X



現代数学の系譜 工学物理雑談 古典ガロア理論も読む83

■ このスレッドは過去ログ倉庫に格納されています
2020/02/09(日) 19:18:24.96ID:XY5HcLEF
この伝統あるガロアすれは、皆さまのご尽力で、
過去、数学板での勢いランキングで、常に上位です。

このスレは、現代数学のもとになった物理・工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。
それで宜しければ、どうぞ。
後でも触れますが、基本は私スレ主のコピペ・・、まあ、言い換えれば、スクラップ帳ですな〜(^^
最近、AIと数学の関係が気になって、その関係の記事を集めています〜(^^
いま、大学数学科卒でコンピュータサイエンスもできる人が、求められていると思うんですよね。

スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。
話題は、散らしながらです。時枝記事は、気が向いたら、たまに触れますが、それは私スレ主の気ままです。

スレ46から始まった、病的関数のリプシッツ連続の話は、なかなか面白かったです。
興味のある方は、過去ログを(^^

なお、
小学レベルとバカプロ固定お断り
例:
・サイコパスのピエロ=数学おサル(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」。知能が低下してサルになっています)
(参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
・High level people (知能の低い者が、サルと呼ばれるようになり、残りました。w(^^; )
・低脳幼稚園児のAAお絵かき
上記は、お断り!!
小学生がいますので、18金(禁)よろしくね!(^^

(旧スレが1000オーバー(又は間近)で、新スレを立てた)
2020/02/10(月) 21:08:03.00ID:mRVZ7FnM
>>76
>よく切符に載っている4桁の数字を使って移動中の暇つぶしに行われたりするので切符パズルと呼ばれることが多いですね(ICカードの普及によって最近の若い人たちに馴染みがあるかはわかりませんが)。

「よく切符に載っている4桁の数字」は、分からんだろうな
あいみょん の ドーナツ盤とか
桃太郎の”たらい”(と洗濯板)とか
電話 リンリン とか

(参考)
https://oshiete.goo.ne.jp/qa/7413949.html
教えて! goo
JR東日本の切符の数字の意味
質問者:yoshinobu_09質問日時:2012/04/10
日付、時間の横にある数字の意味を教えてください。
よろしくお願いします。
https://oshiete.xgoo.jp/_/bucket/oshietegoo/images/media/3/108265_5497c57301454/M.jpg
No.5ベストアンサー
回答者: gsmy5
4桁の数字の話なら通し番号です。毎日0001から始めているのではなく、前日最後に打った番号の次の番号から始まり、9999→0000→0001の順に機械的に番号を繰り返します。

君はロックを聴かない あいみょんの曲
埃まみれ ドーナツ盤には あの日の夢が踊る 真面目に針を落とす 息を止めすぎたぜ

http://hukumusume.com/douwa/koe/jap/08/01_full.html
福娘童話集 > お話きかせてね
桃太郎
桃は、
おばあさんの前へ流れて来ました。
 おばあさんは、にこにこしながら桃を拾い上げると、
「さあ、早くおじいさんと二人で分けて、食べましょう」
と、桃を洗濯物と一緒にたらいの中に入れて、家に持って帰りました。
http://hukumusume.com/douwa/new/gazou/CUT_757.GIF

https://open.mixi.jp/user/4597260/diary/1950451588
mixiユーザー(id:4597260)
伝言板〜昭和歌謡曲83昭和ワードの歌A〜ピンボール 
電話関係なら「恋のダイヤル6700」フィンガー5
作詞:阿久悠 作曲・編曲:井上忠夫昭和48年
♪指のふるえを押さえつつで僕はダイヤル回した♪
こういうダイヤル式の電話
https://photoservice-imagecluster.img.mixi.jp/v/caca0b834831e618b0a4299c92c8d4b0bb0b278f10/5e412074/picture/4597260_2199144011_125small.jpg
冒頭の呼び出し音「リンリンリリン リンリンリリンリンリンリンリリン」
も懐かしい。
78132人目の素数さん
垢版 |
2020/02/10(月) 21:44:05.58ID:dX3r24xT
”ぐだぐだ証明もどき”と言いがかりをつけておきながら証明のギャップは示さない詐欺師にご注意!
79132人目の素数さん
垢版 |
2020/02/10(月) 21:46:42.68ID:P+bQ2SpM
>>76-77
主様ありがとうございます!
これだったのかも?ですね♪

でもこれ、解が無い組み合わせを選んじゃったり、いちいち調べるのって考えてみただけで気絶です。

なんとか手っ取り早く、1度で全部やっつけられる魔法の式とかって無いものでしょうか...
すう板だけに。。。?
有れば*キラキラ*ギフちゃま*も
びっくりして腰抜かしちゃうかも?
プププッ( *´艸`)ですね。。。?

**ギフちゃま**驚かせて
天才ぶりたーーーい!!!

(@´_ゝ`@)な〜んてね♪♪♪
80132人目の素数さん
垢版 |
2020/02/10(月) 21:52:50.52ID:P+bQ2SpM
賢いスレにお邪魔してるとキラキラが眩しくて楽しいけど、自分の@@あほ@@さに 気づいて気づいて仕方な〜い!
で〜す。@@楽し〜い@∧つらーい!
81132人目の素数さん
垢版 |
2020/02/10(月) 21:58:15.60ID:P+bQ2SpM
今度は美魔女様が何やら容積を測る難問を。。。
スレにスフィンクスが降臨されて
スレを訪れる高IQ旅人達が試され出してるみたいです。。。
面白いんですよ♪
果敢に挑む勇者が直ぐに現れるのが
高IQスレなんですね♪
賢い人がクイズ解こうとして
奮闘してるの見てるだけで楽しいです!♪
82132人目の素数さん
垢版 |
2020/02/10(月) 22:03:18.20ID:P+bQ2SpM
変態は数学苦手で数字みたら
思考が固まって軽くパニックが起きてしまうようなので、見てるだけだけど、
賢い人の試行錯誤みてるだけで
(* ゚∀゚)***ワクワクします。。。♪♪♪
ギフテッド最高!!!♪♪♪
💖惚れてまうやろおぉォーーッ!💓
でーす!♪
83132人目の素数さん
垢版 |
2020/02/10(月) 22:05:12.62ID:P+bQ2SpM
でもたしか、容積って
未だに正確に測る方法って
無かったような。。。?
84132人目の素数さん
垢版 |
2020/02/10(月) 22:06:37.04ID:P+bQ2SpM
計算式が無かったはずだから、 
数板問題じゃないんですよね?
失礼致しました。。。(汗
85132人目の素数さん
垢版 |
2020/02/10(月) 22:17:44.09ID:dX3r24xT
あるある詐欺師に数学は無理ですから 残念!
86132人目の素数さん
垢版 |
2020/02/10(月) 22:18:12.04ID:P+bQ2SpM
たすけて。。。
**ギフ*が素敵すぎる。。。好キスギル...眩しすぎて、みんなのギフ様なのが、つらい。。。ツラスギル...
あんなに素敵な人がいるなんて...!
知らない方がよかったかも...!
もうさっそく、つらくなって来ちゃいましたよー...
87132人目の素数さん
垢版 |
2020/02/10(月) 22:19:40.94ID:P+bQ2SpM
。。。つらい。。°*。゜(ノД`)゜。
88132人目の素数さん
垢版 |
2020/02/10(月) 22:22:27.95ID:P+bQ2SpM
    悶々タイムにヒキコモリます...
**ギフ*の*キラキラ*レスをみながら泣いときます。。。お騒がせしてごめんなさいでした。。。
89132人目の素数さん
垢版 |
2020/02/10(月) 22:31:54.74ID:7FZGXTCi
D(x_1,…,x_n)=max(d(x_1),…,d(x_n))とする

