>>368
>They misunderstand usefulness of redundant structures (like in gauge theory)

下記
ゲージ理論、冗長
Gauge theory、redundant (redundancy)
知らなかったな
へー

https://ja.wikipedia.org/wiki/%E3%82%B2%E3%83%BC%E3%82%B8%E7%90%86%E8%AB%96
ゲージ理論
ゲージ理論(ゲージりろん、英: gauge theory)は、場の理論の分類である。局所変換の際にラグランジアンが不変となる系を扱う。
概要
ゲージ(ものさし、尺度)という用語は、ラグランジアンの冗長な自由度を表している。可能なゲージを変換することをゲージ変換と呼ぶ。ゲージ変換は、リー群を形成し、理論の対称群あるいはゲージ群と呼ばれる。リー群には生成子のリー代数が付随する。それぞれの生成子に対応してゲージ場と呼ばれるベクトル場が導入され、これにより局所変換の下でのラグランジアンの不変性(ゲージ不変性)が保証される。ゲージ場を量子化して得られる粒子はゲージボゾンと呼ばれる。非可換なゲージ群の下でのゲージ理論は、非可換ゲージ理論と呼ばれ、ヤン=ミルズ理論が代表的である。

ゲージ対称性は、一般相対論の一般共変性(principle of general covariance)の類似と見なすことができ、そこでの座標系は任意の時空の微分同相の下に自由に選択することができる。ゲージ対称性も微分同相対称性も両方とも、系の自由度の冗長性を反映している。

つづく