nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは無理数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなるが、
L^n-{(t+1)^n}k=M^n-(t^n)kなので、L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xも無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
初等数学によるフェルマーの最終定理の証明6
■ このスレッドは過去ログ倉庫に格納されています
1日高
2023/08/29(火) 10:31:37.97ID:rQ8/MDRl297132人目の素数さん
2023/08/31(木) 13:24:37.55ID:jyaMaOU6298132人目の素数さん
2023/08/31(木) 13:35:05.82ID:Ku783h9k299日高
2023/08/31(木) 13:55:21.48ID:ZHXestsm300132人目の素数さん
2023/08/31(木) 13:57:04.80ID:jyaMaOU6301日高
2023/08/31(木) 14:06:14.83ID:ZHXestsm302日高
2023/08/31(木) 14:08:24.75ID:ZHXestsm303132人目の素数さん
2023/08/31(木) 14:09:37.78ID:jyaMaOU6304日高
2023/08/31(木) 14:10:38.92ID:ZHXestsm nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなるが、
L^n-{(t+1)^n}k=M^n-(t^n)kなので、L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xも無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなるが、
L^n-{(t+1)^n}k=M^n-(t^n)kなので、L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xも無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
305日高
2023/08/31(木) 14:11:21.06ID:ZHXestsm n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^2=(t+1)^2-t^2のtは、有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
{(t+1)^2}k+u=(x+m)^2,(t^2)k+u=x^2となるので、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^2=(t+1)^2-t^2のtは、有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
{(t+1)^2}k+u=(x+m)^2,(t^2)k+u=x^2となるので、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
306日高
2023/08/31(木) 14:12:57.84ID:ZHXestsm307日高
2023/08/31(木) 14:14:32.38ID:ZHXestsm >>303
続けて書いて、詳しく説明してください。
続けて書いて、詳しく説明してください。
308132人目の素数さん
2023/08/31(木) 14:17:57.93ID:jyaMaOU6 >>305
> n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
> x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
> 2^2=(t+1)^2-t^2のtは、有理数となる。
t=3/2です。
> (1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
> {(t+1)^2}k+u=(x+m)^2,(t^2)k+u=x^2となるので、xは有理数となる。
k=1,u=1でもいいんですよね?
(t^2)k+u=x^2は(3/2)^2+1=x^2,13/4=x^2となってxは有理数になりませんけど。
> n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
> x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
> 2^2=(t+1)^2-t^2のtは、有理数となる。
t=3/2です。
> (1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
> {(t+1)^2}k+u=(x+m)^2,(t^2)k+u=x^2となるので、xは有理数となる。
k=1,u=1でもいいんですよね?
(t^2)k+u=x^2は(3/2)^2+1=x^2,13/4=x^2となってxは有理数になりませんけど。
309132人目の素数さん
2023/08/31(木) 14:17:57.93ID:jyaMaOU6 >>305
> n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
> x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
> 2^2=(t+1)^2-t^2のtは、有理数となる。
t=3/2です。
> (1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
> {(t+1)^2}k+u=(x+m)^2,(t^2)k+u=x^2となるので、xは有理数となる。
k=1,u=1でもいいんですよね?
(t^2)k+u=x^2は(3/2)^2+1=x^2,13/4=x^2となってxは有理数になりませんけど。
> n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
> x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
> 2^2=(t+1)^2-t^2のtは、有理数となる。
t=3/2です。
> (1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
> {(t+1)^2}k+u=(x+m)^2,(t^2)k+u=x^2となるので、xは有理数となる。
k=1,u=1でもいいんですよね?
(t^2)k+u=x^2は(3/2)^2+1=x^2,13/4=x^2となってxは有理数になりませんけど。
310132人目の素数さん
2023/08/31(木) 14:25:16.91ID:jyaMaOU6 >>295
> >>294
> > >>293
> > ではL^n={(t+1)^n}k+εでεを0<ε<0.000001とするとき、Lが有理数になるようなεはありますか?
> >
> > あります。
>
> そのようなεの中で、M^n=(t^n)k-εとするときMも有理数になるものはありますか?
>>296
> >>295
> そのようなεの中で、M^n=(t^n)k-εとするときMも有理数になるものはありますか?
>
> わかりません。
もしもMも有理数になるイプシロンがあれば、L^n={(t+1)^n}k+ε,M^n=(t^n)k-εをみたすL,Mは有理数。
y^n=L^n-M^nでyも有理数だから(M,y,L)の分母を払えばフェルマーの最終定理の反例になります。
> >>294
> > >>293
> > ではL^n={(t+1)^n}k+εでεを0<ε<0.000001とするとき、Lが有理数になるようなεはありますか?
> >
> > あります。
>
> そのようなεの中で、M^n=(t^n)k-εとするときMも有理数になるものはありますか?
>>296
> >>295
> そのようなεの中で、M^n=(t^n)k-εとするときMも有理数になるものはありますか?
