>>413
(引用開始)
で、同じ筋で、>>385 「行列環M_n(R)の両側イデアルは自明なもの〔つまり、{0}とM_n(R)〕だけであること」を証明する問題
これも、行列環M_n(R)の中に、I≠ {0} なる(両側)イデアルIがあったとして (ここに{0}は、零行列)
E∈I(ここに、Eは単位行列)を、言う筋かな(>>385のyahoo記事回答より)
E∈Iが言えれば、上記と同じように、I=行列環M_n(R)となるから(^^
(引用終り)

おなじみ、花木章秀先生
問題は、下記の問26で、解答は 25の(4) に同じ
解答 25の(4) は、”0 ≠ A = (aij) ∈ I ”で”ある aij は 0 ではない”。これを使って、Ekl = aij^-1 EkiAEjl ∈ I なる行列を構成している。
行列Ekl が構成できるから、 I = R か
単位行列とは、ちょっと違う筋だね

http://zen.shinshu-u.ac.jp/modules/0071000003/
環 信州大学 理学部 数理・自然情報科学科 花木章秀 2008年6月19日
http://zen.shinshu-u.ac.jp/modules/0071000003/files/algex_3.pdf
代数入門問題集 環 信州大学 理学部 数理・自然情報科学科 花木章秀 2008年6月19日
(下記に同じ)
http://zen.shinshu-u.ac.jp/modules/0071000003/main/index.html
代数入門問題集 環 信州大学 理学部 数理・自然情報科学科 花木章秀 2008年6月19日


25.R を C 上 2 次全行列環 M2(C) とする。また Eij で (i,j) - 成分のみが 1 で他の成分がすべて 0 である R の元を 表すことにする。
(3) Eij で生成される R の (両側) イデアル、すなわち REijR を求めよ。
(4) R のイデアルは 0 と R 以外にないことを示せ。 ( 0 と自分自身以外にイデアルをもたない環を単純環という。)

解答
(3) 任意の 1 <= k,l <= 2 に対して
E = Eki Eij Ejl ∈ REij R
となるので REijR = R である。
(4) I を R の 0 でないイデアルとする。 0 ≠ A = (aij) ∈ I とすると、ある aij は 0 ではない。このとき、 任意の 1 <= k,l <= 2 に対して
Ekl = aij^-1 EkiAEjl ∈ I
なので I = R である。


26.K を体 (例えば C ) とする。 K 上 n 次全行列環 Mn(K ) は単純環であることを示せ。
解答
問25 (4) と同様である。