小学生とバカプロ固定お断り!(^^;
旧スレが500KBオーバー間近で、新スレ立てる
このスレはガロア原論文を読むためおよび関連する話題を楽しむスレです(最近は、スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。ガロア関連のアーカイブの役も期待して。)
過去スレ
現代数学の系譜11 ガロア理論を読む24 http://rio2016.2ch.net/test/read.cgi/math/1475822875/
現代数学の系譜11 ガロア理論を読む23 http://rio2016.2ch.net/test/read.cgi/math/1474158471/
同22 http://rio2016.2ch.net/test/read.cgi/math/1471085771/
同21 http://rio2016.2ch.net/test/read.cgi/math/1468584649/
同20 http://wc2014.2ch.net/test/read.cgi/math/1466279209/
同19 http://wc2014.2ch.net/test/read.cgi/math/1462577773/
同18 http://wc2014.2ch.net/test/read.cgi/math/1452860378/
同17 http://wc2014.2ch.net/test/read.cgi/math/1448673805/
同16 http://wc2014.2ch.net/test/read.cgi/math/1444562562/
同15
http://wc2014.2ch.net/test/read.cgi/math/1439642249/
同14
http://wc2014.2ch.net/test/read.cgi/math/1434753250/
同13
http://wc2014.2ch.net/test/read.cgi/math/1428205549/
同12
http://wc2014.2ch.net/test/read.cgi/math/1423957563/
同11
http://wc2014.2ch.net/test/read.cgi/math/1420001500/
同10
http://wc2014.2ch.net/test/read.cgi/math/1411454303/
同9 http://wc2014.2ch.net/test/read.cgi/math/1408235017/
同8 http://wc2014.2ch.net/test/read.cgi/math/1364681707/
同7 http://uni.2ch.net/test/read.cgi/math/1349469460/
同6 http://uni.2ch.net/test/read.cgi/math/1342356874/
同5 http://uni.2ch.net/test/read.cgi/math/1338016432/
同(4) http://uni.2ch.net/test/read.cgi/math/1335598642/
同3 http://uni.2ch.net/test/read.cgi/math/1334319436/
同2 http://uni.2ch.net/test/read.cgi/math/1331903075/
同初代 http://uni.2ch.net/test/read.cgi/math/1328016756/
古いものは、そのままクリックで過去ログが読める。また、ネットで検索すると、無料の過去ログ倉庫やキャッシュがヒットして過去ログ結構読めます。
現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net
■ このスレッドは過去ログ倉庫に格納されています
2016/10/30(日) 14:06:40.31ID:S5Jl1CaY
413132人目の素数さん
2016/11/22(火) 18:38:53.29ID:wcNbNXzX V=φ(a, b, c, …) が、a, b, c,… 任意の置換ですべて異なる値になる、と定義されているので、>>412 はたいした問題ではないですね。
414132人目の素数さん
2016/11/22(火) 18:47:27.73ID:KsNtTohy 間違っテル系DQN
415132人目の素数さん
2016/11/22(火) 19:29:33.36ID:wcNbNXzX 129ページの “F=0をどこかで仮定し、上式の最右辺に =0 を付け加えれば正しくなる” これは謎。なんでなのかわからない。
「順列の群」というのは、軌道なわけで、理論的には何の問題もない。わかりやすくなって、すばらしいと思う。
「順列の群」というのは、軌道なわけで、理論的には何の問題もない。わかりやすくなって、すばらしいと思う。
416132人目の素数さん
2016/11/23(水) 18:08:49.98ID:xB7CQvgw ガロア群が部分群で剰余類分割される様子と、原始元の最小多項式が中間体で分解される様子の対応、というのがガロア対応の最初の形なわけだ。「ガロアを読む」が勉強になった。
417哀れな素人
2016/11/23(水) 21:31:16.39ID:YFR05LTQ 「ガロアを読む」にはいくつかの間違いがある。
p110 (3)の証明
p116 さらに奇妙なのは……以下
p129 F=0を……以下
p143 1°の……以下
>>410-412
ピミは見込みがある。
ポクの本の「ガロア第一論文のシンプル解説」を参照すべし。
↓アマゾンで非絶賛発売中
「無限小数は数ではない/相対性理論はペテンである」
p110 (3)の証明
p116 さらに奇妙なのは……以下
p129 F=0を……以下
p143 1°の……以下
>>410-412
ピミは見込みがある。
ポクの本の「ガロア第一論文のシンプル解説」を参照すべし。
↓アマゾンで非絶賛発売中
「無限小数は数ではない/相対性理論はペテンである」
418132人目の素数さん
2016/11/23(水) 22:21:22.59ID:DiXIYGiD やはりキチ○イ(=哀れな素人)だったかw
419哀れな素人
2016/11/23(水) 23:02:23.42ID:YFR05LTQ420¥ ◆2VB8wsVUoo
2016/11/23(水) 23:10:01.96ID:3HDEcW6H ¥
421¥ ◆2VB8wsVUoo
2016/11/23(水) 23:43:57.02ID:3HDEcW6H ¥
422¥ ◆2VB8wsVUoo
2016/11/24(木) 10:43:33.18ID:J7jdFaML ¥
423¥ ◆2VB8wsVUoo
2016/11/24(木) 10:43:50.76ID:J7jdFaML ¥
424¥ ◆2VB8wsVUoo
2016/11/24(木) 10:44:08.12ID:J7jdFaML ¥
425¥ ◆2VB8wsVUoo
2016/11/24(木) 10:44:24.73ID:J7jdFaML ¥
426¥ ◆2VB8wsVUoo
2016/11/24(木) 10:44:43.17ID:J7jdFaML ¥
427¥ ◆2VB8wsVUoo
2016/11/24(木) 10:45:00.30ID:J7jdFaML ¥
428¥ ◆2VB8wsVUoo
2016/11/24(木) 10:45:19.51ID:J7jdFaML ¥
429¥ ◆2VB8wsVUoo
2016/11/24(木) 10:45:37.30ID:J7jdFaML ¥
430132人目の素数さん
2016/11/24(木) 19:51:26.02ID:pLD91VV7 「ガロアを読む」47ページの 量を不変にする部分群 は間違いだな。対称群の中で考えてしまうと、値を変えない置換の集合は、群になるとは限らない。ガロア群が対称群なら正しいけど。
431132人目の素数さん
2016/11/24(木) 21:22:07.28ID:5fH+jIHY 地沼
432132人目の素数さん
2016/11/25(金) 19:18:10.01ID:uZ3pgxPK 今回は、2泊3日石川県一周旅行にご参加頂き、どうもありがとうございます。バスの運転手はおっちゃんです。
おっちゃんといいましても、距離が長いですので、2人のおっちゃんが担当しております。
バスガイドはピッチピッチの久しく美しき子です。ここ石川県は、わたし??のような女性が大勢暮らしている
加賀八万石の國、加賀藩の前田利家の元城下町として繁栄した場所で有名な県でございます。加賀八万石の國
といいましても、北は能登地方、南は加賀地方と大きく2つに分けられる細長い県です。
東は、倶利伽藍峠を隔て、チューリップやホタルイカで有名な越中の薬売りの越中の國、富山県、
西は広く日本海に面し、道元が悟りを開いた曹同宗大本山永平寺、急な岩場の東尋坊で有名な越前の國、福井県
と隔てています。南は白川郷や飛騨の小京都高山市がある岐阜県と隔てていますが、北アルプスを挟んでいます。
おっちゃんといいましても、距離が長いですので、2人のおっちゃんが担当しております。
バスガイドはピッチピッチの久しく美しき子です。ここ石川県は、わたし??のような女性が大勢暮らしている
加賀八万石の國、加賀藩の前田利家の元城下町として繁栄した場所で有名な県でございます。加賀八万石の國
といいましても、北は能登地方、南は加賀地方と大きく2つに分けられる細長い県です。
東は、倶利伽藍峠を隔て、チューリップやホタルイカで有名な越中の薬売りの越中の國、富山県、
西は広く日本海に面し、道元が悟りを開いた曹同宗大本山永平寺、急な岩場の東尋坊で有名な越前の國、福井県
と隔てています。南は白川郷や飛騨の小京都高山市がある岐阜県と隔てていますが、北アルプスを挟んでいます。
433132人目の素数さん
2016/11/25(金) 19:24:03.69ID:uZ3pgxPK (>>432の続き)
戦國時代は、尾張の國から姉川の戦いで近江の浅井・越中の朝倉同盟を破り、
近江の安土城を拠点とする全国支配の試みに至った織田信長から越中の領土を与えられました。
その後、現在も近江の長浜にその地名が残る賤ヶ岳の戦いで、はじめは主従関係にあった
柴田勝家に付き羽柴秀吉と対峙していましたが、その後羽柴方に付き加賀2郡の領土
を与えられました。そして、信長に仕え勝家に匹敵するような功績を挙げてから
秀吉に仕えた武将佐々成政を破り、更に利家に越中西三郡の領土が与えられ、
3国にまたがり100万石を有する前田家領の原形が形成されました。
これが加賀八万石が加賀百万石と呼ばれるに至った理由です。
戦國時代は、尾張の國から姉川の戦いで近江の浅井・越中の朝倉同盟を破り、
近江の安土城を拠点とする全国支配の試みに至った織田信長から越中の領土を与えられました。
その後、現在も近江の長浜にその地名が残る賤ヶ岳の戦いで、はじめは主従関係にあった
柴田勝家に付き羽柴秀吉と対峙していましたが、その後羽柴方に付き加賀2郡の領土
を与えられました。そして、信長に仕え勝家に匹敵するような功績を挙げてから
秀吉に仕えた武将佐々成政を破り、更に利家に越中西三郡の領土が与えられ、
3国にまたがり100万石を有する前田家領の原形が形成されました。
これが加賀八万石が加賀百万石と呼ばれるに至った理由です。
434132人目の素数さん
2016/11/25(金) 19:26:06.85ID:uZ3pgxPK (>>433の続き)
しかしながら、現在の石川県はご存知のように南北に細長い県です。
とはいえ、岡山市の後楽園、水戸の偕楽園と並び、日本三名園に挙げられ
名勝に指定されている金沢の兼六園、輪島塗りや輪島の朝市で有名です。
皆さんは冬の石川県と来たら何を思い浮かべますか?