このとき
「無限列の決定番号dがnより小さい確率」
「無限列の決定番号dがD(x_1)より小さい確率」
「無限列の決定番号dがD(x_1,x_2)より小さい確率」
「無限列の決定番号dがD(x_1,x_2,x_3)より小さい確率」
・・・
上記は皆、異なる
90132人目の素数さん
垢版 |
2020/02/10(月) 22:46:19.19ID:dX3r24xT
反例まだ〜?

 ☆ チン マチクタビレタ〜
     マチクタビレタ〜
☆ チン  〃 ∧_∧
 ヽ___\(\・∀・)
  \_/ ⊂ ⊂_)
  / ̄ ̄ ̄ ̄ ̄ /|
 | ̄ ̄ ̄ ̄ ̄ ̄| |
 | 愛媛みかん |/
   ̄ ̄ ̄ ̄ ̄ ̄
91132人目の素数さん
垢版 |
2020/02/10(月) 22:46:47.94ID:dX3r24xT
証明のギャップまだ〜?

 ☆ チン マチクタビレタ〜
     マチクタビレタ〜
☆ チン  〃 ∧_∧
 ヽ___\(\・∀・)
  \_/ ⊂ ⊂_)
  / ̄ ̄ ̄ ̄ ̄ /|
 | ̄ ̄ ̄ ̄ ̄ ̄| |
 | 愛媛みかん |/
   ̄ ̄ ̄ ̄ ̄ ̄
92132人目の素数さん
垢版 |
2020/02/10(月) 22:48:02.11ID:dX3r24xT
反例もギャップも出せないならスレ閉鎖の要件成立ですね
約束は守りましょうね、幼稚園で教わりましたよね?
93132人目の素数さん
垢版 |
2020/02/10(月) 23:05:49.93ID:dX3r24xT
約束も守れないんじゃサイコパスと認定せざるを得ないですね
94132人目の素数さん
垢版 |
2020/02/10(月) 23:06:56.12ID:dX3r24xT
やはり真のサイコパスは◆e.a0E5TtKE でした
QED
(^^
95132人目の素数さん
垢版 |
2020/02/10(月) 23:31:49.10ID:4ueNx14E
       もうダメだ...
ギフに嫌われた...!
ドン引きされちゃったーーー!

    タヒにたい。。。_| ̄|○
96132人目の素数さん
垢版 |
2020/02/10(月) 23:40:19.56ID:4ueNx14E
気持ちが抑えきれなくって、
いきなり好キ❗💓好キ❗❗💖❗❗❗
大爆発して自爆しちゃった。。。

もーダーメダ〜ッ!ヾ(・∀・。)

ある意味スッキリ!!?
そんなに長く悶々としなくてすみました。。。(チョット...ホッ!...?)

度々、お騒がせしてま〜す。。。

数学人の皆さんはすっごく素敵な人を見つけても、やっぱり冷静に計算出来るんですか?
2020/02/10(月) 23:43:15.57ID:mRVZ7FnM
>>57
>フェルマーもその類に見えるなー(^^

記憶では、クンマー理論でフェルマーを扱うとき、正則素数と非正則素数の場合分けが必要だったと思うのがだ
だから、上記場合分けなしで、議論しているのを見ると、どっかで間違えているとしか見えないのだった(^^;

https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E7%B4%A0%E6%95%B0
正則素数

数論における正則素数(せいそくそすう、regular prime)とは、円の p 分体の類数を割り切らない素数 p のことであり、エルンスト・クンマーにより考案された。
小さいものから順に
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, …(オンライン整数列大辞典の数列 A7703)
と続く。
クンマーは、奇素数の正則性は p が k = 2, 4, 6, …, p ? 3 におけるベルヌーイ数の分子を割り切らないことと等価であることを示した。
また、次数が正則素数である場合にフェルマーの最終定理が正しいことを証明した。

正則素数は無限に存在すると予想されている。
より正確には、e^?1/2 、つまり約 61% の素数が正則であると予想されている (Siegel, 1964)。
どちらの予想も、2009 年現在まだ証明されていない。

正則でない奇素数は非正則素数と呼ばれ、小さいものから順に
37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, … (A928)
と続く。
分子が p で割り切れるようなベルヌーイ数 Bk の個数は p の非正則指数と呼ばれる。K. L. ジェンセンは、1915年、非正則素数が無限に存在することを示した。
2020/02/10(月) 23:46:23.20ID:EaGEQ+Vz
https://agree.5ch.net/test/read.cgi/sec2chd/1580220578/354
どうやら板の管理人が見ていないようだ
板の管理人が見ている場所を知っている人がいたら教えて欲しい、もしくは代わりに取り次いで欲しい
2020/02/10(月) 23:47:59.50ID:mRVZ7FnM
>>79
>でもこれ、解が無い組み合わせを選んじゃったり、いちいち調べるのって考えてみただけで気絶です。
>なんとか手っ取り早く、1度で全部やっつけられる魔法の式とかって無いものでしょうか...

無いように思います
コンピュータプログラムでしらみつぶしでは?
おっと、量子コンピュータで一瞬かも・・、なーんちゃってw(^^;
100132人目の素数さん
垢版 |
2020/02/10(月) 23:55:50.79ID:dX3r24xT
反例まだ〜?

 ☆ チン マチクタビレタ〜
     マチクタビレタ〜
☆ チン  〃 ∧_∧
 ヽ___\(\・∀・)
  \_/ ⊂ ⊂_)
  / ̄ ̄ ̄ ̄ ̄ /|
 | ̄ ̄ ̄ ̄ ̄ ̄| |
 | 愛媛みかん |/
   ̄ ̄ ̄ ̄ ̄ ̄
101132人目の素数さん
垢版 |
2020/02/10(月) 23:56:18.34ID:dX3r24xT
証明のギャップまだ〜?