>
> わかりません。
もしもMも有理数になるイプシロンがあれば、L^n={(t+1)^n}k+ε,M^n=(t^n)k-εをみたすL,Mは有理数。
y^n=L^n-M^nでyも有理数だから(M,y,L)の分母を払えばフェルマーの最終定理の反例になります。
311日高
2023/08/31(木) 15:12:59.34ID:ZHXestsm312132人目の素数さん
2023/08/31(木) 15:16:08.44ID:jyaMaOU6313日高
2023/08/31(木) 15:21:00.17ID:ZHXestsm314日高
2023/08/31(木) 15:23:34.97ID:ZHXestsm315132人目の素数さん
2023/08/31(木) 15:29:16.61ID:jyaMaOU6316132人目の素数さん
2023/08/31(木) 15:30:11.83ID:jyaMaOU6317日高
2023/08/31(木) 16:33:31.34ID:ZHXestsm318日高
2023/08/31(木) 16:34:59.00ID:ZHXestsm319132人目の素数さん
2023/08/31(木) 16:39:05.13ID:jyaMaOU6320日高
2023/08/31(木) 18:07:53.36ID:ZHXestsm321132人目の素数さん
2023/08/31(木) 18:15:33.80ID:jyaMaOU6 >>320
kの値はどう決めるんでしたっけ。
kの値はどう決めるんでしたっけ。
322日高
2023/08/31(木) 18:29:38.86ID:ZHXestsm323日高
2023/08/31(木) 18:30:19.18ID:ZHXestsm n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^2=(t+1)^2-t^2のtは、有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
{(t+1)^2}k+u=(x+m)^2,(t^2)k+u=x^2となるので、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^2=(t+1)^2-t^2のtは、有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
{(t+1)^2}k+u=(x+m)^2,(t^2)k+u=x^2となるので、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
324日高
2023/08/31(木) 18:30:54.08ID:ZHXestsm nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなるが、
L^n-{(t+1)^n}k=M^n-(t^n)kなので、L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xも無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなるが、
L^n-{(t+1)^n}k=M^n-(t^n)kなので、L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xも無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
325132人目の素数さん
2023/08/31(木) 18:38:26.52ID:mQgRSI5+ mの値はどう決めるんでしたっけ。
326日高
2023/08/31(木) 19:34:04.82ID:ZHXestsm327132人目の素数さん
2023/08/31(木) 19:41:08.89ID:mQgRSI5+ どんな有理数でもよいのですか?
328日高
2023/08/31(木) 21:53:17.63ID:ZHXestsm329132人目の素数さん
2023/08/31(木) 22:38:20.26ID:zMehmJS/ >>323に沿って見てゆきます。
> n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
> x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
> 2^2=(t+1)^2-t^2のtは、有理数となる。
> (1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
> {(t+1)^2}k+u=(x+m)^2,(t^2)k+u=x^2となるので、xは有理数となる。
「となるので」ではなく、{(t+1)^2}k+uが有理数の二乗、(t^2)k+uも有理数の二乗、となるuをとる、ですか?
t=3/2です。m=1,y=2とするとk=1。
{(t+1)^2}k+u=(5/2)^2+u=(x+m)^2ですからu=36ととれば(25/4)+36=169/4で有理数の二乗。
このとき(3/2)^2+36=9/4+36=153/4でこちらは有理数の二乗ではありません。
このuの選び方は失敗ということですか。
uの選び方を示さないと、uが無限個とれると言えないのでは。
> n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
> x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
> 2^2=(t+1)^2-t^2のtは、有理数となる。
> (1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
> {(t+1)^2}k+u=(x+m)^2,(t^2)k+u=x^2となるので、xは有理数となる。
「となるので」ではなく、{(t+1)^2}k+uが有理数の二乗、(t^2)k+uも有理数の二乗、となるuをとる、ですか?
t=3/2です。m=1,y=2とするとk=1。
{(t+1)^2}k+u=(5/2)^2+u=(x+m)^2ですからu=36ととれば(25/4)+36=169/4で有理数の二乗。
このとき(3/2)^2+36=9/4+36=153/4でこちらは有理数の二乗ではありません。
このuの選び方は失敗ということですか。
uの選び方を示さないと、uが無限個とれると言えないのでは。
330132人目の素数さん
2023/09/01(金) 01:53:26.68ID:4reJ1ZO5 >>301
> >>298
> それを踏まえて(t+1)^n-t^n=z^n-x^nより(t+1)^n=z^n,t^n=x^nとするとz=t+1,x=tとなる
> ことの意味を書いてくれ
>
> そのままの意味です。
答えになっていない
質問は
----
> L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xも無理数。
2^n=(t+1)^n-t^nの解の個数と2^n=z^n-x^nの解の個数をそれぞれ書いて
それを踏まえて(t+1)^n-t^n=z^n-x^nより(t+1)^n=z^n,t^n=x^nとするとz=t+1,x=tとなる
ことの意味を書いてくれ
----
2^n=(t+1)^n-t^nの解の個数と2^n=z^n-x^nの解の個数が「そのままの意味です。 」とはどういうこと?
> >>298
> それを踏まえて(t+1)^n-t^n=z^n-x^nより(t+1)^n=z^n,t^n=x^nとするとz=t+1,x=tとなる
> ことの意味を書いてくれ
>
> そのままの意味です。
答えになっていない
質問は
----
> L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xも無理数。
2^n=(t+1)^n-t^nの解の個数と2^n=z^n-x^nの解の個数をそれぞれ書いて
それを踏まえて(t+1)^n-t^n=z^n-x^nより(t+1)^n=z^n,t^n=x^nとするとz=t+1,x=tとなる
ことの意味を書いてくれ
----
2^n=(t+1)^n-t^nの解の個数と2^n=z^n-x^nの解の個数が「そのままの意味です。 」とはどういうこと?
