(フェルマーの最終定理)
【定理】pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、xは無理数となる。xが有理数のとき、yは無理数となる。
rが有理数のときは、r=(ap)^{1/(p-1)}となるので、x,yは(3)のときのx,yのa^{1/(p-1)}倍となる。
∴pが奇素数のとき、x^p+y^p=z^pの解x,y,zは、ともに有理数とならない。