 ☆ チン マチクタビレタ〜
     マチクタビレタ〜
☆ チン  〃 ∧_∧
 ヽ___\(\・∀・)
  \_/ ⊂ ⊂_)
  / ̄ ̄ ̄ ̄ ̄ /|
 | ̄ ̄ ̄ ̄ ̄ ̄| |
 | 愛媛みかん |/
   ̄ ̄ ̄ ̄ ̄ ̄
102名無し ◆jPpg5.obl6
垢版 |
2020/02/11(火) 00:06:44.99ID:o60HFhOa
>>98
ごめんなさい!
変な書き込みばっかりしちゃって!
でも猿石さんの仕業ではないんです!
変な絵文字、顔文字嵐は猿石さんとは別人の「絵文字変態」こと、、、読みづらい、、、あの↑トリップの仕業なんです!
トリップも別なんですよ?
私は猿石さんではないんです!
粘着板違い嵐風ですけど!
いえ、嵐ですね!完全に!
じゃ必ず数板に書き込む時には
コテハンにしましょうか?

え?書き込むな?

ごもっとも!

お嫌なら、NGできるようにコテ専で書き込みますから。。。?
だめですか?
103132人目の素人さん
垢版 |
2020/02/11(火) 00:10:51.25ID:o60HFhOa
主様、天魔様、皆様、ごめんなさーいっ!

め〜とん君ごめんなさーいっ!
        
    。 ° *。゜(。ノД`)゜。
       ゴメンナサィ...サヨナラ...
104132人目の素数さん
垢版 |
2020/02/11(火) 00:16:19.12ID:o60HFhOa
 。* 。
 ナガイアイダ オセワニナリマシタ。°*。○。*°
。°○    *
みなさま お元気で 。○° *。
             。
*    。   ○。
2020/02/11(火) 00:18:33.67ID:gdPWLy3I
乙の間違いがクンマーレベルのわけないだろw
どこにでもいるトンデモと同じく初歩的なところで間違ってるに決まってる。
脳に損傷受けたくないから読まないけどw
2020/02/11(火) 00:26:05.95ID:gdPWLy3I
>>102-104
このひとなんでこの板に居ついちゃったのかね?
>>98は他スレにも書いてるし、必ずしもあなたのことを標的にしてるのではないのでは?
これまでも消えると言いいながら戻ってきてるから言うけど
板に書き込むときは、一呼吸おいて考えてから書き込みましょう。
なお返信は不要ですから。
2020/02/11(火) 01:00:00.45ID:gdPWLy3I
「箱入り無数目」の成立は、以前いた確率論の専門家らしきひとによると「自明」。
箱の中が変数とか考えなければね。
しかしその「自明」は数学科レベルでの自明であって、一般のひとからすると
むしろ非常に高度なパズルで、理解できないのが普通だろう。
直感の起源というのは人類が進化の過程で身に付けてきたものだろうけど
「無限個の箱」の現象など人類が経験してきたことではないから。
この話を他板でしたとしてもキョトンとされるだけだろう。
108132人目の素数さん
垢版 |
2020/02/11(火) 01:40:39.29ID:pez17n4y
数学の世界と現実世界を区別できないキチガイが不成立と騒いでいるだけですね。

例えば数学の世界では、実数列 s とその代表 r が与えられると直ちに決定番号 d が判ることになってるけど、
これには無限個の項を認知する能力が必要。その能力が無ければ「第 d 項から先すべて一致」なんて判らない訳だからね。
そんな能力の持ち主は現実世界にはいない。
逆にそんな神のような能力を認めるなら、キチガイのように拒絶反応する必要も無いんだけど(^^;
109132人目の素数さん
垢版 |
2020/02/11(火) 07:08:42.41ID:yCL40qf3
>>108
そもそも現実世界には無限個の箱はないだろ

あったとしても、実数の無限列s、s’に対して
「sとs’がある箇所から先一致する」
と判定する手続きがないだろ
(これ言い出すとそもそも尻尾の同値類が
 構成できないということになる)

で、上記の同値関係の判定ができたとしても
同値類の代表元r(s)を返す関数rが
具体的に構成できないだろ
(rは選択公理で存在が云えるだけのこと)
2020/02/11(火) 08:48:20.17ID:CB29Ozfy
>>97 追加

https://ocw.u-tokyo.ac.jp/lecture_files/gf_15/2/notes/ja/02saito.pdf
学術俯瞰講義 〜数学を創る〜 第2回 東京大学
Mathematics ‘‘On Campus’’
ことばを創り、世界を創る
2009.10.15
de Fermat. (1601.8.20-. 1665 1 12).1.12). フランスの. トゥールーズの人. 「数論の父」 ... フェルマーの最終定理before 1986. フェルマーの最終定理before 1986. ? 超有名で、. 歴史的に重要. ? 歴史的に重要. 代数的整数論の確立(クンマー) ...

http://www.kurims.kyoto-u.ac.jp/~kenkyubu/kokai-koza/yasuda.pdf
平成19年度(第29回)数学入門公開講座テキスト(京都大学数理解析研究所,平成19年7月30日〜8月2日開催)
R = T 定理の仕組みとその応用
安田 正大
この講座では, Fermat 予想の証明のために Wiles, Taylor-Wiles が確立した R = T 定理に関する最近の
発展と応用についてお話します.
この原稿は数学の専門家でない方を対象にして書かれており, 内容の正確さよりも, 大体の感じをつかん
でもらうことを目標としています. 読者に難解な印象を与えないようにするために, 専門家向けの文章では
許されないようなあいまいな表現の仕方をあえてしている部分があります.
1. Fermat 予想
19. 謝辞
草稿段階の本原稿に目を通してくださり, たくさんの有益な助言を下さいました山下剛さんに感謝いたし
ます.19

http://www7a.biglobe.ne.jp/~paco_poco/hakusouroku/pdf/43_fermat.pdf
43「フェルマーの最終定理」
とうとうフェルマーの最終定理について書く時が来た。
多分これまでに書いた中でも最も困難な挑戦になるだろう。
111132人目の素数さん
垢版 |
2020/02/11(火) 10:24:45.45ID:yCL40qf3
「確率論の専門家」も「ジム」も語らなかったこと

順序統計量
https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E7%B5%B1%E8%A8%88%E9%87%8F

「順序統計量(じゅんじょとうけいりょう、英: order statistic)は、
 統計において k 番目に小さい値である標本を求めることをいう。

 いま X1, X2,..., Xn は 無作為抽出での標本であるとする。
 すなわち、同一分布に従い、互いに独立 である(i.i.d.)とする。
 さらに、これらは連続分布を持つ確率変数であり、
 f (x) がその確率密度関数、F (x) が累積分布関数とする。
 また、これらを小さい順に並べた順序統計量を
 X(1), X(2),..., X(n) とする。

 このとき、最小値X_(1)、最大値X_(n)の累積分布関数については、

 F_X_(1)(x)=1-{1-F(x)}^n
 F_X_(n)(x)&={F(x)}^n

となる。」

 99個の標本の最大値F_X_(99)に対して、
 さらに1個とった標本が、より大きくなる確率は

 ∫F_X(99)(x)f(x)dx
=∫[F(x)]^99(dF(x)/dx)dx
=∫(0〜1)F^99dF
=1/100[F^100](0〜1)
=1/100
2020/02/11(火) 11:24:57.81ID:6xY3HAGO
>>109
>そもそも現実世界には無限個の箱はないだろ
>あったとしても、実数の無限列s、s’に対して
>「sとs’がある箇所から先一致する」
>と判定する手続きがないだろ
>(これ言い出すとそもそも尻尾の同値類が
> 構成できないということになる)