331日高
2023/09/01(金) 08:29:10.72ID:hkX1kesQ n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^2-t^2のtは有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
L^2-{(t+1)^2}k=M^2-(t^2)kなので、L^2-M^2={(t+1)^2}k-(t^2)kとなる。
L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^2-t^2のtは有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
L^2-{(t+1)^2}k=M^2-(t^2)kなので、L^2-M^2={(t+1)^2}k-(t^2)kとなる。
L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
332日高
2023/09/01(金) 08:32:09.35ID:hkX1kesQ nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなる。
L^n-{(t+1)^n}k=M^n-(t^n)kなので、L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xは無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなる。
L^n-{(t+1)^n}k=M^n-(t^n)kなので、L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xは無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
333日高
2023/09/01(金) 08:45:22.10ID:hkX1kesQ334日高
2023/09/01(金) 08:55:44.68ID:hkX1kesQ >>330
2^n=(t+1)^n-t^nの解の個数と2^n=z^n-x^nの解の個数をそれぞれ書いて
それを踏まえて(t+1)^n-t^n=z^n-x^nより(t+1)^n=z^n,t^n=x^nとするとz=t+1,x=tとなる
ことの意味を書いてくれ
2^n=(t+1)^n-t^nの解の個数は1です。
2^n=z^n-x^nの解の個数は無限です。
z=t+1,x=tとなることの意味は、
t=xのとき、z=x+1です。
2^n=(t+1)^n-t^nの解の個数と2^n=z^n-x^nの解の個数をそれぞれ書いて
それを踏まえて(t+1)^n-t^n=z^n-x^nより(t+1)^n=z^n,t^n=x^nとするとz=t+1,x=tとなる
ことの意味を書いてくれ
2^n=(t+1)^n-t^nの解の個数は1です。
2^n=z^n-x^nの解の個数は無限です。
z=t+1,x=tとなることの意味は、
t=xのとき、z=x+1です。
335132人目の素数さん
2023/09/01(金) 09:09:06.30ID:qkx9hWdF >>334
> >>330
> 2^n=(t+1)^n-t^nの解の個数と2^n=z^n-x^nの解の個数をそれぞれ書いて
> それを踏まえて(t+1)^n-t^n=z^n-x^nより(t+1)^n=z^n,t^n=x^nとするとz=t+1,x=tとなる
> ことの意味を書いてくれ
>
> 2^n=(t+1)^n-t^nの解の個数は1です。
> 2^n=z^n-x^nの解の個数は無限です。
>
> z=t+1,x=tとなることの意味は、
> t=xのとき、z=x+1です。
> 2^n=(t+1)^n-t^nの解の個数は1です。
> 2^n=z^n-x^nの解の個数は無限です。
個数が合わないからフェルマーの最終定理の証明はできないのでは?
> z=t+1,x=tとなることの意味は、
> t=xのとき、z=x+1です。
これは2^n=z^n-x^nの解の個数は1だという意味になるでしょう?
> >>330
> 2^n=(t+1)^n-t^nの解の個数と2^n=z^n-x^nの解の個数をそれぞれ書いて
> それを踏まえて(t+1)^n-t^n=z^n-x^nより(t+1)^n=z^n,t^n=x^nとするとz=t+1,x=tとなる
> ことの意味を書いてくれ
>
> 2^n=(t+1)^n-t^nの解の個数は1です。
> 2^n=z^n-x^nの解の個数は無限です。
>
> z=t+1,x=tとなることの意味は、
> t=xのとき、z=x+1です。
> 2^n=(t+1)^n-t^nの解の個数は1です。
> 2^n=z^n-x^nの解の個数は無限です。
個数が合わないからフェルマーの最終定理の証明はできないのでは?
> z=t+1,x=tとなることの意味は、
> t=xのとき、z=x+1です。
これは2^n=z^n-x^nの解の個数は1だという意味になるでしょう?
336日高
2023/09/01(金) 09:26:04.32ID:hkX1kesQ >>335
> 2^n=(t+1)^n-t^nの解の個数は1です。
> 2^n=z^n-x^nの解の個数は無限です。
個数が合わないからフェルマーの最終定理の証明はできないのでは?
なので、
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
としています。
> 2^n=(t+1)^n-t^nの解の個数は1です。
> 2^n=z^n-x^nの解の個数は無限です。
個数が合わないからフェルマーの最終定理の証明はできないのでは?
なので、
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
としています。
337日高
2023/09/01(金) 09:33:58.38ID:hkX1kesQ >>335
> z=t+1,x=tとなることの意味は、
> t=xのとき、z=x+1です。
これは2^n=z^n-x^nの解の個数は1だという意味になるでしょう?
z=t+1,x=tのとき、解の個数は1です。(正確にはn=3の場合2個です。)
z=x+mなので、2^n=z^n-x^nの解の個数は無限にあります。
> z=t+1,x=tとなることの意味は、
> t=xのとき、z=x+1です。
これは2^n=z^n-x^nの解の個数は1だという意味になるでしょう?
z=t+1,x=tのとき、解の個数は1です。(正確にはn=3の場合2個です。)
z=x+mなので、2^n=z^n-x^nの解の個数は無限にあります。
338132人目の素数さん
2023/09/01(金) 10:32:39.16ID:l11W9etm339日高
2023/09/01(金) 10:36:45.00ID:hkX1kesQ >>338
> L^n={(t+1)^n}k,M^n=(t^n)kとすると、
この場合はuがないので個数が合わないからフェルマーの最終定理の証明はできないのでは?
ということです
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、ですので、当然uは消えます。
> L^n={(t+1)^n}k,M^n=(t^n)kとすると、
この場合はuがないので個数が合わないからフェルマーの最終定理の証明はできないのでは?
ということです
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、ですので、当然uは消えます。
340132人目の素数さん
2023/09/01(金) 10:38:48.25ID:l11W9etm >>337
> >>335
> > z=t+1,x=tとなることの意味は、
> > t=xのとき、z=x+1です。
> これは2^n=z^n-x^nの解の個数は1だという意味になるでしょう?