そう、やはり、第一には雪と鰤ですね。しかし、忘れてならないのが、
普段食べられている金沢カレー、そして冬は日本海側からの厳しいブリ起こしです。
他にはマス寿司などもありますね。金沢、東京間に新幹線が開通したことで、
以前は遠く距離を隔てた 2つの都道府県石川県と東京都が結び付きました。
以前の石川県の主な鉄道は北陸本線でしたが、便利になりましたね。
こうしてお話している間にホテルに付きました。
それでは、明日から、本格的な2泊3日石川県一周旅行のスタートです。
皆様、今日はお疲れでしょうからホテルでごゆっくりお休み下さい。
しかしながら、現在の石川県はご存知のように南北に細長い県です。
とはいえ、岡山市の後楽園、水戸の偕楽園と並び、日本三名園に挙げられ
名勝に指定されている金沢の兼六園、輪島塗りや輪島の朝市で有名です。
皆さんは冬の石川県と来たら何を思い浮かべますか?
そう、やはり、第一には雪と鰤ですね。しかし、忘れてならないのが、
普段食べられている金沢カレー、そして冬は日本海側からの厳しいブリ起こしです。
他にはマス寿司などもありますね。金沢、東京間に新幹線が開通したことで、
以前は遠く距離を隔てた 2つの都道府県石川県と東京都が結び付きました。
以前の石川県の主な鉄道は北陸本線でしたが、便利になりましたね。
こうしてお話している間にホテルに付きました。
それでは、明日から、本格的な2泊3日石川県一周旅行のスタートです。
皆様、今日はお疲れでしょうからホテルでごゆっくりお休み下さい。
435132人目の素数さん
2016/11/25(金) 21:19:36.12ID:9mViga5t ガロアは、ある多項式を不変にする置換の集合を、今日にいう群、と考えたんだと思う。そう定義すれば、「ガロアを読む」の119ページあたりの証明は簡潔にできる。なぜなら、原始元の多項式の既約因子そのものが、その多項式になるから。これは、ちょっとした発見だ。
436¥ ◆2VB8wsVUoo
2016/11/25(金) 23:07:07.44ID:qbOZp+6P ¥
437¥ ◆2VB8wsVUoo
2016/11/25(金) 23:07:25.00ID:qbOZp+6P ¥
438¥ ◆2VB8wsVUoo
2016/11/25(金) 23:07:41.97ID:qbOZp+6P ¥
439¥ ◆2VB8wsVUoo
2016/11/25(金) 23:07:57.50ID:qbOZp+6P ¥
440¥ ◆2VB8wsVUoo
2016/11/25(金) 23:08:14.24ID:qbOZp+6P ¥
441¥ ◆2VB8wsVUoo
2016/11/25(金) 23:08:31.34ID:qbOZp+6P ¥
442¥ ◆2VB8wsVUoo
2016/11/25(金) 23:08:50.26ID:qbOZp+6P ¥
443¥ ◆2VB8wsVUoo
2016/11/25(金) 23:09:09.09ID:qbOZp+6P ¥
444¥ ◆2VB8wsVUoo
2016/11/25(金) 23:09:33.36ID:qbOZp+6P ¥
445¥ ◆2VB8wsVUoo
2016/11/25(金) 23:09:52.05ID:qbOZp+6P ¥
2016/11/25(金) 23:23:27.39ID:KR8OPnFq
2016/11/25(金) 23:31:27.82ID:KR8OPnFq
2016/11/25(金) 23:56:45.24ID:KR8OPnFq
>>370
補足しておく
任意の偶数∈N(=自然数の集合)
これは良いだろ
任意の偶数は、しばしば2nと書かれる。だから
集合{1,2,・・・,n,n+1,n+2,・・・,2n}⊂N(=自然数の集合)
これも良いだろう
そこで2n+2として
集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂N(=自然数の集合)
↓↑(全単射)
集合{A1,A2,・・・・,An,Ae, B1,B2,・・・・,Bn,Be}
が成り立つ
極限をとっても
集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂N(=自然数の集合)
lim n→∞ 集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂N(=自然数の集合)
が成り立つ
上記の”↓↑(全単射)”は、極限 lim n→∞でも成り立つことは明白
まさか、
lim n→∞ 集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂2N(N=自然数の集合)
とか
lim n→∞ 集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂2N+2(N=自然数の集合)
などという人はいまい(^^;
補足しておく
任意の偶数∈N(=自然数の集合)
これは良いだろ
任意の偶数は、しばしば2nと書かれる。だから
集合{1,2,・・・,n,n+1,n+2,・・・,2n}⊂N(=自然数の集合)
これも良いだろう
そこで2n+2として
集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂N(=自然数の集合)
↓↑(全単射)
集合{A1,A2,・・・・,An,Ae, B1,B2,・・・・,Bn,Be}
が成り立つ
極限をとっても
集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂N(=自然数の集合)
lim n→∞ 集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂N(=自然数の集合)
が成り立つ
上記の”↓↑(全単射)”は、極限 lim n→∞でも成り立つことは明白
まさか、
lim n→∞ 集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂2N(N=自然数の集合)
とか
lim n→∞ 集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂2N+2(N=自然数の集合)
などという人はいまい(^^;
2016/11/26(土) 00:03:24.25ID:Py08+Ohv
>>406-409 補足
ID:rkO54fhGさん、あんたの話は、ヒルベルト空間と比較すると、よく分かるように思う
まあ、ヒルベルト空間は、正直私もあまり分かっていない
¥さん辺りには、「こいつ分かってない」とお見通しだろうが、まあ書いておくか(^^;
https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E7%A9%BA%E9%96%93
ヒルベルト空間
(抜粋)
数学におけるヒルベルト空間(ヒルベルトくうかん、英: Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。
これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。
ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。
ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。
ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。
そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。
ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。
これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。
古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 L2、自乗総和可能数列の空間 ?2、超関数からなるソボレフ空間 Hs、正則関数の成すハーディ空間 H2 などが挙げられる。
つづく
ID:rkO54fhGさん、あんたの話は、ヒルベルト空間と比較すると、よく分かるように思う
まあ、ヒルベルト空間は、正直私もあまり分かっていない
¥さん辺りには、「こいつ分かってない」とお見通しだろうが、まあ書いておくか(^^;
https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E7%A9%BA%E9%96%93
ヒルベルト空間
(抜粋)
数学におけるヒルベルト空間(ヒルベルトくうかん、英: Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。
これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。
ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。
ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。
ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。
そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。
ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。
これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。
古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 L2、自乗総和可能数列の空間 ?2、超関数からなるソボレフ空間 Hs、正則関数の成すハーディ空間 H2 などが挙げられる。
つづく
450132人目の素数さん
2016/11/26(土) 00:04:05.69ID:JI0BfLNk451132人目の素数さん
2016/11/26(土) 00:06:27.74ID:JI0BfLNk しかもこのアホは俺がさんざん噛み砕いてもうほとんど答えを出してやってるも同然
なのに、それすら理解できていない
知恵遅れとの会話は疲れる
なのに、それすら理解できていない
知恵遅れとの会話は疲れる
452132人目の素数さん
2016/11/26(土) 00:11:33.45ID:JI0BfLNk アホは勉強の一つもせずに、またコピペと独自解釈に明け暮れている
だから永遠にアホのまま
だから永遠にアホのまま
2016/11/26(土) 00:13:28.04ID:Py08+Ohv
454132人目の素数さん
2016/11/26(土) 00:15:13.43ID:JI0BfLNk >>447
>ID:rkO54fhGさん、あんた結局、極限と数列の収束を混同していたか、勘違いしていたと
>それが落ちかな?
え?なに? 極限が∞の数列は収束しないと言いたいの? へーすごいね
そ れ で ?
>ID:rkO54fhGさん、あんた結局、極限と数列の収束を混同していたか、勘違いしていたと
>それが落ちかな?
え?なに? 極限が∞の数列は収束しないと言いたいの? へーすごいね
そ れ で ?
455132人目の素数さん
2016/11/26(土) 00:17:02.83ID:JI0BfLNk456132人目の素数さん
2016/11/26(土) 00:18:17.07ID:JI0BfLNk ていうかさ、お前壊滅的に数列をわかってないよ
大学一年生が一学期に習う数列を
大学一年生が一学期に習う数列を
2016/11/26(土) 00:19:17.96ID:Py08+Ohv
>>449 つづき
定義
H がヒルベルト空間であるとは、H は実または複素内積空間であって、さらに内積によって誘導される距離関数に関して完備距離空間をなすことを言う[2]。ここで、H が複素内積空間であるというのは、H は複素線型空間であって、その上に内積、即ち H の元の対 x, y に複素数 ?x,y? を対応させる写像であって、条件
1.?y,x? は ?x,y? の複素共役である:
? y , x ? = ? x , y ?  ̄ ..
2.?x,y? は第一引数に関して線型である[3]: 任意の複素数 a, b に対して
? a x 1 + b x 2 , y ? = a ? x 1 , y ? + b ? x 2 , y ?
3. 内積 ??, ?? は正定値である:
? x , x ? ? 0
かつ等号成立は x = 0 と同値。
を満たすものが存在することをいう。
つづく
定義
H がヒルベルト空間であるとは、H は実または複素内積空間であって、さらに内積によって誘導される距離関数に関して完備距離空間をなすことを言う[2]。ここで、H が複素内積空間であるというのは、H は複素線型空間であって、その上に内積、即ち H の元の対 x, y に複素数 ?x,y? を対応させる写像であって、条件
1.?y,x? は ?x,y? の複素共役である:
? y , x ? = ? x , y ?  ̄ ..