どうもスレ主です。
この考察は、良い線行っていると思う

1.”実数の無限列s、s’に対して「sとs’がある箇所から先一致する」と判定する手続きがないだろ”は、人間の能力の限界として正しいが
 これを認めると、コーシー列で定義された二つの異なる実数r,r' の区別が出来ないことになる
 なので、数学は思念として可能としている
 (所詮、人間は、無限を極限として、考えているにすぎないのかもしれないね)
2.同様に、物理的に無限個の箱はないとしても、数学界では思念上の形式的冪級数は存在し、形式的冪級数の係数を無限の箱と見れば良い
 (形式的冪級数も、結局はn次多項式のn→∞の極限として、考えているにすぎないのかもしれないね。コーシー列に同じ)

(参考)
https://ja.wikipedia.org/wiki/%E5%BD%A2%E5%BC%8F%E7%9A%84%E5%86%AA%E7%B4%9A%E6%95%B0
形式的冪級数

定義
A を可換とは限らない環とする。A に係数をもち X を変数(不定元)とする(一変数)形式的冪級数 (formal power series) とは、各 ai (i = 0, 1, 2, …) を A の元として、
Σn=0〜∞ anX^n=a0+a1X+a2X^2+・・・
の形をしたものである。
113132人目の素数さん
垢版 |
2020/02/11(火) 11:31:25.42ID:yCL40qf3
>>112
>コーシー列で定義された二つの異なる実数r,r' の区別が出来ない

rとr'の定義次第で、できるときもある

むしろ、ほとんど全ての実数は人力では構成不能、
という点のほうが重要かと思われ
2020/02/11(火) 11:32:28.34ID:6xY3HAGO
>>109
>で、上記の同値関係の判定ができたとしても
>同値類の代表元r(s)を返す関数rが
>具体的に構成できないだろ
>(rは選択公理で存在が云えるだけのこと)

(>>22より)
可算無限数列 s=(s1,s2,・・sd,sd+1・・)に対し
s自身を代表としても良い
代表は、単に
一つの同値類から、一つを選ぶだけで良いので
あるいは、s自身がいやなら、先頭の数字を少し変化させて
s=(s'1,s'2,・・sd,sd+1・・)
とでもしておけば、良い

フルパワー選択公理は必要なのは、
非可算無限存在する同値類の各々全部から、代表を選ぶときですね
2020/02/11(火) 11:36:32.02ID:6xY3HAGO
>>113
>むしろ、ほとんど全ての実数は人力では構成不能、
>という点のほうが重要かと思われ

それ同意です
実際、おっちゃんが研究して、オイラー定数γは、有理数ではないかというが
現実に、現代の数学でも未解決問題

もし、人間に任意の無限数列のシッポを見極める能力があれば、
有理数か無理数かを、判定可能のはずですからね(^^
116132人目の素数さん
垢版 |
2020/02/11(火) 11:41:08.14ID:yCL40qf3
>>114
回答者は箱を開けた中身がどんな列か予測できないので
The Riddleで100人の回答者が共通の代表元を選ぶとするなら
全ての同値類の代表元をあらかじめ決める必要がありますね
そのための選択公理ということです

100人の回答者が共通の代表元を選べない、というなら
選択公理は成立しないことになりますね
2020/02/11(火) 11:42:47.34ID:6xY3HAGO
>>111
>「確率論の専門家」も「ジム」も語らなかったこと
>順序統計量
https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E7%B5%B1%E8%A8%88%E9%87%8F

うん
それも良い考察ですね

一つ指摘しておけば
分布を積分したときに、∞に発散する場合には、数学的扱いが難しくなるってことです
そして、時枝さんに戻せば、決定番号dについて、積分ができない
いや、正確には、箱に入れる数を、0〜9の整数に限り、箱の数nを有限にすれば、積分(この場合和)は可能です
しかし、上記でもn→∞ では、発散してしまう
2020/02/11(火) 11:46:13.96ID:6xY3HAGO
>>116
>The Riddleで100人の回答者が共通の代表元を選ぶとするなら
>全ての同値類の代表元をあらかじめ決める必要がありますね

代表を決定する人を一人立てれば良い
その人は、可算無限数列をもらって、同値類と代表を一つ返す(まあ、関数みたいな役割です)
その人は、それだけを仕事とする。それ以外の一切の情報を出さないとすれば
100人の回答者の得る代表は、一意に決まる
2020/02/11(火) 11:47:20.46ID:6xY3HAGO
>>118 補足

>その人は、それだけを仕事とする。それ以外の一切の情報を出さないとすれば

100人の間の情報連絡役にはならないという意味ね(^^
120132人目の素数さん
垢版 |
2020/02/11(火) 11:55:07.68ID:pez17n4y
>>114
時枝戦略では選択公理が必要
不定な代表からは情報をもらえないから
分かってないバカは黙ってろ
121132人目の素数さん
垢版 |
2020/02/11(火) 11:55:57.46ID:pez17n4y
反例まだ〜?

 ☆ チン マチクタビレタ〜
     マチクタビレタ〜
☆ チン  〃 ∧_∧
 ヽ___\(\・∀・)
  \_/ ⊂ ⊂_)
  / ̄ ̄ ̄ ̄ ̄ /|
 | ̄ ̄ ̄ ̄ ̄ ̄| |
 | 愛媛みかん |/
   ̄ ̄ ̄ ̄ ̄ ̄
122132人目の素数さん
垢版 |
2020/02/11(火) 11:56:15.69ID:pez17n4y
証明のギャップまだ〜?

 ☆ チン マチクタビレタ〜
     マチクタビレタ〜
☆ チン  〃 ∧_∧
 ヽ___\(\・∀・)
  \_/ ⊂ ⊂_)
  / ̄ ̄ ̄ ̄ ̄ /|
 | ̄ ̄ ̄ ̄ ̄ ̄| |
 | 愛媛みかん |/
   ̄ ̄ ̄ ̄ ̄ ̄
123132人目の素数さん
垢版 |
2020/02/11(火) 11:58:24.02ID:yCL40qf3
>>117
ここでは標本は箱ではなく列とします
この場合、列の数は有限ですから無限はでてきません

決定番号の確率分布関数は定義できませんが
決定番号0の確率を基準として
決定番号1,2,3、・・・の各場合の確率を比として表すことは可能です

そしてこのような関数で代用した場合の計算を行った場合
100列の場合は1/100以下になると思われます
124132人目の素数さん
垢版 |
2020/02/11(火) 12:00:14.46ID:yCL40qf3
>>118
>代表を決定する人を一人立てれば良い

そのような人が存在し得る、というのが選択公理です
125132人目の素数さん
垢版 |
2020/02/11(火) 12:11:02.36ID:yCL40qf3
箱に入れる数を、0〜9の整数に限るとします