>
> z=t+1,x=tのとき、解の個数は1です。(正確にはn=3の場合2個です。)
> z=x+mなので、2^n=z^n-x^nの解の個数は無限にあります。
たとえば2^n=(t+1)^n-t^n=(T+2)^n-T^nの場合
(t+1)^n≠(T+2)^n, t^n≠T^nであることが簡単に確認できるように
> L^n={(t+1)^n}k,M^n=(t^n)kとすると、
の場合は
> z=t+1,x=tのとき、解の個数は1です。(正確にはn=3の場合2個です。)
であって
> z=x+mなので、2^n=z^n-x^nの解の個数は無限にあります。
の場合ではないのでフェルマーの最終定理の証明はできないのでは?
ということです
> >>335
> > z=t+1,x=tとなることの意味は、
> > t=xのとき、z=x+1です。
> これは2^n=z^n-x^nの解の個数は1だという意味になるでしょう?
>
> z=t+1,x=tのとき、解の個数は1です。(正確にはn=3の場合2個です。)
> z=x+mなので、2^n=z^n-x^nの解の個数は無限にあります。
たとえば2^n=(t+1)^n-t^n=(T+2)^n-T^nの場合
(t+1)^n≠(T+2)^n, t^n≠T^nであることが簡単に確認できるように
> L^n={(t+1)^n}k,M^n=(t^n)kとすると、
の場合は
> z=t+1,x=tのとき、解の個数は1です。(正確にはn=3の場合2個です。)
であって
> z=x+mなので、2^n=z^n-x^nの解の個数は無限にあります。
の場合ではないのでフェルマーの最終定理の証明はできないのでは?
ということです
341132人目の素数さん
2023/09/01(金) 10:43:09.26ID:l11W9etm >>339
> >>338
> > L^n={(t+1)^n}k,M^n=(t^n)kとすると、
> この場合はuがないので個数が合わないからフェルマーの最終定理の証明はできないのでは?
> ということです
>
> u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、ですので、当然uは消えます。
> (2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる
はu-u=0だからuは消えるが
> u=L^n-{(t+1)^n}k,u=M^n-(t^n)k
の式からはuは消えない
L^n={(t+1)^n}k+u,M^n=(t^n)k+uのuは(2)からuを消しても消えないですよ
> >>338
> > L^n={(t+1)^n}k,M^n=(t^n)kとすると、
> この場合はuがないので個数が合わないからフェルマーの最終定理の証明はできないのでは?
> ということです
>
> u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、ですので、当然uは消えます。
> (2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる
はu-u=0だからuは消えるが
> u=L^n-{(t+1)^n}k,u=M^n-(t^n)k
の式からはuは消えない
L^n={(t+1)^n}k+u,M^n=(t^n)k+uのuは(2)からuを消しても消えないですよ
342日高
2023/09/01(金) 11:32:35.85ID:hkX1kesQ >>340
> z=x+mなので、2^n=z^n-x^nの解の個数は無限にあります。
の場合ではないのでフェルマーの最終定理の証明はできないのでは?
ということです
なので、
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
としています。
> z=x+mなので、2^n=z^n-x^nの解の個数は無限にあります。
の場合ではないのでフェルマーの最終定理の証明はできないのでは?
ということです
なので、
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
としています。
343132人目の素数さん
2023/09/01(金) 11:37:06.88ID:WKpPyETO >>331
> L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
これだとL^2/M^2=((t+1)^2)/(t^2)だからL/M=(t+1)/t=5/3で、無限個の解が得られるといってもどれもx:y:z=3:4:5です。
こんなこと示して、楽しいですか?
> L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
これだとL^2/M^2=((t+1)^2)/(t^2)だからL/M=(t+1)/t=5/3で、無限個の解が得られるといってもどれもx:y:z=3:4:5です。
こんなこと示して、楽しいですか?
344132人目の素数さん
2023/09/01(金) 11:37:25.31ID:iYE8WmTe >>342
> >>340
> > z=x+mなので、2^n=z^n-x^nの解の個数は無限にあります。
> の場合ではないのでフェルマーの最終定理の証明はできないのでは?
> ということです
>
> なので、
> (1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
> としています。
> > L^n={(t+1)^n}k,M^n=(t^n)kとすると、
> この場合はuがないので個数が合わないからフェルマーの最終定理の証明はできないのでは?
> ということです
>
> u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、ですので、当然uは消えます。
> (2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる
はu-u=0だからuは消えるが
> u=L^n-{(t+1)^n}k,u=M^n-(t^n)k
の式からはuは消えない
L^n={(t+1)^n}k+u,M^n=(t^n)k+uのuは(2)からuを消しても消えないですよ
> >>340
> > z=x+mなので、2^n=z^n-x^nの解の個数は無限にあります。
> の場合ではないのでフェルマーの最終定理の証明はできないのでは?
> ということです
>
> なので、
> (1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
> としています。
> > L^n={(t+1)^n}k,M^n=(t^n)kとすると、
> この場合はuがないので個数が合わないからフェルマーの最終定理の証明はできないのでは?
