしょうか?
> 根拠は?と聞かれて、日高が答えた答え全部。
>
> 「根拠は?と聞かれて、日高が答えた答え」
> を、教えていただけないでしょうか。
自分で過去ログ全部読めよ。
995132人目の素数さん
2020/07/08(水) 21:20:49.30ID:psLaN8it >>991
> >987
> ひたすら疑問を一言述べればごまかせると思っているのか。
> 妄想迷惑老人。
>
> 数学板なので、何故かを、尋ねているだけです。
ここは数学板であって、老人ホームではありません。
理解する気もないのに尋ねることは迷惑なだけ。
> >987
> ひたすら疑問を一言述べればごまかせると思っているのか。
> 妄想迷惑老人。
>
> 数学板なので、何故かを、尋ねているだけです。
ここは数学板であって、老人ホームではありません。
理解する気もないのに尋ねることは迷惑なだけ。
996132人目の素数さん
2020/07/08(水) 21:35:52.13ID:5po4IIgN 「または」とか「かつ」の意味がわからないと「ならば」の意味もわからないはず。
数学以前に論理の問題。
数学以前に論理の問題。
997132人目の素数さん
2020/07/08(水) 21:38:04.71ID:jXWjti/v998132人目の素数さん
2020/07/08(水) 21:42:56.43ID:gMOwJRMi 念のため。
「辺の長さが無理数」は否定する理由にならん。
なぜならば「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」には辺の長さが有理数になることは含まれていないからな。
「辺の長さが無理数」は否定する理由にならん。
なぜならば「直角三角形の直角を挟む2辺の長さの2乗の和は、斜辺の長さの2乗と等しい」には辺の長さが有理数になることは含まれていないからな。
999132人目の素数さん
2020/07/08(水) 21:53:19.03ID:5po4IIgN >>997
日高って「>」の意味がわかってないんじゃないの。
日高って「>」の意味がわかってないんじゃないの。
1000132人目の素数さん
2020/07/08(水) 22:55:29.09ID:PEmkO/Kw (´・_・`)
10011001
Over 1000Thread このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 31日 14時間 31分 26秒
新しいスレッドを立ててください。
life time: 31日 14時間 31分 26秒
10021002
Over 1000Thread 5ちゃんねるの運営はプレミアム会員の皆さまに支えられています。
運営にご協力お願いいたします。
───────────────────
《プレミアム会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────
会員登録には個人情報は一切必要ありません。
月300円から匿名でご購入いただけます。
▼ プレミアム会員登録はこちら ▼
https://premium.5ch.net/
▼ 浪人ログインはこちら ▼
https://login.5ch.net/login.php
運営にご協力お願いいたします。
───────────────────
《プレミアム会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────
会員登録には個人情報は一切必要ありません。
月300円から匿名でご購入いただけます。
▼ プレミアム会員登録はこちら ▼
https://premium.5ch.net/
▼ 浪人ログインはこちら ▼
https://login.5ch.net/login.php
レス数が1000を超えています。これ以上書き込みはできません。
ニュース
- 湯船は「コスパ・タイパが悪い」、「浴槽レス」住宅が若者に人気…掃除は手軽で家賃も割安 ★3 [少考さん★]
- 【愛知県警】「娘の元彼が押しかけて来た」と通報…交際していた10代女性にストーカー行為か 10代男子大学生逮捕 警察へ相談は今回初めて [ぐれ★]
- 渡邊渚「私は玉の輿という言葉が嫌い」「勝手に野球選手大好きみたいなレッテルを貼られちゃう」グラビアでも受けた世間の偏見語る [muffin★]
- 【芸能】トライストーン社長の小栗旬、田中圭の不倫報道に「田中が言っていることを信じたい」とのコメントを出して批判殺到 [Ailuropoda melanoleuca★]
- 岡野タケシ弁護士、永野芽郁と田中圭のLINE拡散した文春に「訴えるなら弁護士集めて全力で支援」「放置すれば本当に自殺者出る」★2 [muffin★]
- 【札幌】「クマがシカを食べてる」 山林で目撃 警察はパトロールを強化 [シャチ★]
- 🟡藤田ことねの世界一カワイイお🏡✨
- 【画像】キラキラ女子👩「ギャー!<マーラータン>美味しすぎーーーッ!」パシャパシャパシャッWWWWWW [796594164]
- reddit民「日本人の英語コメントってなんでI am Japaneseから始まるんだい?」 [253839187]
- 【悲報】大阪万博、閉園までまだ3時間もあるのに既にガラガラ🥹 [616817505]
- ストリート喧嘩でギリギリ使って良いプロレス技💪
- 国内のLCC👈こいつ言うほど安くないよな、微妙な時間、成田だし、まあ直前とかに取るなら相対的に安いだろうけど [943688309]