そのとき
・決定番号n+1以下の確率は
 決定番号n以下の確率の10倍

2列とる場合
・決定番号の最大値がn+1以下の確率P[n+1]は
 決定番号の最大値がn以下の確率P[n]の10^2=100倍

なぜなら
 P[n+1]
=P[n]+2*9*P[n]+9*9*P[n]
=(1+18+91)P[n]
=100P[n]
だから

(2番目の項は1列目だけもしくは2列目だけ決定番号がn+1の場合
 3番目の項は1列目および2列目の決定番号がn+1の場合)
126132人目の素数さん
垢版 |
2020/02/11(火) 12:13:17.00ID:pez17n4y
>>117
決定番号の非可測性は時枝戦略を否定する材料にならない。
もし「100列のうちのある列がアタリである確率」が必要なら材料になるが。
自称確率論の専門家はそこを誤解している。
127132人目の素数さん
垢版 |
2020/02/11(火) 12:14:42.63ID:yCL40qf3
>>125
訂正 91→81

−−−
箱に入れる数を、0〜9の整数に限るとします

そのとき
・決定番号n+1以下の確率は
 決定番号n以下の確率の10倍

2列とる場合
・決定番号の最大値がn+1以下の確率P[n+1]は
 決定番号の最大値がn以下の確率P[n]の10^2=100倍

なぜなら
 P[n+1]
=P[n]+2*9*P[n]+9*9*P[n]
=(1+18+81)P[n]
=100P[n]
だから

(2番目の項は1列目だけもしくは2列目だけ決定番号がn+1の場合
 3番目の項は1列目および2列目の決定番号がn+1の場合)
2020/02/11(火) 12:15:12.71ID:gdPWLy3I
多分、この工学バカは100列の中身を見て代表元を作る第3者がいれば
100列だけの代表元だけで事足りるって言いたいんじゃないかな。
でもさ、そんな第3者がいたとして、そのひとは箱の中身を全部見てるんだから
その情報使えば当てられるのはますます当たり前ってことになるよね。
ほんとバカだね。
129132人目の素数さん
垢版 |
2020/02/11(火) 12:19:47.84ID:yCL40qf3
>>128
100列を定数とするならそういう考え方もありますね
その場合、数セミの記事は無条件で成立することになりますね
130132人目の素数さん
垢版 |
2020/02/11(火) 12:34:41.22ID:pez17n4y
仲間にカンニングさせれば当てられますってかw バカ丸出しですなw
2020/02/11(火) 12:43:53.57ID:gdPWLy3I
そんな第3者がいれば当てられるのは当たり前。
しかし選択公理は実はそれと同じ役割をしている。
だから、時枝解法成立は当たり前ってことにしかならないから自爆w
2020/02/11(火) 12:50:58.32ID:gdPWLy3I
多分、第3者が...って話は時枝解法と選択公理の役割にケチをつけようと
思って言い始めたんだろうけど、結局当てられるはますます当たり前
ってことにしかならないのがバカ。
2020/02/11(火) 13:09:45.78ID:6xY3HAGO
>>117
分布の話は、両名とも書かれています(下記)

確率論の専門家さん
スレ20 https://rio2016.5ch.net/test/read.cgi/math/1466279209/532
532 2016/07/03 ID:f9oaWn8A
>2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ
残念だけどこれが非自明.
hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう

ジムさん
スレ80 https://rio2016.5ch.net/test/read.cgi/math/1578091012/237-238
(抜粋)
237 2020/01/10 ID:jmw8DMZb
標本空間上の関数として選択公理を仮定する限り存在する。
選択公理でできた関数は使ってはいかないみたいな意見があるがそんなはずはない。
あるのは選択公理下では否定できない。
では何がダメか。
それはそれらの関数が単なる標本空間上のデタラメな関数ではダメでそれが可測関数にならないといけない事を無視しているから。
そもそも確率論において
P(xxx|yyy)
のxxx,yyyのとこには何を書いてもいいわけではなくそこにはそれらをみたす標本空間上のなす集合が可測集合になるようなものしか許されない。
したがって今回で言えばd(x)のようなものが可測関数として定義できているかが第一の問題。

238 2020/01/10(金) ID:jmw8DMZb
まず時枝先生の記事の方法ではダメ。
記事の方法ではxやyをある番号以降全部開けてその値に応じて戦略を決定している。
つまり全事象をC(x)やC(y)などに応じて決定している事になるが、これだと全事象を非可算無限個に分割して定義している事になる。
しかしこのようにして定義された関数は一般には可測関数にならない。
場合わけして定義するのは構わないが、その時には可測な高々可算無限個までにわけて、その各々で可測関数として定義されている場合でなければ一般には標本空間上のただの関数でしかなく、可測集合の構成に利用できるような可測関数になるかどうかはわからない。
よって時枝戦略で重要な意味を持つd(x)などの関数はこのままでは可測関数になるかどうかはわからない
可測関数でなければそもそも確率そのものが定義できない
ココが議論の第一点
しかしコレからジムに遊びに行くので続きはまた今度
134132人目の素数さん
垢版 |
2020/02/11(火) 13:10:44.37ID:yCL40qf3
>>132
なんか、選択公理を否定したら数学全否定になると思ってるのかな?
でも、否定されるのは非可算選択公理であって、
可算選択公理は認めるとすれば、通常の数学は
大概問題ないけどなあ
135132人目の素数さん
垢版 |
2020/02/11(火) 13:12:29.38ID:yCL40qf3
>>133
順序統計について、両名とも一切語ってませんね
2020/02/11(火) 13:17:42.42ID:6xY3HAGO
>>123
>ここでは標本は箱ではなく列とします
>この場合、列の数は有限ですから無限はでてきません

だから、それがトリックでしょ
例えば、A国、B国、C国としましょうか

数学の試験をして、採点は1点刻みで、平均点は整数丸めとして、その国の代表を平均点を取った人から選ぶ
その国の受験者数が多ければ、平均点を取った人も多数います。だれになるか分からない

でも、代表は一人選ぶ、なんらかの方法で
A国aさん、B国bさん、C国cさん

でも、それがトリックでしょ
2020/02/11(火) 13:20:49.16ID:6xY3HAGO
>>124
>そのような人が存在し得る、というのが選択公理です

そのような人の能力が、
・非可算の集合族からでも選ぶことが可能というのが、フルパワー選択公理
・可算の集合族からでも選ぶことが可能というのが、可算選択公理
・有限の集合族からでも選ぶことが可能というのが、有限選択公理(公理の取り方によっては、他の公理から証明できる場合もある)
138132人目の素数さん
垢版 |
2020/02/11(火) 13:23:20.81ID:pez17n4y
>>133
>そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう
はい、言えません
言えなくていいんですw
バカには分からないだけ(^^;
2020/02/11(火) 13:24:45.72ID:6xY3HAGO
>>125
そうそう、その考察いいですね

”・決定番号n+1以下の確率は
 決定番号n以下の確率の10倍”

同意ですが
確率というより、場合の数でしょうね

”2列とる場合
・決定番号の最大値がn+1以下の確率P[n+1]は
 決定番号の最大値がn以下の確率P[n]の10^2=100倍”

これ、合っていると思うが
細かい前提が不明です。2列だと決定番号はd1,d2とか二つ出ますよね
140132人目の素数さん
垢版 |
2020/02/11(火) 13:33:46.00ID:pez17n4y
>>133
>よって時枝戦略で重要な意味を持つd(x)などの関数はこのままでは可測関数になるかどうかはわからない
はい、非可測です。
非可測でいいんですw
バカには分からないだけ(^^;
141132人目の素数さん
垢版 |
2020/02/11(火) 13:37:10.90ID:pez17n4y
反例まだ〜?