> ということです
>
> u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、ですので、当然uは消えます。
> (2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる
はu-u=0だからuは消えるが
> u=L^n-{(t+1)^n}k,u=M^n-(t^n)k
の式からはuは消えない
L^n={(t+1)^n}k+u,M^n=(t^n)k+uのuは(2)からuを消しても消えないですよ
345132人目の素数さん
2023/09/01(金) 11:39:36.72ID:hkX1kesQ >>341
> (2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる
はu-u=0だからuは消えるが
実際は、uは消えない式となります。
> u=L^n-{(t+1)^n}k,u=M^n-(t^n)k
の式からはuは消えない
(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)に、
u=L^n-{(t+1)^n}k,u=M^n-(t^n)k
を、代入すると、y^n=L^n-M^nとなり、
uが消えます。
> (2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる
はu-u=0だからuは消えるが
実際は、uは消えない式となります。
> u=L^n-{(t+1)^n}k,u=M^n-(t^n)k
の式からはuは消えない
(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)に、
u=L^n-{(t+1)^n}k,u=M^n-(t^n)k
を、代入すると、y^n=L^n-M^nとなり、
uが消えます。
346132人目の素数さん
2023/09/01(金) 11:44:00.48ID:CSdJcOqo >>345日高
代入する式とされる式との区別がついていないようだ。
代入する式とされる式との区別がついていないようだ。
347132人目の素数さん
2023/09/01(金) 11:47:34.70ID:iYE8WmTe >>345
> >>341
> > (2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる
> はu-u=0だからuは消えるが
>
> 実際は、uは消えない式となります。
>
> > u=L^n-{(t+1)^n}k,u=M^n-(t^n)k
> の式からはuは消えない
>
> (2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)に、
> u=L^n-{(t+1)^n}k,u=M^n-(t^n)k
> を、代入すると、y^n=L^n-M^nとなり、
> uが消えます。
> を、代入すると、y^n=L^n-M^nとなり、
> uが消えます。
これはyの値を求める場合はuがいらないということを意味するだけ
x,zの値(L,Mの値)を求めるのにはuが必要 [z^n={(t+1)^n}k+u,x^n=(t^n)k+u]
uを消せば解のyの値は変わらないがx,zの値は変わるのでフェルマーの最終定理の証明になっていない
> >>341
> > (2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる
> はu-u=0だからuは消えるが
>
> 実際は、uは消えない式となります。
>
> > u=L^n-{(t+1)^n}k,u=M^n-(t^n)k
> の式からはuは消えない
>
> (2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)に、
> u=L^n-{(t+1)^n}k,u=M^n-(t^n)k
> を、代入すると、y^n=L^n-M^nとなり、
> uが消えます。
> を、代入すると、y^n=L^n-M^nとなり、
> uが消えます。
これはyの値を求める場合はuがいらないということを意味するだけ
x,zの値(L,Mの値)を求めるのにはuが必要 [z^n={(t+1)^n}k+u,x^n=(t^n)k+u]
uを消せば解のyの値は変わらないがx,zの値は変わるのでフェルマーの最終定理の証明になっていない
348日高
2023/09/01(金) 12:08:12.57ID:hkX1kesQ >>343
これだとL^2/M^2=((t+1)^2)/(t^2)だからL/M=(t+1)/t=5/3で、無限個の解が得られるといってもどれもx:y:z=3:4:5です。
こんなこと示して、楽しいですか?
無限個の解が得られるのは、
(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)の場合です。
L/M=(t+1)/t=5/3はそのうちの一つです。
たとえば、(2^n)k=8^2の場合、k=4^2です。
8^2=17^2-15^2と、
8^2=(20/2)^2-(12/2)^2が得られます。
L/M=17/15とL/M=5/3となります。
これだとL^2/M^2=((t+1)^2)/(t^2)だからL/M=(t+1)/t=5/3で、無限個の解が得られるといってもどれもx:y:z=3:4:5です。
こんなこと示して、楽しいですか?
無限個の解が得られるのは、
(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)の場合です。
L/M=(t+1)/t=5/3はそのうちの一つです。
たとえば、(2^n)k=8^2の場合、k=4^2です。
8^2=17^2-15^2と、
8^2=(20/2)^2-(12/2)^2が得られます。
L/M=17/15とL/M=5/3となります。
349日高
2023/09/01(金) 12:18:38.43ID:hkX1kesQ n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^2-t^2のtは有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
L^2-{(t+1)^2}k=M^2-(t^2)kなので、L^2-M^2={(t+1)^2}k-(t^2)kとなる。
L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^2-t^2のtは有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
L^2-{(t+1)^2}k=M^2-(t^2)kなので、L^2-M^2={(t+1)^2}k-(t^2)kとなる。
L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
350日高
2023/09/01(金) 12:19:35.55ID:hkX1kesQ nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなる。
L^n-{(t+1)^n}k=M^n-(t^n)kなので、L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xは無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなる。
L^n-{(t+1)^n}k=M^n-(t^n)kなので、L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xは無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
351日高
2023/09/01(金) 13:09:48.37ID:hkX1kesQ352日高
2023/09/01(金) 13:12:33.25ID:hkX1kesQ353日高
2023/09/01(金) 13:15:17.92ID:hkX1kesQ354日高
2023/09/01(金) 13:20:38.66ID:hkX1kesQ >>347
これはyの値を求める場合はuがいらないということを意味するだけ
x,zの値(L,Mの値)を求めるのにはuが必要 [z^n={(t+1)^n}k+u,x^n=(t^n)k+u]
uを消せば解のyの値は変わらないがx,zの値は変わるのでフェルマーの最終定理の証明になっていない
よく意味がわかりません。
これはyの値を求める場合はuがいらないということを意味するだけ
x,zの値(L,Mの値)を求めるのにはuが必要 [z^n={(t+1)^n}k+u,x^n=(t^n)k+u]
uを消せば解のyの値は変わらないがx,zの値は変わるのでフェルマーの最終定理の証明になっていない
よく意味がわかりません。
355132人目の素数さん
2023/09/01(金) 14:08:31.53ID:CSdJcOqo356日高
2023/09/01(金) 15:20:52.78ID:hkX1kesQ357日高