2.?x,y? は第一引数に関して線型である[3]: 任意の複素数 a, b に対して
? a x 1 + b x 2 , y ? = a ? x 1 , y ? + b ? x 2 , y ?
3. 内積 ??, ?? は正定値である:
? x , x ? ? 0
かつ等号成立は x = 0 と同値。
を満たすものが存在することをいう。
つづく
458132人目の素数さん
2016/11/26(土) 00:21:10.16ID:JI0BfLNk >「有限数列の極限」とやらを定義せよ
案1 そんなの難しくない。当たり前のことだよ。
案2 こんな板じゃ数式は書けない。
どちらでもお好きな方で
案1 そんなの難しくない。当たり前のことだよ。
案2 こんな板じゃ数式は書けない。
どちらでもお好きな方で
459132人目の素数さん
2016/11/26(土) 00:22:59.82ID:JI0BfLNk 定義の無い数学などあり得ない、馬鹿はそれがわかっていない
そして自分のバカを板のせいにする
そして自分のバカを板のせいにする
2016/11/26(土) 00:27:43.42ID:Py08+Ohv
>>457
ありゃ、文字化けしたか。不便な板だな(^^;
複素共役の上バーもだめかね
これでどうだ
(再掲)
?>>449 つづき
定義
H がヒルベルト空間であるとは、H は実または複素内積空間であって、さらに内積によって誘導される距離関数に関して完備距離空間をなすことを言う[2]。ここで、H が複素内積空間であるというのは、H は複素線型空間であって、その上に内積、即ち H の元の対 x, y に複素数 <x,y> を対応させる写像であって、条件
1.<y,x> は <x,y> の複素共役である:
< y , x > = 共役(< x , y > )
2.<x,y> は第一引数に関して線型である[3]: 任意の複素数 a, b に対して
< a x 1 + b x 2 , y > = a < x 1 , y > + b < x 2 , y >
3. 内積 <・, ・> は正定値である:
< x , x > ? 0
かつ等号成立は x = 0 と同値。
を満たすものが存在することをいう。
つづく
ありゃ、文字化けしたか。不便な板だな(^^;
複素共役の上バーもだめかね
これでどうだ
(再掲)
?>>449 つづき
定義
H がヒルベルト空間であるとは、H は実または複素内積空間であって、さらに内積によって誘導される距離関数に関して完備距離空間をなすことを言う[2]。ここで、H が複素内積空間であるというのは、H は複素線型空間であって、その上に内積、即ち H の元の対 x, y に複素数 <x,y> を対応させる写像であって、条件
1.<y,x> は <x,y> の複素共役である:
< y , x > = 共役(< x , y > )
2.<x,y> は第一引数に関して線型である[3]: 任意の複素数 a, b に対して
< a x 1 + b x 2 , y > = a < x 1 , y > + b < x 2 , y >
3. 内積 <・, ・> は正定値である:
< x , x > ? 0
かつ等号成立は x = 0 と同値。
を満たすものが存在することをいう。
つづく
2016/11/26(土) 00:36:09.67ID:Py08+Ohv
>>460 つづき
数列空間の場合
自乗総和可能な複素数列の空間 ?2 とは、各項が複素数の無限数列
( c 1 , c 2 , c 3 , ・・・ )
で、条件
| c 1 |^2 + | c 2 |^2 + | c 3 |^2 + ・・・ < ∞
を満たすもの全体からなる集合(に、項ごとの和、スカラー倍、標準内積を入れたもの)である。この空間には標準的な正規直交基底
e 1 = ( 1 , 0 , 0 , ・・・ ) e 2 = ( 0 , 1 , 0 , ・・・ )
が存在する。
このようにすると、この和が有限であるところの L^2(B) の各元は、可算個の例外を除いた全ての項が 0 になることがわかる。
と内積を定めれば、この空間は実際にヒルベルト空間となる。右辺の和は、0 でない項が高々可算個しかないから意味を持ち、またコーシー・シュヴァルツの不等式によって無条件収束であることがわかる。
(引用終り)
数列空間の場合
自乗総和可能な複素数列の空間 ?2 とは、各項が複素数の無限数列
( c 1 , c 2 , c 3 , ・・・ )
で、条件
| c 1 |^2 + | c 2 |^2 + | c 3 |^2 + ・・・ < ∞
を満たすもの全体からなる集合(に、項ごとの和、スカラー倍、標準内積を入れたもの)である。この空間には標準的な正規直交基底
e 1 = ( 1 , 0 , 0 , ・・・ ) e 2 = ( 0 , 1 , 0 , ・・・ )
が存在する。
このようにすると、この和が有限であるところの L^2(B) の各元は、可算個の例外を除いた全ての項が 0 になることがわかる。
と内積を定めれば、この空間は実際にヒルベルト空間となる。右辺の和は、0 でない項が高々可算個しかないから意味を持ち、またコーシー・シュヴァルツの不等式によって無条件収束であることがわかる。
(引用終り)
2016/11/26(土) 00:44:54.34ID:Py08+Ohv
>>461 補足
おっと、肝心なところの引用が抜けた
<補足>
定義 (追加)
このようにして定義される距離関数に関して、任意の内積空間は距離空間となる。内積空間のことを前ヒルベルト空間 (pre-Hilbert space) と呼ぶこともある[4]。距離空間として完備であるような任意の前ヒルベルト空間は、ヒルベルト空間になる。
完備性は、H 内の列に対するコーシーの判定法(英語版)の形で表すことができる。即ち、前ヒルベルト空間 H が完備となるのは、任意のコーシー列がノルムに関する意味で H 内の元に収束することである。完備性は、次のような条件
ベクトル項級数 k = 0〜 ∞ Σ uk が
k = 0〜 ∞ Σ| u k | < ∞
なる意味で絶対収束するならば、もとの級数は(部分和が H の元に収束するという意味で) H において収束する。
によっても特徴付けることができる。
完備なノルム空間であるという点で、定義によりヒルベルト空間はバナッハ空間でもある。これらは位相線型空間であり、開集合や閉集合といった位相的概念を定めることができる。特に重要になるのが、ヒルベルト空間の閉部分空間の概念である。
完備距離空間の閉部分集合は(そこへ距離を制限すれば)それ自身完備距離空間となるから、ヒルベルト空間の閉部分空間は(そこへ内積を制限するとき)それ自身ヒルベルト空間をなす。
(引用終り)
おっと、肝心なところの引用が抜けた
<補足>
定義 (追加)
このようにして定義される距離関数に関して、任意の内積空間は距離空間となる。内積空間のことを前ヒルベルト空間 (pre-Hilbert space) と呼ぶこともある[4]。距離空間として完備であるような任意の前ヒルベルト空間は、ヒルベルト空間になる。
完備性は、H 内の列に対するコーシーの判定法(英語版)の形で表すことができる。即ち、前ヒルベルト空間 H が完備となるのは、任意のコーシー列がノルムに関する意味で H 内の元に収束することである。完備性は、次のような条件
ベクトル項級数 k = 0〜 ∞ Σ uk が
k = 0〜 ∞ Σ| u k | < ∞
なる意味で絶対収束するならば、もとの級数は(部分和が H の元に収束するという意味で) H において収束する。
によっても特徴付けることができる。
完備なノルム空間であるという点で、定義によりヒルベルト空間はバナッハ空間でもある。これらは位相線型空間であり、開集合や閉集合といった位相的概念を定めることができる。特に重要になるのが、ヒルベルト空間の閉部分空間の概念である。
完備距離空間の閉部分集合は(そこへ距離を制限すれば)それ自身完備距離空間となるから、ヒルベルト空間の閉部分空間は(そこへ内積を制限するとき)それ自身ヒルベルト空間をなす。
(引用終り)
2016/11/26(土) 00:50:46.04ID:Py08+Ohv
>>462
引用した現代数学の典型的な無限次元ベクトル空間であるヒルベルト空間と、時枝記事の実数列の集合 R^Nとを対比すれば明らかと思うが
時枝記事の実数列の集合 R^Nでは、収束は保証されていないし
距離も定義されていない
いいか、ヒルベルト空間では収束が求められる
しかし、時枝記事の数列はそうではないよ
ここはしっかり押さえておくべき
引用した現代数学の典型的な無限次元ベクトル空間であるヒルベルト空間と、時枝記事の実数列の集合 R^Nとを対比すれば明らかと思うが
時枝記事の実数列の集合 R^Nでは、収束は保証されていないし
距離も定義されていない
いいか、ヒルベルト空間では収束が求められる
しかし、時枝記事の数列はそうではないよ
ここはしっかり押さえておくべき
464132人目の素数さん
2016/11/26(土) 01:56:54.40ID:eZ9pCsLc >>463
完全代表系を一組用意すればR^Nの任意の数列はある自然数n'が存在して n > n' の時に
ある代表元のn番目以降の項と全て一致する
上のことを使えば数当て戦略が成立するということが時枝記事の内容
完全代表系を一組用意すればR^Nの任意の数列はある自然数n'が存在して n > n' の時に
ある代表元のn番目以降の項と全て一致する
上のことを使えば数当て戦略が成立するということが時枝記事の内容
2016/11/26(土) 08:43:12.36ID:Py08+Ohv
>>464
そうだね
だから
(命題A)
(可算無限個の箱の数列で)
完全代表系を一組用意すればR^Nの任意の数列はある自然数n'が存在して n > n' の時に
ある代表元のn番目以降の項と全て一致する
↓
(命題B)
<時枝記事の内容>
ある箱の中の数を、99/100の確率で当てられる
だな
そうだね
だから
(命題A)
(可算無限個の箱の数列で)
完全代表系を一組用意すればR^Nの任意の数列はある自然数n'が存在して n > n' の時に
ある代表元のn番目以降の項と全て一致する
↓
(命題B)
<時枝記事の内容>
ある箱の中の数を、99/100の確率で当てられる
だな
2016/11/26(土) 08:44:45.26ID:Py08+Ohv
>>465 つづき
横に書けば
(命題A)→(命題B)
ところで
・(命題A)宝くじが当たって1億円 →(命題B)大金持ちになって、東京都内のマンションか一戸建てを持てる
という命題を考えてみよう
まず、命題Aが問題となる。”東京都内のマンションか一戸建て”で、1億円以下の物件があれば、命題全体としては真だ。
が、”宝くじが当たって1億円”が、多くの人には不成立。だから、例えば、私の場合に限れば、不成立。そもそも、宝くじを買わないし(^^;
さて、時枝に戻って、(命題A)の「完全代表系を一組用意すれば」を問題にしてみよう
時枝記事 >>114 で”念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する.
〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.”
ここで細かく見ると
(命題A)(可算無限数列の)しっぽの先が一致する→(命題B)推移律成立で、〜は R^N を類別する
となる
(命題A)(可算無限数列の)しっぽの先が一致する
が簡単に言えるのか? (あたかも、「宝くじが当たって1億円」みたいに実現がほとんど不可能では?)
横に書けば
(命題A)→(命題B)
ところで
・(命題A)宝くじが当たって1億円 →(命題B)大金持ちになって、東京都内のマンションか一戸建てを持てる
という命題を考えてみよう
まず、命題Aが問題となる。”東京都内のマンションか一戸建て”で、1億円以下の物件があれば、命題全体としては真だ。
が、”宝くじが当たって1億円”が、多くの人には不成立。だから、例えば、私の場合に限れば、不成立。そもそも、宝くじを買わないし(^^;
さて、時枝に戻って、(命題A)の「完全代表系を一組用意すれば」を問題にしてみよう
時枝記事 >>114 で”念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する.
〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.”
ここで細かく見ると
(命題A)(可算無限数列の)しっぽの先が一致する→(命題B)推移律成立で、〜は R^N を類別する
となる
(命題A)(可算無限数列の)しっぽの先が一致する
が簡単に言えるのか? (あたかも、「宝くじが当たって1億円」みたいに実現がほとんど不可能では?)
2016/11/26(土) 08:45:48.51ID:Py08+Ohv
>>466 つづき
例えば、>>462で引用したヒルベルト空間内だと、結構いろんなことが整備されていて、まだ、可能かもしれない(実際にヒルベルト空間内の数列のしっぽの先が一致する同値類分類がどうかは別として)
さて、>>448で引用した例を使って考えてみよう
2つの数列SaとSbと
Sa=A1,A2,・・・・,An,・・・・,Ae
Sb=B1,B2,・・・・,Bn,・・・・,Be
A1=B1,A2=B2,・・・・,An=Bn,・・・・
但し、”Ae = Be かどうか不明”としよう
普通我々が、やるのは数列の頭から調べて行くことだ
が、それでは、”Ae = Be かどうか” いつまでも”不明”のまま ∵可算無限を調べないといけないから終わらないだろ?
あたかも、昔フェルマーの最終定理が、当時のコンピュータで調べた範囲では成立が言えても、それでは定理の証明にならないのと同じだ
したがって、「数列の頭から調べて行く」という通常の手段では、「しっぽの先が一致する」は言えない!
では、どうやれば「しっぽの先が一致する」が言えるのか?
そこに切り込んで行かないと数学じゃないだろ?
そこが言えない限り、「宝くじが当たって1億円」と同じ状態だ
そこをスルーしているのが、時枝記事の大きな問題だな。
「1億円」をどうやって実現するのか?
そこをスルーして良いなら、「100億円」でも「1000億円」でも言いたい放題だろ
例えば、>>462で引用したヒルベルト空間内だと、結構いろんなことが整備されていて、まだ、可能かもしれない(実際にヒルベルト空間内の数列のしっぽの先が一致する同値類分類がどうかは別として)
さて、>>448で引用した例を使って考えてみよう
2つの数列SaとSbと
Sa=A1,A2,・・・・,An,・・・・,Ae
Sb=B1,B2,・・・・,Bn,・・・・,Be
A1=B1,A2=B2,・・・・,An=Bn,・・・・
但し、”Ae = Be かどうか不明”としよう
普通我々が、やるのは数列の頭から調べて行くことだ
が、それでは、”Ae = Be かどうか” いつまでも”不明”のまま ∵可算無限を調べないといけないから終わらないだろ?
あたかも、昔フェルマーの最終定理が、当時のコンピュータで調べた範囲では成立が言えても、それでは定理の証明にならないのと同じだ
したがって、「数列の頭から調べて行く」という通常の手段では、「しっぽの先が一致する」は言えない!
では、どうやれば「しっぽの先が一致する」が言えるのか?
そこに切り込んで行かないと数学じゃないだろ?
そこが言えない限り、「宝くじが当たって1億円」と同じ状態だ
そこをスルーしているのが、時枝記事の大きな問題だな。
「1億円」をどうやって実現するのか?
そこをスルーして良いなら、「100億円」でも「1000億円」でも言いたい放題だろ
2016/11/26(土) 08:46:56.17ID:Py08+Ohv
>>467 つづき
それ以外に
(命題B)>>xx
<時枝記事の内容>
ある箱の中の数を、99/100の確率で当てられる
にも疑問がある。”99/100の確率”ってところが、確率分布を少し考えればほぼ自明だが、いわゆるすその重い(実は超ヘビーな)確率分布になるから、大数の法則も中心極限定理も不成立で、”99/100の確率”はあやしい
「”東京都内のマンションか一戸建て”で、1億円以下の物件があれば」>>xx ってところが、バブル再来で「1億円以下の物件なし」の状態なら
命題Bが不成立になるのと同じ
それ以外に
(命題B)>>xx
<時枝記事の内容>
ある箱の中の数を、99/100の確率で当てられる
にも疑問がある。”99/100の確率”ってところが、確率分布を少し考えればほぼ自明だが、いわゆるすその重い(実は超ヘビーな)確率分布になるから、大数の法則も中心極限定理も不成立で、”99/100の確率”はあやしい
「”東京都内のマンションか一戸建て”で、1億円以下の物件があれば」>>xx ってところが、バブル再来で「1億円以下の物件なし」の状態なら
命題Bが不成立になるのと同じ
2016/11/26(土) 08:48:25.68ID:Py08+Ohv
2016/11/26(土) 08:57:16.34ID:Py08+Ohv
>>467 関連(ヒルベルト空間)
>>466の命題Aの”しっぽの先が一致”について補足
下記、超越数かどうかが未解決の例:e+π ”有理数であるのか無理数であるのか超越的であるのか否かは証明されていない”という
これを、「しっぽの先が一致する」同値類という視点から見ると
もし、有理数なら、「しっぽの先」は循環小数(循環小数である桁の後ろが全て0の場合も含む)になって、有限小数+循環小数(循環小数である桁の後ろが全て0の場合も含む)と表される
現代数学では、e+πがどうなっているか未解明。”循環小数(循環小数である桁の後ろが全て0の場合も含む)”になるかどうかさえ不明
なお、実数の少数無限展開は、コーシー列と同義で、ヒルベルト空間の中かな(下記ヒルベルト空間ご参照)
まして、e+πが代数的数かどうかなど、夢のまた夢
それが、現代数学の現状だろ? 「宝くじが当たって1億円」と同じ状態
https://ja.wikipedia.org/wiki/%E8%B6%85%E8%B6%8A%E6%95%B0
超越数
(抜粋)
超越数かどうかが未解決の例
e+π、e-π、・・・など
円周率 π や自然対数の底 e の大抵の和、積、べき乗は、有理数であるのか無理数であるのか超越的であるのか否かは証明されていない[注 4]。
(引用終り)
https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E7%A9%BA%E9%96%93
ヒルベルト空間
(抜粋)
距離空間として完備であるような任意の前ヒルベルト空間は、ヒルベルト空間になる。完備性は、H 内の列に対するコーシーの判定法(英語版)の形で表すことができる。即ち、前ヒルベルト空間 H が完備となるのは、任意のコーシー列がノルムに関する意味で H 内の元に収束することである。
(引用終り)
>>466の命題Aの”しっぽの先が一致”について補足
下記、超越数かどうかが未解決の例:e+π ”有理数であるのか無理数であるのか超越的であるのか否かは証明されていない”という
これを、「しっぽの先が一致する」同値類という視点から見ると
もし、有理数なら、「しっぽの先」は循環小数(循環小数である桁の後ろが全て0の場合も含む)になって、有限小数+循環小数(循環小数である桁の後ろが全て0の場合も含む)と表される
現代数学では、e+πがどうなっているか未解明。”循環小数(循環小数である桁の後ろが全て0の場合も含む)”になるかどうかさえ不明
なお、実数の少数無限展開は、コーシー列と同義で、ヒルベルト空間の中かな(下記ヒルベルト空間ご参照)
まして、e+πが代数的数かどうかなど、夢のまた夢
それが、現代数学の現状だろ? 「宝くじが当たって1億円」と同じ状態
https://ja.wikipedia.org/wiki/%E8%B6%85%E8%B6%8A%E6%95%B0
超越数
(抜粋)
超越数かどうかが未解決の例
e+π、e-π、・・・など
円周率 π や自然対数の底 e の大抵の和、積、べき乗は、有理数であるのか無理数であるのか超越的であるのか否かは証明されていない[注 4]。
(引用終り)
https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E7%A9%BA%E9%96%93
ヒルベルト空間
(抜粋)
距離空間として完備であるような任意の前ヒルベルト空間は、ヒルベルト空間になる。完備性は、H 内の列に対するコーシーの判定法(英語版)の形で表すことができる。即ち、前ヒルベルト空間 H が完備となるのは、任意のコーシー列がノルムに関する意味で H 内の元に収束することである。