 ☆ チン マチクタビレタ〜
     マチクタビレタ〜
☆ チン  〃 ∧_∧
 ヽ___\(\・∀・)
  \_/ ⊂ ⊂_)
  / ̄ ̄ ̄ ̄ ̄ /|
 | ̄ ̄ ̄ ̄ ̄ ̄| |
 | 愛媛みかん |/
   ̄ ̄ ̄ ̄ ̄ ̄
142132人目の素数さん
垢版 |
2020/02/11(火) 13:37:27.40ID:pez17n4y
証明のギャップまだ〜?

 ☆ チン マチクタビレタ〜
     マチクタビレタ〜
☆ チン  〃 ∧_∧
 ヽ___\(\・∀・)
  \_/ ⊂ ⊂_)
  / ̄ ̄ ̄ ̄ ̄ /|
 | ̄ ̄ ̄ ̄ ̄ ̄| |
 | 愛媛みかん |/
   ̄ ̄ ̄ ̄ ̄ ̄
2020/02/11(火) 13:42:03.42ID:6xY3HAGO
>>126
>決定番号の非可測性は時枝戦略を否定する材料にならない。

同意です
時枝さんの書いているヴィタリの話は、各同値類の代表全部から成る集合の非可測性で
実際に数当てパズルに使うのは、有限個ですから、代表全部に対する測度うんぬんは、無関係と考えています

>自称確率論の専門家はそこを誤解している。

1.自称ではなく、確率論の専門家は私が勝手に付けた。かつ、「確率論の専門家さん」と”さん”を付けるのが、私の流儀です
2.「確率論の専門家さん」のいうのは、ジムさんと同じで、関数としての可測 or 非可測です。ヴィタリ類似の話とは微妙に異なる
 ヴィタリでは0も∞も含めて、如何なる測度も与えられない
 ですが、単に可測で良いなら、N(自然数全体)やR(実数全体)に、∞としての測度を与えることは可能です
 ジムさんも書いているが、確率論として扱うには、P(Ω)=1 かつ、A∈FでP(A)=p  0<=p<=1 でなければならない
3.確率理論としては、∞として測度を与えて、その上で、P(Ω)=1 かつ、A∈FでP(A)=p  0<=p<=1 の確率論が構築できるか?
 そういうことを、考えたのたが、コルモゴロフさんでしょ
2020/02/11(火) 13:44:51.39ID:6xY3HAGO
>>140
>>よって時枝戦略で重要な意味を持つd(x)などの関数はこのままでは可測関数になるかどうかはわからない
>はい、非可測です。
>非可測でいいんですw

それは違うんじゃない?
ww(^^;
2020/02/11(火) 13:49:07.49ID:6xY3HAGO
>>134

(引用開始)
なんか、選択公理を否定したら数学全否定になると思ってるのかな?
でも、否定されるのは非可算選択公理であって、
可算選択公理は認めるとすれば、通常の数学は
大概問題ないけどなあ
(引用終り)

殆ど同意ですよ
選択公理は否定していません
使っていい
但し、時枝戦略に限れば、フルパワーを必要としていないというだけ
だから、”選択公理”を強調するのは、「いかにもパラドックスが起きるぞ」という、雰囲気づくりの意味でしかないよねと
2020/02/11(火) 13:53:17.58ID:6xY3HAGO
>>135
>順序統計について、両名とも一切語ってませんね

順序統計について、ベースの順序集合が、有限でないと、理論的扱いは難しい
例えば、自然数全体Nを考えると、ある有限のn∈Nで、自然数全体Nの前半分(前半)に来る確率は?
確率0ですよね
これ、時枝のトリックの一つですね
2020/02/11(火) 13:55:26.20ID:6xY3HAGO
>>146 訂正

例えば、自然数全体Nを考えると、ある有限のn∈Nで、自然数全体Nの前半分(前半)に来る確率は?
確率0ですよね
 ↓
例えば、自然数全体Nを考えると、ある有限のn∈Nで、自然数全体Nの後ろ半分(後半)に来る確率は?
確率0ですよね

 
148132人目の素数さん
垢版 |
2020/02/11(火) 13:55:40.11ID:pez17n4y
>>143
>実際に数当てパズルに使うのは、有限個ですから、代表全部に対する測度うんぬんは、無関係と考えています
いいえ、すべての代表を使います。
不定な代表からは情報をもらえませんから。
非可算選択公理は必須です。
149132人目の素数さん
垢版 |
2020/02/11(火) 13:56:45.29ID:pez17n4y
>>144
なにが違うと?
2020/02/11(火) 13:56:46.78ID:gdPWLy3I
>>145
>但し、時枝戦略に限れば、フルパワーを必要としていないというだけ

いやいや、出題者がR^Nの中から自由に出題できるなら、"必ず"解法が成立する
というためには、あなたの言うところの"フルパワー"の選択公理が必要ですよ。
そんなことも分からんの?
2020/02/11(火) 13:58:03.61ID:6xY3HAGO
>>147 補足

間違った
普通の順序
0<1<2・・・<n<n+1<・・・
を入れると
有限の数nは、自然数N全体の前半に来ますから

例えば、自然数全体Nを考えると、ある有限のn∈Nで、自然数全体Nの前半分(前半)に来る確率は?
確率1ですね

でも、こういう素朴な確率が、正当化できるかどうかは、大きな問題なのです(^^;
152132人目の素数さん
垢版 |
2020/02/11(火) 13:59:36.42ID:pez17n4y
>>145
>但し、時枝戦略に限れば、フルパワーを必要としていないというだけ
いいえ、必須です

>だから、”選択公理”を強調するのは、「いかにもパラドックスが起きるぞ」という、雰囲気づくりの意味でしかないよねと
うわぁ 恥ずかしいこと言ってるなあ
あなた数学のすの字も分かってないですね(^^;
2020/02/11(火) 14:01:03.82ID:6xY3HAGO
>>150
>いやいや、出題者がR^Nの中から自由に出題できるなら、"必ず"解法が成立する
>というためには、あなたの言うところの"フルパワー"の選択公理が必要ですよ。