2023/09/01(金) 16:05:20.70ID:hkX1kesQ n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^2=(t+1)^2-t^2のtは有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
L^2-{(t+1)^2}k=M^2-(t^2)kなので、L^2-M^2={(t+1)^2}k-(t^2)kとなる。
L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^2=(t+1)^2-t^2のtは有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
L^2-{(t+1)^2}k=M^2-(t^2)kなので、L^2-M^2={(t+1)^2}k-(t^2)kとなる。
L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
358132人目の素数さん
2023/09/01(金) 16:14:29.60ID:69gZUfS8 >>357
> n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
> x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
> 2^2=(t+1)^2-t^2のtは有理数となる。
> (1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
> u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
> L^2-{(t+1)^2}k=M^2-(t^2)kなので、L^2-M^2={(t+1)^2}k-(t^2)kとなる。
> L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
xとL,Mとの関係がわかりません。
> n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
> x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
> 2^2=(t+1)^2-t^2のtは有理数となる。
> (1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
> u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
> L^2-{(t+1)^2}k=M^2-(t^2)kなので、L^2-M^2={(t+1)^2}k-(t^2)kとなる。
> L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
xとL,Mとの関係がわかりません。
359132人目の素数さん
2023/09/01(金) 16:17:08.15ID:69gZUfS8 >>348
> 無限個の解が得られるのは、
> (2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)の場合です。
> L/M=(t+1)/t=5/3はそのうちの一つです。
>
> たとえば、(2^n)k=8^2の場合、k=4^2です。
> 8^2=17^2-15^2と、
> 8^2=(20/2)^2-(12/2)^2が得られます。
> L/M=17/15とL/M=5/3となります。
>>331で、(2)そのものの検討はしていますか?
> (2)はy^2=L^2-M^2となる。
として
> L^2={(t+1)^2}k,M^2=(t^2)k
のケースしか調べていないようですが。
> 無限個の解が得られるのは、
> (2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)の場合です。
> L/M=(t+1)/t=5/3はそのうちの一つです。
>
> たとえば、(2^n)k=8^2の場合、k=4^2です。
> 8^2=17^2-15^2と、
> 8^2=(20/2)^2-(12/2)^2が得られます。
> L/M=17/15とL/M=5/3となります。
>>331で、(2)そのものの検討はしていますか?
> (2)はy^2=L^2-M^2となる。
として
> L^2={(t+1)^2}k,M^2=(t^2)k
のケースしか調べていないようですが。
360日高
2023/09/01(金) 16:18:13.83ID:hkX1kesQ361日高
2023/09/01(金) 16:20:52.40ID:hkX1kesQ362日高
2023/09/01(金) 16:25:16.03ID:hkX1kesQ >>359
> L^2={(t+1)^2}k,M^2=(t^2)k
のケースしか調べていないようですが。
L^2={(t+1)^2}k,M^2=(t^2)k
が有理数ならば、(2)も有理数となります。
> L^2={(t+1)^2}k,M^2=(t^2)k
のケースしか調べていないようですが。
L^2={(t+1)^2}k,M^2=(t^2)k
が有理数ならば、(2)も有理数となります。
363132人目の素数さん
2023/09/01(金) 16:26:32.52ID:69gZUfS8364132人目の素数さん
2023/09/01(金) 16:28:08.15ID:69gZUfS8365132人目の素数さん
2023/09/01(金) 17:15:41.62ID:ZkvdzPPI 子どもの頃から数学が大好きで3桁同士の掛け算なら電卓よりやや速く計算してしまう
高校3年になるカワイイ娘が、いきなり歌い手になりたい!などと言い出して・・・大変困っています。才能がないのなら早く辞めさせて、ちゃんと就職してほしいです。
どうか世間の厳しさを教えてやってください!!厳しいコメ、低評価など大歓迎です。宜しくお願いします。
youtube.com/watch?v=DTRLAo3Aya0
高校3年になるカワイイ娘が、いきなり歌い手になりたい!などと言い出して・・・大変困っています。才能がないのなら早く辞めさせて、ちゃんと就職してほしいです。
どうか世間の厳しさを教えてやってください!!厳しいコメ、低評価など大歓迎です。宜しくお願いします。
youtube.com/watch?v=DTRLAo3Aya0
366日高
2023/09/01(金) 18:07:26.02ID:hkX1kesQ367日高
2023/09/01(金) 18:16:31.53ID:hkX1kesQ368132人目の素数さん
2023/09/01(金) 18:42:48.02ID:PnG1eAuv369132人目の素数さん
2023/09/01(金) 18:43:27.34ID:CSdJcOqo370132人目の素数さん
2023/09/01(金) 18:49:19.81ID:PnG1eAuv371132人目の素数さん
2023/09/01(金) 18:56:13.92ID:CSdJcOqo372日高
2023/09/01(金) 19:44:37.09ID:hkX1kesQ373日高
2023/09/01(金) 19:46:44.84ID:hkX1kesQ374日高
2023/09/01(金) 20:04:00.82ID:hkX1kesQ >>370
L^n={(t+1)^n}k+u,M^n=(t^n)k+uなのだから(2)に代入しなくてもx,zの値は既に決まっているだろ
(2)は左辺がyの式だよ
解を表すのは
xを表す式: x^n=(t^n)k+u
yを表す式: y^n=[{(t+1)^n}k+u]-[(t^n)k+u]={(t+1)^n}k-(t^n)k
zを表す式: z^n={(t+1)^n}k+u
すですね。
L^n={(t+1)^n}k+u,M^n=(t^n)k+uなのだから(2)に代入しなくてもx,zの値は既に決まっているだろ
(2)は左辺がyの式だよ
解を表すのは
xを表す式: x^n=(t^n)k+u
yを表す式: y^n=[{(t+1)^n}k+u]-[(t^n)k+u]={(t+1)^n}k-(t^n)k
zを表す式: z^n={(t+1)^n}k+u
すですね。
375日高
2023/09/01(金) 20:05:22.90ID:hkX1kesQ376日高
2023/09/01(金) 20:07:07.08ID:hkX1kesQ >>370
そうですね。
そうですね。
377132人目の素数さん
2023/09/01(金) 20:16:14.95ID:cvyUqarG >>357
> n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
> x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
ここですでにわからないのですが、yは「或る」整数、mは「或る」有理数とする、と言っているのですが、それとも、yは整数がはいるところ、mは有理数がはいるところ、と言っているのですか?