(引用終り)
2016/11/26(土) 08:58:59.58ID:Py08+Ohv
>>470 つづき
まあ、命題Aの”しっぽの先が一致”については、まさに”宝くじが当たって1億円”かそれ以前の状態だ
そして、命題Bの"99/100の確率"も、いわゆるすその重い(実は超ヘビーな)確率分布の場合には証明できない
結局、結論として、全くだめってこと
まあ、命題Aの”しっぽの先が一致”については、まさに”宝くじが当たって1億円”かそれ以前の状態だ
そして、命題Bの"99/100の確率"も、いわゆるすその重い(実は超ヘビーな)確率分布の場合には証明できない
結局、結論として、全くだめってこと
472132人目の素数さん
2016/11/26(土) 10:21:58.26ID:MahBZwQx >>467
マチガツテル
マチガツテル
473132人目の素数さん
2016/11/26(土) 11:54:22.72ID:xEpGxFGd >>432の最後の文
>南は白川郷や飛騨の小京都高山市がある岐阜県と隔てていますが、北アルプスを挟んでいます。
の「北アルプス」は「両白山地」の間違えでしたね。これは失礼を致しました。
両白山地、これは白山がある山地のようですね。余り耳に致しませんでした。
皆様もついでに覚えておきましょう。チューリップやホタルイカの越中と飛騨との県境と来たら
蜃気楼や立山黒部アルペンルートで有名な立山連峰の北アルプス、女性全体の部分集合をSとすると
「名前の姓名の名の部分が同じような名前」という関係についての同値類をなす女性全体Sの
部分集合「久美子」の1つの代表元「西岡久美子」や兼六園で有名な加賀百万石の國と来たら、
その南部に伊勢湾に注ぐ長良川の源流があり、越前と岐阜との県境の部分にも岐阜と伊勢の國を流れる
揖斐川の源流がある両白山地。長良川と揖斐川は、どちらも、木曽三川の一つであり、
岐阜県と現在の三重県つまり伊勢の國を流れ伊勢湾に注ぐ、一級河川です。
案外共通した部分があるんですね。私自身、石川県や福井県、飛騨牛で有名な飛騨高山と上高地には
行ったことがありますが、ここまでは知りませんでした。正直申しまして、以前バスで石川県と福井県
に行ったとき、横に立山連峰を見据えながら富山県も通り過ぎたことはありますが、
そのときは疲れて眠くなって車内で寝てしまいましたw
>南は白川郷や飛騨の小京都高山市がある岐阜県と隔てていますが、北アルプスを挟んでいます。
の「北アルプス」は「両白山地」の間違えでしたね。これは失礼を致しました。
両白山地、これは白山がある山地のようですね。余り耳に致しませんでした。
皆様もついでに覚えておきましょう。チューリップやホタルイカの越中と飛騨との県境と来たら
蜃気楼や立山黒部アルペンルートで有名な立山連峰の北アルプス、女性全体の部分集合をSとすると
「名前の姓名の名の部分が同じような名前」という関係についての同値類をなす女性全体Sの
部分集合「久美子」の1つの代表元「西岡久美子」や兼六園で有名な加賀百万石の國と来たら、
その南部に伊勢湾に注ぐ長良川の源流があり、越前と岐阜との県境の部分にも岐阜と伊勢の國を流れる
揖斐川の源流がある両白山地。長良川と揖斐川は、どちらも、木曽三川の一つであり、
岐阜県と現在の三重県つまり伊勢の國を流れ伊勢湾に注ぐ、一級河川です。
案外共通した部分があるんですね。私自身、石川県や福井県、飛騨牛で有名な飛騨高山と上高地には
行ったことがありますが、ここまでは知りませんでした。正直申しまして、以前バスで石川県と福井県
に行ったとき、横に立山連峰を見据えながら富山県も通り過ぎたことはありますが、
そのときは疲れて眠くなって車内で寝てしまいましたw
474132人目の素数さん
2016/11/26(土) 12:06:16.66ID:xEpGxFGd おっちゃんです。
スレ主、結果的な形にはなるが、上のように>>473で、バスガイドさん口調の文章で、
かなり分かり易くして文系の人にも分かるように社会的な例を出して、
同値関係や同値類、代表元の具体例を挙げたから、これらの概念を少しは理解せい。
ノルムの定義だのヒルベルト空間だのは時枝問題には関係ない。
話は変わるが、それにしてもバスガイドのマネというのも難しいモノだな。
>>470
あと、結果的な帰結として導かれることだが、そこのwikiに挙げられている
超越数の他にも、現時点で(といってもかなり前の話ではあるが)
私が1つだけ示した超越数はある。だから、そのwikiは単体で挙げてもムダ。
そこの「超越数」のサイトを挙げただけでは意味をなさない。
他には、微分代数とかのサイトも必要だ。微分代数は、有理数体Q上
の超越拡大体の研究や代数的独立性などを示すときに威力を発揮する。
スレ主、結果的な形にはなるが、上のように>>473で、バスガイドさん口調の文章で、
かなり分かり易くして文系の人にも分かるように社会的な例を出して、
同値関係や同値類、代表元の具体例を挙げたから、これらの概念を少しは理解せい。
ノルムの定義だのヒルベルト空間だのは時枝問題には関係ない。
話は変わるが、それにしてもバスガイドのマネというのも難しいモノだな。
>>470
あと、結果的な帰結として導かれることだが、そこのwikiに挙げられている
超越数の他にも、現時点で(といってもかなり前の話ではあるが)
私が1つだけ示した超越数はある。だから、そのwikiは単体で挙げてもムダ。
そこの「超越数」のサイトを挙げただけでは意味をなさない。
他には、微分代数とかのサイトも必要だ。微分代数は、有理数体Q上
の超越拡大体の研究や代数的独立性などを示すときに威力を発揮する。
475132人目の素数さん
2016/11/26(土) 13:09:03.84ID:xEpGxFGd476132人目の素数さん
2016/11/26(土) 16:21:36.38ID:tcYFlZy+ 「ガロアを読む」は、勉強にったし面白いと思う。しかし、倉田先生独自の見解は受け入れ難いものが多く、ガロア理論入門としてはよくないです。ガロア理論をよく勉強した人が「それは変だよ」と思って読む本です。
477132人目の素数さん
2016/11/26(土) 16:25:35.82ID:tcYFlZy+ 「ガロアを読む」もつと整理して書き直すことできなかったかな。証明も解説も、もっと良いものにできたはず。
2016/11/26(土) 16:49:09.97ID:Py08+Ohv
2016/11/26(土) 16:54:58.98ID:Py08+Ohv
>>396 訂正 (数列の長さn→n-2) 小学生の計算間違っていた(^^;
2)この数列の長さはnだ
↓
2)この数列の長さはn-2だ
2)に対応して、数列の長さL(S_A) := n (数列の長さを、その数列の箱の数と定める)とすると
lim n→∞ L(S_A) := n
2)に対応して、数列の長さL(S_A) := n-2 (数列の長さを、その数列の箱の数と定める)とすると
lim n→∞ L(S_A) := n-2
2)この数列の長さはnだ
↓
2)この数列の長さはn-2だ
2)に対応して、数列の長さL(S_A) := n (数列の長さを、その数列の箱の数と定める)とすると
lim n→∞ L(S_A) := n
2)に対応して、数列の長さL(S_A) := n-2 (数列の長さを、その数列の箱の数と定める)とすると
lim n→∞ L(S_A) := n-2
2016/11/26(土) 17:26:55.27ID:Py08+Ohv
>>473-475
おっちゃん、どうも。スレ主です。
なんだ、バスの運転のアルバイトしていると思ったぜ(^^;
ところで、有限だったら、話は簡単だ
そして、代数では有限の場合も多い
無限数列のしっぽでの同値類分類:数列のしっぽが一致すれば同値=つまりは、数列の最後の数が一致するかどうか
有限数列であれば、なんの問題もない。だが、可算無限個の箱に入った数列ではどうか?
先頭から数を調べて行っては、終わらない ∵終わらないのが可算無限
では、可算無限個のしっぽの箱とは? 一つの例が、>>370に示したように、最後の箱を固定して、A1,A2,・・・・,An,Ae (ここでAeは最後の箱で、箱を増やすとき数列の途中に挿入するとする)
こうすれば、数列のしっぽが決まるので、話は簡単だ
だが、数列のしっぽが固定できない数列が考えられる
例えば、1/999=0.001001001001001001・・・
つまり、循環数列で、少数3n位が1、少数3n+1位が0、少数3n+2位が0
123/999=0.123123123123123・・・ など
1234/9999=0.12341234123412341234・・・も可能
などと考えて行くと、数列のしっぽが固定できない循環数列のパターンが無限にあり
一方、0.12341234123412341234・・・と、0.12341234123412341234・・・Aeと、これは別の類だが、前述のように、先頭から数を調べて行っては、終わらないし
どうかおっちゃんの数学センスをみせてくれよ(^^;
どうやって、無限数列のしっぽを見分けるのか?
(時枝記事の>>114 推移律チェックは、「無限数列のしっぽが見分けられたら」が前提であることを、再度注意しておくよ)
おっちゃん、どうも。スレ主です。
なんだ、バスの運転のアルバイトしていると思ったぜ(^^;
ところで、有限だったら、話は簡単だ
そして、代数では有限の場合も多い
無限数列のしっぽでの同値類分類:数列のしっぽが一致すれば同値=つまりは、数列の最後の数が一致するかどうか
有限数列であれば、なんの問題もない。だが、可算無限個の箱に入った数列ではどうか?
