>>328-329
>自然数各nについて、決定番号nの列は有限個
>同値類全体は集合は有限個の可算和なんだから
>非可算になるわけがないだろ

>>321より
”有限小数の集合は可算です
  ↓
 ところが、時枝「箱入り無数目」の箱には
 任意実数r∈Rが入るので、非可算です”
 と書いたのに、読めてないね、お主はwww
・いま、簡単に有限で箱3つに 任意実数r∈Rを入れる
 r1,r2,r3 としよう
 しっぽは、r3だ
 だから、数列r1,r2,r3=π(円周率) と 数列r1,r2,r3=e (自然対数の底)と
 この二つの数列は、しっぽ同値ではない
 つまり、r3には任意の異なる実数が入り、同値類の集合の濃度はRと同じで、非可算だ
・一方、r1,r2,r3=π(円周率) について
 しっぽ r3=π(円周率)を固定すると
 r1,r2 には任意の実数r∈Rが入るので 2次元ユークリッド空間と見ることが出来る
 即ち、R^2で集合の濃度は非可算

なんだかな
これ、中高一貫の高校生でも分かる話だよ
どっかの数学科修士卒だって? 大丈夫か?