必要ないでしょ
2列なら、代表2つで済む
100列なら、代表100個で済む

代表を決めるタイミングは、後にずらすことは、理論上可能ですよ
154132人目の素数さん
垢版 |
2020/02/11(火) 14:02:51.13ID:pez17n4y
>>146
>これ、時枝のトリックの一つですね
はぁ? なにアホなこと言ってんの?
2020/02/11(火) 14:05:23.99ID:gdPWLy3I
>>153
まだ言ってるバカ。学習しないバカ。
第3者が出題された後に「カンニング」して代表元を作ればねw
でも、時枝解法にそんな前提はありませんね。
156132人目の素数さん
垢版 |
2020/02/11(火) 14:07:07.81ID:pez17n4y
>>151
>でも、こういう素朴な確率が、正当化できるかどうかは、大きな問題なのです(^^;
それ、時枝戦略とは関係ありません。
時枝戦略では100個の(重複を許す)自然数しか扱いませんので。
157132人目の素数さん
垢版 |
2020/02/11(火) 14:08:14.95ID:pez17n4y
>>153
>代表を決めるタイミングは、後にずらすことは、理論上可能ですよ
不可能です
不定な代表から情報はもらえませんから
158132人目の素数さん
垢版 |
2020/02/11(火) 14:12:22.07ID:pez17n4y
>>153
100列だけ代表を決めようとすれば、その100列が分かった後、つまり箱を開けた後でないと決められない。
しかし箱を開けたらそもそも数当てゲームにならないw
バカ過ぎw
2020/02/11(火) 14:12:30.15ID:gdPWLy3I
だいたい、誰も開けてない箱の中身を当てるから驚きがあるんで
誰かがカンニングした後で情報もらって当てられるというなら
当たり前だな〜ということにしかならない。
しかも◆e.a0E5TtKE の主張したい「当てられない」ということとは
真逆の結果になるだけw
2020/02/11(火) 14:32:12.61ID:gdPWLy3I
第3者が代表元を作る際、すべての箱を開ける必要はない。
しかし、第3者が開封済の箱を解答者が再び開けてはならないという法はない。
第3者が代表元100列を作ったあとで時枝解法を実行すると
解答者は第3者が開封済で代表元と一致させた番号の箱を
99/100の確率で選ぶことになるだけですね。
2020/02/11(火) 14:34:49.72ID:gdPWLy3I
>第3者が開封済の箱を解答者が再び開けてはならないという法はない。

第3者が開封済の箱を解答者が開けずに当てる箱として残してはならないという法はない。
162132人目の素数さん
垢版 |
2020/02/11(火) 14:35:03.18ID:pez17n4y
>>153
s^kのD+1番目以降の箱を開けてはじめてr^kを決められるが、r^kのD以前の項はどうやって決めるの?
当てずっぽうで決めたらs^kのD項目も当てずっぽうでしか数当てできないよ?
バカ?
163132人目の素数さん
垢版 |
2020/02/11(火) 14:37:33.44ID:pez17n4y
>>162の状況を「不定な代表からは情報をもらえない」と表現してるんだが、バカには理解できないみたいだねw
164132人目の素数さん
垢版 |
2020/02/11(火) 14:44:27.68ID:pez17n4y
ていうかこんな簡単なことさえ理解せずに「選択公理不要」と言い続けてる時点で、時枝戦略をまったく理解してないと白状してるのと同じことw
しかしサイコパスだからスレ閉鎖の約束も守らない
ほんとクズだね
165132人目の素数さん
垢版 |
2020/02/11(火) 14:50:08.18ID:pez17n4y
バカは許す
しかし嘘・捏造・詐欺・約束違反の類は許さない
これら悪質行為は徹底的に叩く
2020/02/11(火) 15:14:48.75ID:Ft3PUJtH
おっちゃんです。
>>54
>>40-41のCase2、Case3の議論は間違っている。
それらを軌道修正して、訂正すれば問題ないとは思う。
Case3の議論は、Case2のような議論に帰着される。
167132人目の素数さん
垢版 |
2020/02/11(火) 15:23:05.28ID:pez17n4y
こんな初歩の初歩も分らんバカが反例だの証明のギャップだのとw
バカ過ぎw
2020/02/11(火) 15:27:47.01ID:Ft3PUJtH
或る3以上の整数nが存在して、何れも或る3つの正整数 x、y、z が存在して、x^n+y^n=z^n が成り立つとする。
Euclid 平面 R^2 上の半径1の円周をCで表す。
仮定から、nは3以上の整数だから、仮定で成り立つとした等式 x^n+y^n=z^n から、
3つの正整数 x、y、z の大小関係について、0<x<z、0<y<z が両方共に成り立つ。
仮定から x、y、z は何れも有理整数だから、x、y、z∈Z。また、有理数体Qは有理整数環Zの商体だから、Z⊂Q。
よって、z>0 から、x/z、y/z∈Q。0<x<z だから、0<x/z<1。同様に、0<y<z だから、0<y/z<1。
平面 R^2 上で点 A(x/z,y/z) と原点 O(0,0) とを結ぶ線分と、x軸正方向とのなす角をθとする。
0<x/z<1、0<y/z<1 が両方共に成り立つから、0<θ<π/2 である。
平面 R^2 上の半径1の円周上には、a^2+b^2=1、0≦|a|≦1、0≦|b|≦1 を何れも満たしているような有理点 (a,b) が稠密に分布する。
逆に、a^2+b^2=1、0≦|a|≦1、0≦|b|≦1 を何れも満たしているような有理点 (a,b) は、すべて平面 R^2 上の半径1の円周上に存在する。
このことに注意して、有理点 A(x/z,y/z) が存在する位置について場合分けをする。
Case1):平面 R^2 上の半径1の円周上に有理点 A(x/z,y/z) は存在するとき。
0<x/z<1、0<y/z<1 から、確かに平面 R^2 上の半径1の円周上に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2=1 を満たすことになる。
θの定義と 0<θ<π/2、0<x/z<1 から、cos(θ)=x/z。同様に、θの定義と 0<θ<π/2、0<y/z<1 から、sin(θ)=y/z。
仮定において成り立つとした等式 x^n+y^n=z^n から、(x/z)^n+(y/z)^n=1。よって、cos^n(θ)+sin^n(θ)=1 となる。
しかし、仮定から n≧3 であり、0<θ<π/2 から 0<cos(θ)=x/z<1、0<sin(θ)=y/z<1 だから、
0<cos^n(θ)+sin^n(θ)<1 から cos^n(θ)+sin^n(θ)≠1 となって矛盾が生じる。
2020/02/11(火) 15:30:14.52ID:Ft3PUJtH
(>>168の続き)
Case2):平面 R^2 上の半径1の円周で囲まれた円の中に有理点 A(x/z,y/z) が存在するとき。
このとき、確かに平面 R^2 上の半径1の円周で囲まれた円の中に有理点 A(x/z,y/z) は存在して、(x/z)^2+(y/z)^2<1 を満たす。
3つの正整数x、y、zについて、0<x<z かつ 0<y<z なることと 0<x/z<1 かつ 0<y/z<1 こととは同値である。
また、確かに 0<x/z<1 かつ 0<y/z<1 である。よって、確かに平面 R^2 上の半径zの円周で囲まれた円の中に
有理点 B(x,y) は存在し、x^2+y^2<z^2 を満たす。0<x<z、0<y<z から、平面 R^2 上において、
3点 O(0,0)、A(x/z,y/z)、B(x,y) はその順に一直線上に並んでいるから、
θの定義と 0<θ<π/2、0<x/z<1 から、或る1より大きい実数rが存在して、cos(θ)=(rx)/z。
このとき、同様に考えると、θの定義と 0<θ<π/2、0<y/z<1 から、sin(θ) はrを用いて sin(θ)=(ry)/z と表わされる。
よって、cos^2(θ)+sin^2(θ)=1 から、(x/z)^2+(y/z)^2=(1/r)^2 となる。
故に、r>1 から (x/z)^2+(y/z)^2<1。仮定から n≧3 だから、(x/z)^n+(y/z)^n<1。
しかし、これは仮定で等式 (x/z)^n+(y/z)^n=1 が成り立つと仮定したことに反し矛盾が生じる。
170132人目の素数さん
垢版 |
2020/02/11(火) 15:30:24.18ID:yCL40qf3
>>145
>順序統計について、ベースの順序集合が、有限でないと、理論的扱いは難しい