先頭から数を調べて行っては、終わらない ∵終わらないのが可算無限
では、可算無限個のしっぽの箱とは? 一つの例が、>>370に示したように、最後の箱を固定して、A1,A2,・・・・,An,Ae (ここでAeは最後の箱で、箱を増やすとき数列の途中に挿入するとする)
こうすれば、数列のしっぽが決まるので、話は簡単だ
だが、数列のしっぽが固定できない数列が考えられる
例えば、1/999=0.001001001001001001・・・
つまり、循環数列で、少数3n位が1、少数3n+1位が0、少数3n+2位が0
123/999=0.123123123123123・・・ など
1234/9999=0.12341234123412341234・・・も可能
などと考えて行くと、数列のしっぽが固定できない循環数列のパターンが無限にあり
一方、0.12341234123412341234・・・と、0.12341234123412341234・・・Aeと、これは別の類だが、前述のように、先頭から数を調べて行っては、終わらないし
どうかおっちゃんの数学センスをみせてくれよ(^^;
どうやって、無限数列のしっぽを見分けるのか?
(時枝記事の>>114 推移律チェックは、「無限数列のしっぽが見分けられたら」が前提であることを、再度注意しておくよ)
2016/11/26(土) 17:33:04.56ID:Py08+Ohv
>>474
>私が1つだけ示した超越数はある。だから、そのwikiは単体で挙げてもムダ。
話は逆で、”私が1つだけ示した超越数はある”だけでは不十分だ
その数が、有理数(少数展開のしっぽの循環)か、無理数(少数展開のしっぽの循環がない)か、判別できない数が一つでもあると、数列のしっぽの同値類分類は完成しない
>私が1つだけ示した超越数はある。だから、そのwikiは単体で挙げてもムダ。
話は逆で、”私が1つだけ示した超越数はある”だけでは不十分だ
その数が、有理数(少数展開のしっぽの循環)か、無理数(少数展開のしっぽの循環がない)か、判別できない数が一つでもあると、数列のしっぽの同値類分類は完成しない
2016/11/26(土) 17:41:00.51ID:Py08+Ohv
>>474
>ノルムの定義だのヒルベルト空間だのは時枝問題には関係ない。
記号の乱用だが
無限小数の展開の空間⊂コーシー列の空間⊂ヒルベルト空間⊂R^Nの空間
を示したつもりなんだ
つまり、無限小数展開の空間を例として、可算無限個の箱に入った数列のしっぽの同値類分類が、きちんとできないなら
R^Nの空間での、可算無限個の箱に入った数列のしっぽの同値類分類も、きちんとできない
そういうことを言いたいのだよ
>ノルムの定義だのヒルベルト空間だのは時枝問題には関係ない。
記号の乱用だが
無限小数の展開の空間⊂コーシー列の空間⊂ヒルベルト空間⊂R^Nの空間
を示したつもりなんだ
つまり、無限小数展開の空間を例として、可算無限個の箱に入った数列のしっぽの同値類分類が、きちんとできないなら
R^Nの空間での、可算無限個の箱に入った数列のしっぽの同値類分類も、きちんとできない
そういうことを言いたいのだよ
2016/11/26(土) 17:41:58.54ID:Py08+Ohv
484132人目の素数さん
2016/11/26(土) 17:56:04.54ID:xEpGxFGd485132人目の素数さん
2016/11/26(土) 18:25:47.32ID:eZ9pCsLc > 「数列の頭から調べて行く」という通常の手段では、「しっぽの先が一致する」は言えない
スレ主は(R^Nの)任意の無限数列が出題可能であると仮定しているのでしょう?
たとえば e = 2.71828... の小数表示を1桁ずつバラバラにした数列an (a0=2, a1=7, a2=1, a3=8, ... )を
出題しようとしたときにはbn以降の項がbn={eの小数点以下n桁目}であるような代表元bnが存在して
anとbnの「しっぽの先が一致する」が言えないと出題できない
スレ主は(R^Nの)任意の無限数列が出題可能であると仮定しているのでしょう?
たとえば e = 2.71828... の小数表示を1桁ずつバラバラにした数列an (a0=2, a1=7, a2=1, a3=8, ... )を
出題しようとしたときにはbn以降の項がbn={eの小数点以下n桁目}であるような代表元bnが存在して
anとbnの「しっぽの先が一致する」が言えないと出題できない
2016/11/26(土) 18:47:33.02ID:Py08+Ohv
>>484
>訂正後の式「lim n→∞ L(S_A) := n-2」の左辺はnを変数として n→+∞ として極限を取っているから、
これは最初から、lim n→∞ ( L(S_A) := n-2 ) という意味で、これで分かるはずだからかっこを省略した
というか、本来の書物ではn→∞は、limの下に添え字で書かれているが、ここでは下に添え字が使えないから横に出した。かっこはもともと(書物での書き方では)不要だ
>訂正後の式「lim n→∞ L(S_A) := n-2」の左辺はnを変数として n→+∞ として極限を取っているから、
これは最初から、lim n→∞ ( L(S_A) := n-2 ) という意味で、これで分かるはずだからかっこを省略した
というか、本来の書物ではn→∞は、limの下に添え字で書かれているが、ここでは下に添え字が使えないから横に出した。かっこはもともと(書物での書き方では)不要だ
2016/11/26(土) 18:51:49.75ID:Py08+Ohv
2016/11/26(土) 18:55:49.17ID:Py08+Ohv
>>486 蛇足
L(S_A)→∞ は当然かつ自明。書くまでもないから省略しただけ
というか、lim n→∞ ( L(S_A) := n-2 ) の方が意味が明白だと思った
まあ、この板では、正規の数学の書式は使えないわけで
それで、どうこういうのはお門違いだろ
L(S_A)→∞ は当然かつ自明。書くまでもないから省略しただけ
というか、lim n→∞ ( L(S_A) := n-2 ) の方が意味が明白だと思った
まあ、この板では、正規の数学の書式は使えないわけで
それで、どうこういうのはお門違いだろ
489132人目の素数さん
2016/11/26(土) 19:01:17.19ID:JI0BfLNk >Yes! 有限数列の極限を考えるのは数学の基本だろ?
とっとと「有限済列の極限」なるものの定義を書けよバカ
とっとと「有限済列の極限」なるものの定義を書けよバカ
490132人目の素数さん
2016/11/26(土) 19:02:35.11ID:eZ9pCsLc491132人目の素数さん
2016/11/26(土) 19:02:50.13ID:JI0BfLNk 案1 そんなの難しくない。当たり前のことだよ。
案2 こんな板じゃ数式は書けない
案3 都合の悪いレスはスルー
案2 こんな板じゃ数式は書けない
案3 都合の悪いレスはスルー
2016/11/26(土) 19:08:48.17ID:Py08+Ohv
>>482 補足
これも記号の乱用だが
{R^Nの空間}−{ヒルベルト空間}=可算無限次元ベクトル空間でヒルベルト空間からはみ出す部分
この部分集合が空集合でないなら(空集合でないことは自明と思うが)
じゃ、この部分を数学として、どう扱うのか?
私は、寡聞にして、知らない
もし、この部分を数学として扱えない(数列を扱えない)なら、時枝の記事はこの部分では成立しないことになる・・
もっとも、ヒルベルト空間内の可算無限数列を収束だとか完備化だとかで扱えるとしても、「しっぽでの同値類」が数学になるかどうか、それはまた別の問題だ(現実にそういう数学論文は存在しない(除くパズル論))
これも記号の乱用だが
{R^Nの空間}−{ヒルベルト空間}=可算無限次元ベクトル空間でヒルベルト空間からはみ出す部分
この部分集合が空集合でないなら(空集合でないことは自明と思うが)
じゃ、この部分を数学として、どう扱うのか?
私は、寡聞にして、知らない
もし、この部分を数学として扱えない(数列を扱えない)なら、時枝の記事はこの部分では成立しないことになる・・
もっとも、ヒルベルト空間内の可算無限数列を収束だとか完備化だとかで扱えるとしても、「しっぽでの同値類」が数学になるかどうか、それはまた別の問題だ(現実にそういう数学論文は存在しない(除くパズル論))
2016/11/26(土) 19:11:04.85ID:Py08+Ohv
2016/11/26(土) 19:11:59.45ID:Py08+Ohv
「有限済列の極限」か(^^;
2016/11/26(土) 19:18:23.14ID:Py08+Ohv
496132人目の素数さん
2016/11/26(土) 19:21:30.63ID:JI0BfLNk マジレスすれば
数列はスレ主の脳の外!
数列はスレ主の脳の外!
2016/11/26(土) 20:34:20.56ID:Py08+Ohv
時枝先生が、どこかで、「教えることが自分の勉強」と書いていたように思うが
君たちと付き合っていると、本当に勉強になるわ(^^;
君たちと付き合っていると、本当に勉強になるわ(^^;
498132人目の素数さん
2016/11/26(土) 20:34:02.33ID:eZ9pCsLc >>493
> "全ての箱に数を入れる行為"までは、問題の仮定だからOK
たとえば e = 2.71828... の小数表示を1桁ずつバラバラにした数列an (a0=2, a1=7, a2=1, a3=8, ... )を
出題しようとしたとき
有限個の場合は a0=2, a1=7, a2=1, a3=8, a4=2, a5=8 の数字を用いて別の数列
b0=2, b1=2.7, b2=2.71, b3=2.718, b4=2.7182, b5=2.71828 は構成できる
有限個ならば項の数をいくつでも増やすことができるが無限個の場合は?
a0=2, a1=7, a2=1, a3=8, a4=2, a5=8, ... , ???
b0=2, b1=2.7, b2=2.71, b3=2.718, b4=2.7182, b5=2.71828, ... , ???
