>>115
>・ここで、m/nは標数0でかまわない
>・e^(2πi(m/n))から見たとき、m/nの整数成分は、1になって無視できるだけだ

戻る
記号の濫用で
e^(2πiZ) ←→ Z ここにZは整数の集合
の対応を考えると
Zは、数直線上の点でずっと伸びている
ところが、e^(2πiZ)から見ると、長いヘビがとぐろを巻いている ように見えるのです
これが、リーマンによるリーマン面に写した Zの姿です(>>117

さて、”>>86https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/244783/1/B76-02.pdf
 星 裕一郎 宇宙際Teichmuller理論入門
 Z^(1) (円分物)
 円分物とは何でしょうか. それは Tate 捻り “Z^(1)” のことです.
 例えば, 以下が “Z^(1)” の例です:
 (a) (標数 0 の) 代数閉体 Ω に対する Λ(Ω) def := lim ←-n μn(Ω)
  ー ここで, n ≧ 1 に対して, μn(Ω) ⊆ Ω は, Ω の中の 1 の n 乗根のなす群を表す”

これで、下記が参考になるな
”where Z(1) is the abelian group μn of nth roots of unity with respect to the algebraic closure of Z/pZ. ”
google訳 ここで、Z(1)は、Z/pZの代数的閉包に関する1のn乗根のアーベル群μnです。
とある。
Z(1)とか、“Z^(1)”とか、書き手で表記がちょっと違うが
なんか、Z(1)には、1のn乗根が含まれて、“Z^(1)”はZ(1)の完備化で 1のn乗根が含まれる
そう思えてきたね
それで、上記 ”ヘビがとぐろを巻いている”と考えれば、Z が標数0でも何の問題もない
(細かいところは、サッパリですがw)

(参考)
https://ncatlab.org/nlab/show/Tate+twist
Tate twist

In etale cohomology in characteristic p, the Tate twist of a Z/pZ-module, or sheaf of such modules,

where Z(1) is the abelian group μn of nth roots of unity with respect to the algebraic closure of Z/pZ.

つづく