確率分布関数、累積分布関数が考えられるなら
順序集合(分布の範囲)は無限でも問題ない

>例えば、自然数全体Nを考えると、ある有限のn∈Nで、
>自然数全体Nの前半分(前半)に来る確率は?

「半分」? 「n以下の確率」の意味?

>確率0ですよね

分布によるが、0でない場合は当然ある

https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E5%88%86%E5%B8%83
171132人目の素数さん
垢版 |
2020/02/11(火) 15:32:26.11ID:yCL40qf3
>>146-147
>順序統計について、ベースの順序集合が、有限でないと、理論的扱いは難しい

確率分布関数、累積分布関数が考えられるなら
順序集合(分布の範囲)は無限でも問題ない

>例えば、自然数全体Nを考えると、ある有限のn∈Nで、
>自然数全体Nの前半分(前半)に来る確率は?

「半分」? 「n以下の確率」の意味?

>確率0ですよね

分布によるが、0でない場合は当然ある

https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E5%88%86%E5%B8%83
2020/02/11(火) 15:32:42.24ID:Ft3PUJtH
(>>169の続き)
Case3):平面 R^2 上の半径1の円周で囲まれた円の外側に有理点 A(x/z,y/z) が存在するとき。
このとき、確かに平面 R^2 上の半径1の円周で囲まれた円の外側に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2>1 を満たす。
よって、x^2+y^2>z^2 を得る。故に、平面 R^2 上の半径zの円周で囲まれた円の外側に有理点 B(x,y) は存在する。
3つの正整数x、y、zについて、0<x<z かつ 0<y<z なることと 0<x/z<1 かつ 0<y/z<1 こととは同値である。
また、確かに 0<x<z かつ 0<y<z だから、x^2+y^2<4z^2。よって、x^2+y^2<(2z)^2 から ( x/(2z) )^2+( y/(2z) )^2<1 を得る。
zは正整数だから、2zは正整数である。よって、有理点 C(x/(2z),y/(2z)) は平面 R^2 上の半径1の円周で囲まれた円の中に存在する。
3つの正整数x、y、2zについて、0<x<2z かつ 0<y<2z なることと 0<x/(2z)<1 かつ 0<y/(2z)<1 なることとは同値である。
また、確かに 0<x<2z かつ 0<y<2z である。よって、確かに 0<x/(2z)<1 かつ 0<y/(2z)<1 である。
平面 R^2 上において、4つの有理点 O(0,0)、C(x/(2z),y/(2z))、A(x/z,y/z)、B(x,y) はその順に一直線上に並んでいるから、
(x/(2z))^2+(y/(2z))^2<1 に注意すると、θの定義と 0<θ<π/2、0<x/(2z)<1 から、
或る2より大きい実数sが存在して、cos(θ)=(sx)/(2z)。このとき、同様に考えると、θの定義と 0<θ<π/2、0<y/(2z)<1 から、
sin(θ) はsを用いて sin(θ)=(sy)/(2z) と表わされる。よって、cos^2(θ)+sin^2(θ)=1 から、(x/z)^2+(y/z)^2=(2/s)^2 を得る。
故に、s>2 から (x/z)^2+(y/z)^2<1。仮定から n≧3 だから、(x/z)^n+(y/z)^n<1。
しかし、これは仮定で等式 (x/z)^n+(y/z)^n=1 が成り立つと仮定したことに反し矛盾が生じる。
Case1)、Case2)、Case3)から、有理点 A(x/z,y/z) が存在し得る位置について、何れの場合においても矛盾が生じる。
背理法が適用出来るから、背理法を適用すれば、どんな3以上の整数nに対しても、x^n+y^n=z^n を満たす3つの正整数x、y、zは存在しない。
173132人目の素数さん
垢版 |
2020/02/11(火) 15:34:26.19ID:yCL40qf3
>>151
>普通の順序
>0<1<2・・・<n<n+1<・・・
>を入れると
>有限の数nは、自然数N全体の前半に来ます

前半、後半はどこで分かるんですか?
数学では、そういう言い方はしないですよ
174132人目の素数さん
垢版 |
2020/02/11(火) 15:38:10.19ID:yCL40qf3
>>139
>>”2列とる場合
>>・決定番号の最大値がn+1以下の確率P[n+1]は
>> 決定番号の最大値がn以下の確率P[n]の10^2=100倍”

>細かい前提が不明です。2列だと決定番号はd1,d2とか二つ出ますよね

「決定番号の最大値」と書いてますから細かい前提まで明らかですね
d1、d2のうち大きい方が最大値
175132人目の素数さん
垢版 |
2020/02/11(火) 15:45:09.31ID:yCL40qf3
離散確率分布あるいは離散的な関数で考える場合
積分・微分の代わりに和分・差分を使う必要がある

その場合、
最大値をとる変数が2つ以上になる確率が0より大きくなる場合があるので、
99個中の最大値より最後の値が大きくなる確率が1/100という
綺麗な結果にならない(1/100より小さくなる)

積分の値が1でない場合も有限であれば
 ∫F_X(99)(x)f(x)dx
=∫F(x)^99(dF(x)/dx)dx
=∫F^99dF
=1/100[F^100]
までは出ますね
176132人目の素数さん
垢版 |
2020/02/11(火) 15:54:08.24ID:yCL40qf3
「箱入り無数目」の場合、
決定番号別の確率を考えることはできない

確率の代わりに頻度(全体が∞)を考えるとしても
積分値を∞としないために、上限Dをもうけて積分を打ち切る必要がある

逆に言うと∞を無理矢理1、有限値を無理矢理0とすると
「任意のn個についてn個の確率変数の最大値よりも
 あらたな1個の確率変数の値が上回る確率は1」
とかいうおかしな結果がでるが、この場合、そもそも
可算加法性を有しないので、積分を考えることができない
■ このスレッドは過去ログ倉庫に格納されています
5ちゃんねるの広告が気に入らない場合は、こちらをクリックしてください。

ニューススポーツなんでも実況