この場合は bn < e であるからanをeの小数表示と一致させることができない
そこでanの全ての数字とeの小数表示を一致させるために同値類を導入する
> 完全代表系を一組用意すればR^Nの任意の数列はある自然数n'が存在して n > n' の時に
> ある代表元のn番目以降の項と全て一致する
anの全ての数字とeの小数表示が全て一致すれば「全ての箱に数を入れる行為」が終了したと見なせる
ここまでは「問題の仮定だからOK」なのでしょう?
その結果として数当て戦略が成立する
以前にも同様のことを書いたが
http://rio2016.2ch.net/test/read.cgi/math/1475822875/35
> "全ての箱に数を入れる行為"までは、問題の仮定だからOK
たとえば e = 2.71828... の小数表示を1桁ずつバラバラにした数列an (a0=2, a1=7, a2=1, a3=8, ... )を
出題しようとしたとき
有限個の場合は a0=2, a1=7, a2=1, a3=8, a4=2, a5=8 の数字を用いて別の数列
b0=2, b1=2.7, b2=2.71, b3=2.718, b4=2.7182, b5=2.71828 は構成できる
有限個ならば項の数をいくつでも増やすことができるが無限個の場合は?
a0=2, a1=7, a2=1, a3=8, a4=2, a5=8, ... , ???
b0=2, b1=2.7, b2=2.71, b3=2.718, b4=2.7182, b5=2.71828, ... , ???
この場合は bn < e であるからanをeの小数表示と一致させることができない
そこでanの全ての数字とeの小数表示を一致させるために同値類を導入する
> 完全代表系を一組用意すればR^Nの任意の数列はある自然数n'が存在して n > n' の時に
> ある代表元のn番目以降の項と全て一致する
anの全ての数字とeの小数表示が全て一致すれば「全ての箱に数を入れる行為」が終了したと見なせる
ここまでは「問題の仮定だからOK」なのでしょう?
その結果として数当て戦略が成立する
以前にも同様のことを書いたが
http://rio2016.2ch.net/test/read.cgi/math/1475822875/35
499132人目の素数さん
2016/11/26(土) 20:34:56.84ID:eZ9pCsLc >>493
> "全ての箱に数を入れる行為"までは、問題の仮定だからOK
たとえば e = 2.71828... の小数表示を1桁ずつバラバラにした数列an (a0=2, a1=7, a2=1, a3=8, ... )を
出題しようとしたとき
有限個の場合は a0=2, a1=7, a2=1, a3=8, a4=2, a5=8 の数字を用いて別の数列
b0=2, b1=2.7, b2=2.71, b3=2.718, b4=2.7182, b5=2.71828 は構成できる
有限個ならば項の数をいくつでも増やすことができるが無限個の場合は?
a0=2, a1=7, a2=1, a3=8, a4=2, a5=8, ... , ???
b0=2, b1=2.7, b2=2.71, b3=2.718, b4=2.7182, b5=2.71828, ... , ???
この場合は bn < e であるからanをeの小数表示と一致させることができない
そこでanの全ての数字とeの小数表示を一致させるために同値類を導入する
> 完全代表系を一組用意すればR^Nの任意の数列はある自然数n'が存在して n > n' の時に
> ある代表元のn番目以降の項と全て一致する
anの全ての数字とeの小数表示が全て一致すれば「全ての箱に数を入れる行為」が終了したと見なせる
ここまでは「問題の仮定だからOK」なのでしょう?
その結果として数当て戦略が成立する
以前にも同様のことを書いたが
http://rio2016.2ch.net/test/read.cgi/math/1475822875/35
> "全ての箱に数を入れる行為"までは、問題の仮定だからOK
たとえば e = 2.71828... の小数表示を1桁ずつバラバラにした数列an (a0=2, a1=7, a2=1, a3=8, ... )を
出題しようとしたとき
有限個の場合は a0=2, a1=7, a2=1, a3=8, a4=2, a5=8 の数字を用いて別の数列
b0=2, b1=2.7, b2=2.71, b3=2.718, b4=2.7182, b5=2.71828 は構成できる
有限個ならば項の数をいくつでも増やすことができるが無限個の場合は?
a0=2, a1=7, a2=1, a3=8, a4=2, a5=8, ... , ???
b0=2, b1=2.7, b2=2.71, b3=2.718, b4=2.7182, b5=2.71828, ... , ???
この場合は bn < e であるからanをeの小数表示と一致させることができない
そこでanの全ての数字とeの小数表示を一致させるために同値類を導入する
> 完全代表系を一組用意すればR^Nの任意の数列はある自然数n'が存在して n > n' の時に
> ある代表元のn番目以降の項と全て一致する
anの全ての数字とeの小数表示が全て一致すれば「全ての箱に数を入れる行為」が終了したと見なせる
ここまでは「問題の仮定だからOK」なのでしょう?
その結果として数当て戦略が成立する
以前にも同様のことを書いたが
http://rio2016.2ch.net/test/read.cgi/math/1475822875/35
500132人目の素数さん
2016/11/26(土) 20:39:14.76ID:eZ9pCsLc 重複すみません
501132人目の素数さん
2016/11/26(土) 20:42:55.91ID:JI0BfLNk2016/11/26(土) 20:59:05.28ID:Py08+Ohv
>>492 (ヒルベルト空間の参考)
以前にも引用させてもらった山上 滋先生
https://www.math.nagoya-u.ac.jp/~yamagami/
Shigeru's Scratchy Shelf
https://www.math.nagoya-u.ac.jp/~yamagami/teaching/teaching.html
講義ノート
https://www.math.nagoya-u.ac.jp/~yamagami/teaching/functional/hilbert2012.pdf
関数解析入門. 山上 滋. 2015 年 5 月 31 日 名古屋大
(抜粋)
4 ヒルベルト空間の幾何学
内積が指定されたベクトル空間を内積空間(inner product space) あるいは前ヒルベルト空間(pre-hilbert space) という。
内積空間はノルム空間でもある。
完備な内積空間をヒルベルト空間(Hilbert space) と呼ぶ。
問39. 内積は、内積から定まるノルムに関して連続である。
P23
Remark . ここで取り上げた近似デルタ関数は、Friedrichs のmollifier (柔軟化作用素)として
知られているものでもあるが、Sobolev の方が早くから使っていたこと、それよりも前にDirac が
量子力学の有名な教科書でデルタ関数の解釈として(実質的に)導入してあるのを踏まえて、あえ
て一般的でない名称を使った。最近の教科書では、これをapproximate identity と呼ぶ向きもあ
るが、それと比較してなおapproximate delta function は示唆的であろう。なお、この古典を読め
ば、Dirac がいかに線型代数に通暁していたか、のみならず、関数解析的見方をしていたかが良く
わかる。Gibbs のベクトル解析の本と並ぶ驚異的なものであるが、もったいなくも、数学の学生は
読まぬのだろうなあ。
P.M.A. Dirac, Principles of Quantum Mechanics (1930).
S. Sobolev (1938), K.O. Friedrichs (1944).
(引用終り)
以前にも引用させてもらった山上 滋先生
https://www.math.nagoya-u.ac.jp/~yamagami/
Shigeru's Scratchy Shelf
https://www.math.nagoya-u.ac.jp/~yamagami/teaching/teaching.html
講義ノート
https://www.math.nagoya-u.ac.jp/~yamagami/teaching/functional/hilbert2012.pdf
関数解析入門. 山上 滋. 2015 年 5 月 31 日 名古屋大
(抜粋)
4 ヒルベルト空間の幾何学
内積が指定されたベクトル空間を内積空間(inner product space) あるいは前ヒルベルト空間(pre-hilbert space) という。
内積空間はノルム空間でもある。
完備な内積空間をヒルベルト空間(Hilbert space) と呼ぶ。
問39. 内積は、内積から定まるノルムに関して連続である。
P23
Remark . ここで取り上げた近似デルタ関数は、Friedrichs のmollifier (柔軟化作用素)として
知られているものでもあるが、Sobolev の方が早くから使っていたこと、それよりも前にDirac が
量子力学の有名な教科書でデルタ関数の解釈として(実質的に)導入してあるのを踏まえて、あえ
て一般的でない名称を使った。最近の教科書では、これをapproximate identity と呼ぶ向きもあ
るが、それと比較してなおapproximate delta function は示唆的であろう。なお、この古典を読め
ば、Dirac がいかに線型代数に通暁していたか、のみならず、関数解析的見方をしていたかが良く
わかる。Gibbs のベクトル解析の本と並ぶ驚異的なものであるが、もったいなくも、数学の学生は
読まぬのだろうなあ。
P.M.A. Dirac, Principles of Quantum Mechanics (1930).
