>>129
 b[n,k] = (n-k+3) - a[n,k]
とおけば
 b[n,0] = n+3,
0<k<n に対して
 b[n,k+1] = (n-k+2) - a[n,k+1]
  = {(n-k+2)^2 - a[n,k+1]^2}/(n-k+2 + a[n,k+1])
  = {(n-k+2)^2 - (n-k)(a(n,k)+1) -4}/(n-k+2 + a[n,k+1])
  = (n-k)b[n,k]/(n-k+2 + a[n,k+1])      (>0)
  < {(n-k)/(n-k+2)}b[n,k]
  < …
  < {(n-k)(n-k+1)/(n+1)(n+2)}b[n,0]
k=n-1 として
∴ b[n,n] < {1・2/(n+1)(n+2)}(n+3) → 0 (n→∞)
∴ a[n,n] = 3 - b[n,n] → 3  (n→∞)