一応分かる人向けに。
奇素数p,qがp = 2q + 1の関係にあり
v_q((p^(n+1)-1)/(p-1)) = e
であるとき
v_q((p^(n+1)-1)/(p-1))
= v_q((1-2q)^(2n+2) - 1^(n+1))
= v_q (1-2q - 1) + v_q(n+1)    (∵ 一般に a≡b (mod q)、a,bはqの倍数でないとき v_q(a^i - b^i) = v_q(a-b) + v_q(i)。)
= 1+v_q(n+1)
なので>>1の論文中のp = 2qr+1の場合v_pr((p^(n+1)-1)/(p-1))=qr-cr-1というのは多分正しい。
つまり
2m+1 = w pr^(qr-cr-1) (∃w : 奇数)
はp = 2pr + 1である場合には正しい。
でもこれが任意のrで成立するわけではないので以降の議論は成立してません。