S. Sobolev (1938), K.O. Friedrichs (1944).
(引用終り)
2016/11/26(土) 21:40:20.83ID:Py08+Ohv
>>502 補足
https://ja.wiki
量子力学
(抜粋)
代表的な量子力学の理論として、シュ レーディ ンガーによって創始された、シュ レーディ ンガー方程式を基礎に置く波動力学と、ハイ ゼンベルク、マッ クス・ボ ルン、ヨル ダンらによって構成された、ハイ ゼンベルクの運動方程式を基礎に置く行列力学がある[5]。
歴史
ディ ラックは1939年にブ ラ-ケ ット記法を導入した。ディ ラックに因み、ブ ラ-ケ ット記法はディラック記法(英: Dirac notation)とも呼ばれている。
ブ ラ-ケ ット記法とは、ヒルベルト空間のようなある空間上の状態ベクトルをケ ット(英: ket)、その双対空間上のベクトルをブ ラ(英: bra)で表す記法のことで、ブ ラとケ ットの自然な積として波動関数の内積などを簡潔かつ視覚的に示す目的で利用される。
ノイ マンらにより、量子力学の数学的に厳密な形式化(基礎)が確立された(『量子力学の数学的基礎』(1932) 他)。
(引用終り)
https://ja.wiki
量子力学
(抜粋)
代表的な量子力学の理論として、シュ レーディ ンガーによって創始された、シュ レーディ ンガー方程式を基礎に置く波動力学と、ハイ ゼンベルク、マッ クス・ボ ルン、ヨル ダンらによって構成された、ハイ ゼンベルクの運動方程式を基礎に置く行列力学がある[5]。
歴史
ディ ラックは1939年にブ ラ-ケ ット記法を導入した。ディ ラックに因み、ブ ラ-ケ ット記法はディラック記法(英: Dirac notation)とも呼ばれている。
ブ ラ-ケ ット記法とは、ヒルベルト空間のようなある空間上の状態ベクトルをケ ット(英: ket)、その双対空間上のベクトルをブ ラ(英: bra)で表す記法のことで、ブ ラとケ ットの自然な積として波動関数の内積などを簡潔かつ視覚的に示す目的で利用される。
ノイ マンらにより、量子力学の数学的に厳密な形式化(基礎)が確立された(『量子力学の数学的基礎』(1932) 他)。
(引用終り)
2016/11/26(土) 21:40:51.63ID:Py08+Ohv
マックスが通らない
2016/11/26(土) 21:41:30.88ID:Py08+Ohv
マックス・ボ ルン
2016/11/26(土) 21:43:38.24ID:Py08+Ohv
単独ならとおる? 不思議だ
>>502 補足
https://ja.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6
量子力学
(抜粋)
代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マッ クス・ボルン、ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある[5]。
歴史
ディラックは1939年にブラ-ケット記法を導入した。ディラックに因み、ブラ-ケット記法はディラック記法(英: Dirac notation)とも呼ばれている。
ブラ-ケット記法とは、ヒルベルト空間のようなある空間上の状態ベクトルをケット(英: ket)、その双対空間上のベクトルをブラ(英: bra)で表す記法のことで、ブラとケットの自然な積として波動関数の内積などを簡潔かつ視覚的に示す目的で利用される。
ジョン・フォン・ノイマンらにより、量子力学の数学的に厳密な形式化(基礎)が確立された(『量子力学の数学的基礎』(1932) 他)。
(引用終り)
>>502 補足
https://ja.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6
量子力学
(抜粋)
代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マッ クス・ボルン、ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある[5]。
歴史
ディラックは1939年にブラ-ケット記法を導入した。ディラックに因み、ブラ-ケット記法はディラック記法(英: Dirac notation)とも呼ばれている。
ブラ-ケット記法とは、ヒルベルト空間のようなある空間上の状態ベクトルをケット(英: ket)、その双対空間上のベクトルをブラ(英: bra)で表す記法のことで、ブラとケットの自然な積として波動関数の内積などを簡潔かつ視覚的に示す目的で利用される。
ジョン・フォン・ノイマンらにより、量子力学の数学的に厳密な形式化(基礎)が確立された(『量子力学の数学的基礎』(1932) 他)。
(引用終り)
2016/11/26(土) 21:44:39.37ID:Py08+Ohv
マックス・ボルン
↓
マッ クス・ボルン
でとおる?
↓
マッ クス・ボルン
でとおる?
2016/11/26(土) 21:45:37.80ID:Py08+Ohv
組み合わせか
マックス・ボルンのままではだめだった
マックス・ボルンのままではだめだった
2016/11/26(土) 21:47:17.82ID:Py08+Ohv
>>506 つづき
https://ja.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6%E3%81%AE%E6%95%B0%E5%AD%A6%E7%9A%84%E5%9F%BA%E7%A4%8E
(抜粋)
量子力学の数学的基礎(りょうしりきがくのすうがくてききそ、独: die Mathematische Grundlangen der Quantenmechanik)は、ジョン・フォン・ノイマン(ら)によってなされた、量子力学で扱う物理量や状態といった概念の基礎付け(形式化)の仕事、およびそれについて1932年に刊行した論文および書籍のタイトルである。
これにより、ハイゼンベルク-ボルン-ジョルダンによる行列力学とシュレディンガーによる波動力学を抽象ヒルベルト空間のクラスに帰属する理論として統一が行なわれた。
概要
20世紀に発展した物理学の分野である量子力学は、数学的にはヒルベルト空間とその上の線型有界作用素や非有界な自己共役作用素などを用いて基礎づけた。
この定式化は 1930 年代の初めにポール・ディラックやジョン・フォン・ノイマンらが達成し「量子力学の数学絵的基礎」として出版した。抽象ヒルベルト空間の一般論、量子力学の統計、理論の演繹的構成、熱力学的考察、測定の過程からなる[1]。
第一量子化
ヒルベルト空間のベクトルやそれらの内積を表すのに簡便な記法としてブラ-ケット記法がしばしば用いられる。
状態
量子力学系の状態は、(可分な)複素ヒルベルト空間の単位ベクトル(状態ベクトル)または、有界線形作用素のなす環 B(H) 上の単位的正値線型形式
T → < ξ | T | ξ >
によって表される。
物理量
観測可能な物理量(オブザーバブル)はそのヒルベルト空間の線形エルミート演算子によって表される。
観測される物理量はエルミート作用素の固有値として表されることになる。連続的な値をとる物理量に対しては上の分解の拡張であるスペクトル分解が対応する。
測定値
系が状態 |ψ〉であるとき、上の記号の下で、オブザーバブル A を測定すると測定値 ak が観測される確率は |〈ek | ψ〉|2 となる。これをボルンの規則という。ek たちがヒルベルト空間の正規直交基底であることから、各々の場合の確率の和は =1
となることが保証される[2]。
(引用終り)
https://ja.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6%E3%81%AE%E6%95%B0%E5%AD%A6%E7%9A%84%E5%9F%BA%E7%A4%8E
(抜粋)
量子力学の数学的基礎(りょうしりきがくのすうがくてききそ、独: die Mathematische Grundlangen der Quantenmechanik)は、ジョン・フォン・ノイマン(ら)によってなされた、量子力学で扱う物理量や状態といった概念の基礎付け(形式化)の仕事、およびそれについて1932年に刊行した論文および書籍のタイトルである。
これにより、ハイゼンベルク-ボルン-ジョルダンによる行列力学とシュレディンガーによる波動力学を抽象ヒルベルト空間のクラスに帰属する理論として統一が行なわれた。
概要
20世紀に発展した物理学の分野である量子力学は、数学的にはヒルベルト空間とその上の線型有界作用素や非有界な自己共役作用素などを用いて基礎づけた。
この定式化は 1930 年代の初めにポール・ディラックやジョン・フォン・ノイマンらが達成し「量子力学の数学絵的基礎」として出版した。抽象ヒルベルト空間の一般論、量子力学の統計、理論の演繹的構成、熱力学的考察、測定の過程からなる[1]。
第一量子化
ヒルベルト空間のベクトルやそれらの内積を表すのに簡便な記法としてブラ-ケット記法がしばしば用いられる。
状態
量子力学系の状態は、(可分な)複素ヒルベルト空間の単位ベクトル(状態ベクトル)または、有界線形作用素のなす環 B(H) 上の単位的正値線型形式
T → < ξ | T | ξ >
によって表される。
物理量
観測可能な物理量(オブザーバブル)はそのヒルベルト空間の線形エルミート演算子によって表される。
観測される物理量はエルミート作用素の固有値として表されることになる。連続的な値をとる物理量に対しては上の分解の拡張であるスペクトル分解が対応する。
測定値
系が状態 |ψ〉であるとき、上の記号の下で、オブザーバブル A を測定すると測定値 ak が観測される確率は |〈ek | ψ〉|2 となる。これをボルンの規則という。ek たちがヒルベルト空間の正規直交基底であることから、各々の場合の確率の和は =1
となることが保証される[2]。
(引用終り)
2016/11/26(土) 21:51:48.70ID:Py08+Ohv
>>509
まあ、要するに、行列力学とシュレディンガーによる波動力学の両方を入れる入れ物として、ジョン・フォン・ノイマン(ら)によって、無限次元ベクトル空間であるヒルベルト空間を使った
ヒルベルト空間には、内積を入れて、扱いやすくした
じゃ、ヒルベルト空間でない無限次元ベクトル空間は扱いにくい? 答えはYesかな(^^;
まあ、要するに、行列力学とシュレディンガーによる波動力学の両方を入れる入れ物として、ジョン・フォン・ノイマン(ら)によって、無限次元ベクトル空間であるヒルベルト空間を使った
ヒルベルト空間には、内積を入れて、扱いやすくした
じゃ、ヒルベルト空間でない無限次元ベクトル空間は扱いにくい? 答えはYesかな(^^;
2016/11/26(土) 22:27:24.63ID:Py08+Ohv
マックス・ボルン ng ワードか
2016/11/26(土) 22:29:52.70ID:Py08+Ohv
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 【財政】「国の借金」過去最大1317兆円…昨年12月末時点、国民1人当たりの借金額1063万円★5 [シャチ★]
- 【八潮市道路陥没】運転席に「人がいる可能性」 下流30mと特定 ★3 [Ailuropoda melanoleuca★]
- PTSD告白の渡邊渚さん 大阪でバレーボールSVリーグ現地観戦 フジテレビ休職中のパリ五輪観戦も話題 フォトエッセーが爆売れ [jinjin★]
- 【経済】それでも外食をするか?冷たい風が吹き続ける飲食業界 [Gecko★]
- 中川翔子「トイレを流さない人類多すぎ問題」に怒りあらわ「振り向く癖つけようよ。見たの。すごいアイドルが流してないです」 [muffin★]
- 【社会】妻の暴言「お前はATMだ」 男性のDV被害相談が最多 男女平等意識高まりで顕在化 [牛乳トースト★]