> n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
> x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
ここですでにわからないのですが、yは「或る」整数、mは「或る」有理数とする、と言っているのですが、それとも、yは整数がはいるところ、mは有理数がはいるところ、と言っているのですか?
378日高
2023/09/01(金) 20:21:03.79ID:hkX1kesQ nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなる。
L^n-{(t+1)^n}k=M^n-(t^n)kなので、L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xは無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなる。
L^n-{(t+1)^n}k=M^n-(t^n)kなので、L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xは無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
379日高
2023/09/01(金) 20:21:51.58ID:hkX1kesQ n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^2=(t+1)^2-t^2のtは有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
L^2-{(t+1)^2}k=M^2-(t^2)kなので、L^2-M^2={(t+1)^2}k-(t^2)kとなる。
L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^2=(t+1)^2-t^2のtは有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
L^2-{(t+1)^2}k=M^2-(t^2)kなので、L^2-M^2={(t+1)^2}k-(t^2)kとなる。
L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
380132人目の素数さん
2023/09/01(金) 20:32:11.57ID:cvyUqarG381日高
2023/09/01(金) 20:35:47.72ID:hkX1kesQ >>377
ここですでにわからないのですが、yは「或る」整数、mは「或る」有理数とする、と言っているのですが、それとも、yは整数がはいるところ、mは有理数がはいるところ、と言っているのですか
?
yは整数がはいるところ、mは有理数がはいるところ、の意味がわかりません。
ここですでにわからないのですが、yは「或る」整数、mは「或る」有理数とする、と言っているのですが、それとも、yは整数がはいるところ、mは有理数がはいるところ、と言っているのですか
?
yは整数がはいるところ、mは有理数がはいるところ、の意味がわかりません。
382132人目の素数さん
2023/09/01(金) 20:40:34.72ID:cvyUqarG383日高
2023/09/01(金) 20:48:04.14ID:hkX1kesQ384132人目の素数さん
2023/09/01(金) 21:06:14.77ID:cvyUqarG385132人目の素数さん
2023/09/01(金) 22:57:16.50ID:GdsgG/BQ386132人目の素数さん
2023/09/02(土) 01:43:28.91ID:NViY/HOl すみません、そもそも論を聞いてもいいですか?
谷山・志村予想が証明されたからこの定理が解けたと聞いています。
別の資料を見ると以下の流れになっているようです。
ラマヌジャン予想→谷山–志村予想→ラングランズ予想→超ラングランズ予想
申し訳ありませんが、この流れを説明できる方おられますか?
谷山・志村予想が証明されたからこの定理が解けたと聞いています。
別の資料を見ると以下の流れになっているようです。
ラマヌジャン予想→谷山–志村予想→ラングランズ予想→超ラングランズ予想
申し訳ありませんが、この流れを説明できる方おられますか?
387132人目の素数さん
2023/09/02(土) 01:47:48.31ID:NViY/HOl 386です。
すみません、説明不足でした。
体育会系のくせにこの最終定理に興味を持ってチョット詳しく知りたいと思ってしまいました。。。
すみません、説明不足でした。
体育会系のくせにこの最終定理に興味を持ってチョット詳しく知りたいと思ってしまいました。。。
388日高
2023/09/02(土) 10:04:04.01ID:G0xw2qgL389日高
2023/09/02(土) 10:32:33.87ID:G0xw2qgL >>385
>uを消した場合の正しい計算式はx^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n-u
私の計算では、
x^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n
となります。
>uを消した場合の正しい計算式はx^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n-u
私の計算では、
x^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n
となります。
390日高
2023/09/02(土) 10:37:36.42ID:G0xw2qgL nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなる。
u=uより、L^n-{(t+1)^n}k=M^n-(t^n)k。L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xは無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。yは整数,mは有理数とする。
2^n=(t+1)^n-t^nのtを分数とすると、右辺は分数となるので、tは、無理数となる。
(1)は(2^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…(2)となる。k=(y/2)^n,uは実数。
u=L^n-{(t+1)^n}k,u=M^n-(t^n)kとしたとき、(2)はy^n=L^n-M^nとなる。
u=uより、L^n-{(t+1)^n}k=M^n-(t^n)k。L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^n={(t+1)^n}k,M^n=(t^n)kとすると、L,Mは無理数となる。よって、xは無理数。
∴nが奇素数のとき、x^n+y^n=z^nは自然数解を持たない。
391日高
2023/09/02(土) 10:40:01.51ID:G0xw2qgL n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^2=(t+1)^2-t^2のtは有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
u=uより、L^n-{(t+1)^n}k=M^n-(t^n)k。L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
2^2=(t+1)^2-t^2のtは有理数となる。
(1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
u=uより、L^n-{(t+1)^n}k=M^n-(t^n)k。L^n-M^n={(t+1)^n}k-(t^n)kとなる。
L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
392132人目の素数さん
2023/09/02(土) 11:08:06.65ID:EcyNdHiw >>389
> >>385
> >uを消した場合の正しい計算式はx^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n-u
>
> 私の計算では、
> x^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n
> となります。
>uを消した場合の正しい計算式はx^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n-u
このM^nは
> u=M^n-(t^n)k
のM^nと同じであるけれども
> 私の計算では、
> x^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n
> となります。
(2)からuを消さない場合はx^n=M^nですが(2)からuを消す場合
このM^nはu=0でない場合は
> u=M^n-(t^n)k
のM^nと同じではないから計算がおかしいです
> >>385
> >uを消した場合の正しい計算式はx^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n-u
>
> 私の計算では、
> x^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n
> となります。
>uを消した場合の正しい計算式はx^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n-u
このM^nは
> u=M^n-(t^n)k
のM^nと同じであるけれども
> 私の計算では、
> x^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n
> となります。
(2)からuを消さない場合はx^n=M^nですが(2)からuを消す場合
このM^nはu=0でない場合は
> u=M^n-(t^n)k
のM^nと同じではないから計算がおかしいです
393132人目の素数さん
2023/09/02(土) 11:10:35.29ID:0042fA7d >>388
> >>384
> xはそのほかの変数とどういう関係にありますか?
>
> どういう意味でしょうか?
説明しなおします。
>>391でゆきましょう。
> n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
> x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
xはここまでは登場しますが、そのあとしばらく出てきません。
> 2^2=(t+1)^2-t^2のtは有理数となる。
> (1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
> u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
> u=uより、L^n-{(t+1)^n}k=M^n-(t^n)k。L^n-M^n={(t+1)^n}k-(t^n)kとなる。
そして
> L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
で突然登場するので、わかりません。
>>389には
> 私の計算では、
> x^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n
> となります。
とあるのでx=Mですか?
> >>384
> xはそのほかの変数とどういう関係にありますか?
>
> どういう意味でしょうか?
説明しなおします。
>>391でゆきましょう。
> n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
> x^2+y^2=z^2をy^2=(x+m)^2-x^2…(1)と変形する。yは整数,mは有理数とする。
xはここまでは登場しますが、そのあとしばらく出てきません。
> 2^2=(t+1)^2-t^2のtは有理数となる。
> (1)は(2^2)k=[{(t+1)^2}k+u]-{(t^2)k+u}…(2)となる。k=(y/2)^2,uは有理数。
> u=L^2-{(t+1)^2}k,u=M^2-(t^2)kとしたとき、(2)はy^2=L^2-M^2となる。
> u=uより、L^n-{(t+1)^n}k=M^n-(t^n)k。L^n-M^n={(t+1)^n}k-(t^n)kとなる。
そして
> L^2={(t+1)^2}k,M^2=(t^2)kとすると、L,Mは有理数となる。よって、xは有理数。
で突然登場するので、わかりません。
>>389には
> 私の計算では、
> x^n={uが含まれたM^n}-{M^nに含まれていたu}=M^n
> となります。
とあるのでx=Mですか?
394日高
2023/09/02(土) 11:38:55.25ID:G0xw2qgL >>392
> u=M^n-(t^n)k
のM^nと同じではないから計算がおかしいです
M^n=(t^n)k+uと
M^n=(t^n)kがありおかしいということですね。
u-u=0となるので、同じです。
ここで同じという意味は、(有理数解、無理数解の違いは生じない)
という意味です。
> u=M^n-(t^n)k
のM^nと同じではないから計算がおかしいです
M^n=(t^n)k+uと
M^n=(t^n)kがありおかしいということですね。
u-u=0となるので、同じです。
ここで同じという意味は、(有理数解、無理数解の違いは生じない)
という意味です。
395日高
2023/09/02(土) 11:42:25.97ID:G0xw2qgL396132人目の素数さん
2023/09/02(土) 11:50:21.63ID:stYz+DCa■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 日本人の幸福感が世界最低レベルに 幸せに感じない要因は「経済的不安」 [首都圏の虎★]
- 【速報】 米国、中国製品に145%の関税 ホワイトハウス声明 ★2 [お断り★]
- 30歳未満の手取り増やす…国民民主党の若者減税法案 30代「なぜ若者だけ?」「うちらも同じにして」 専門家「39歳まで入れておくべき」 [樽悶★]
- トランプ氏 日米安保に重ねて不満 “米国不利になる取り引き” [香味焙煎★]
- 【サッカー】南米サッカー連盟会長が2030年W杯の出場64カ国拡大案を正式に提案 「100周年記念大会は特別なものになるべき」 [冬月記者★]
- トランプ氏 日米安保に重ねて不満 “米国不利になる取り引き”★2 [香味焙煎★]
- 家庭ウンコってさ。下水だの浄化槽だのじゃなく袋に入れて捨てればよくない?オムツはそうしてるし [426433463]
- 大阪万博、お前の想像する20倍は完成していない [245325974]
- 【速報】自民党、消費税減税を検討 [654668886]
- ワイ社畜、吐く🤮
- 【悲報】アメリカの中流世帯、おやびんの関税で年50万円、消費負担が増加してしまう🥺関税を払うのは外国なのにいったいなぜ [519511584]
- ドル/円 143円 [882679842]