pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
x^p+y^p=z^pをz=x+rとおいて、x^p+y^p=(x+r)^pとする。
r=p^{1/(p-1)}となるので、x^p+y^p=(x+p^{1/(p-1)})^p=z^pとなる。
xを有理数とすると、zは無理数となる。
∴x^p+y^p=z^pは自然数解を持たない。
探検
フェルマーの最終定理の簡単な証明
■ このスレッドは過去ログ倉庫に格納されています
1日高
2019/09/23(月) 09:33:36.12ID:HXbAy1I+512132人目の素数さん
2019/10/17(木) 17:55:34.47ID:aG36qt64 >>511
証明してください
証明してください
513日高
2019/10/17(木) 18:17:39.54ID:fkycjhVi >A=r^(p-1), C=p なら A=C をあなたは主張してるんですよね?
そうです。
>証明してください
AB=CDならば、A=Cのとき、B=Dとなるからです。
そうです。
>証明してください
AB=CDならば、A=Cのとき、B=Dとなるからです。
514132人目の素数さん
2019/10/17(木) 18:20:53.06ID:aG36qt64 >>513
A=C を証明してください
A=C を証明してください
515132人目の素数さん
2019/10/17(木) 19:02:33.77ID:hr7fAGlT >>証明してください
>AB=CDならば、A=Cのとき、B=Dとなるからです。
ああ! 何というアフォだろう。
>>証明してください
>AB=CDならば、A=Cのとき、B=Dとなるからです。
ああ! 何というアフォだろう。
>>証明してください
>AB=CDならば、A=Cのとき、B=Dとなるからです。
ああ! 何というアフォだろう。
>AB=CDならば、A=Cのとき、B=Dとなるからです。
ああ! 何というアフォだろう。
>>証明してください
>AB=CDならば、A=Cのとき、B=Dとなるからです。
ああ! 何というアフォだろう。
>>証明してください
>AB=CDならば、A=Cのとき、B=Dとなるからです。
ああ! 何というアフォだろう。
516ニセ日高
2019/10/17(木) 19:28:18.84ID:U7cIfyq5 どの部分がアフォなのかを、教えていただけないでしょうか。
ケケケ…
ケケケ…
517日高
2019/10/17(木) 20:29:08.97ID:fkycjhVi >A=C を証明してください
AB=CDならば、A=Cのとき、B=Dとなる。
A=3, B=4, C=2*a, D=6*1/a
3*4=(2*a)(6*1/a)ならば、
3=2*aのとき、4=6*1/aとなる。
a=3/2となります。
AB=CDならば、A=Cのとき、B=Dとなる。
A=3, B=4, C=2*a, D=6*1/a
3*4=(2*a)(6*1/a)ならば、
3=2*aのとき、4=6*1/aとなる。
a=3/2となります。
518132人目の素数さん
2019/10/17(木) 20:38:31.81ID:ERvRYA0a クソスレ
519132人目の素数さん
2019/10/17(木) 21:07:55.26ID:aG36qt64 >>517
A=C のときどうなるかは今のところどうでもいいので、A=C を証明してください
A=C のときどうなるかは今のところどうでもいいので、A=C を証明してください
520132人目の素数さん
2019/10/17(木) 21:32:54.71ID:ZLbYtnEr 糖質相手にしても時間の無駄
521132人目の素数さん
2019/10/17(木) 22:14:02.00ID:hr7fAGlT 相対性理論は間違いだったというアフォといい勝負だな(笑)
522日高
2019/10/18(金) 06:42:42.95ID:I0wlpDZ5 >A=C のときどうなるかは今のところどうでもいいので、A=C を証明してください
AB=CDならば、A=Cのとき、B=Dとなる。ので、
r^(p-1)=pのとき、{(y/r)^p-1}=(x^(p-1)+…+r^(p-2)x)となる。
これしか、いえません。
AB=CDならば、A=Cのとき、B=Dとなる。ので、
r^(p-1)=pのとき、{(y/r)^p-1}=(x^(p-1)+…+r^(p-2)x)となる。
これしか、いえません。
523日高
2019/10/18(金) 06:44:43.81ID:I0wlpDZ5 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
524132人目の素数さん
2019/10/18(金) 06:52:35.09ID:1cEZHsWB >>522
では証明になってません
では証明になってません
525132人目の素数さん
2019/10/18(金) 07:19:27.23ID:QYvSGR07 > r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
> Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、
ああ・・・・・何というアフォだろうか。
また今日もムダなレスが繰り返されるのか。
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
> Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、
ああ・・・・・何というアフォだろうか。
また今日もムダなレスが繰り返されるのか。
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
> Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、
ああ・・・・・何というアフォだろうか。
また今日もムダなレスが繰り返されるのか。
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
> Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、
ああ・・・・・何というアフォだろうか。
また今日もムダなレスが繰り返されるのか。
> Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、
ああ・・・・・何というアフォだろうか。
また今日もムダなレスが繰り返されるのか。
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
> Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、
ああ・・・・・何というアフォだろうか。
また今日もムダなレスが繰り返されるのか。
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
> Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、
ああ・・・・・何というアフォだろうか。
また今日もムダなレスが繰り返されるのか。
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
> Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、
ああ・・・・・何というアフォだろうか。
また今日もムダなレスが繰り返されるのか。
526132人目の素数さん
2019/10/18(金) 07:31:42.27ID:TXejU84q527日高
2019/10/18(金) 08:10:36.18ID:I0wlpDZ5 >pが奇素数で、
『r^(p-1)=pのとき』
x^p+y^p=z^pは、自然数解を持たない。
って事かな。
『r^(p-1)=pのとき』と『r^(p-1)=apのとき』
x^p+y^p=z^pは、自然数解を持たない。
という事です。
『r^(p-1)=pのとき』
x^p+y^p=z^pは、自然数解を持たない。
って事かな。
『r^(p-1)=pのとき』と『r^(p-1)=apのとき』
x^p+y^p=z^pは、自然数解を持たない。
という事です。
528日高
2019/10/18(金) 08:15:14.22ID:I0wlpDZ5 >では証明になってません
522しか、言えません。
522しか、言えません。
529132人目の素数さん
2019/10/18(金) 08:42:20.79ID:e19ZkO/j >>528
だから証明になってません
だから証明になってません
530132人目の素数さん
2019/10/18(金) 09:18:15.80ID:TXejU84q531日高
2019/10/18(金) 09:52:18.17ID:I0wlpDZ5 >『r^(p-1)=pのとき』もしくは『r^(p-1)=apのとき』
だよね。
であれば『r^(p-1)=apのとき』も証明してくれないか
『r^(p-1)=pのとき』も、『r^(p-1)=apのとき』もx,y,zの比は同じとなります。
だよね。
であれば『r^(p-1)=apのとき』も証明してくれないか
『r^(p-1)=pのとき』も、『r^(p-1)=apのとき』もx,y,zの比は同じとなります。
532132人目の素数さん
2019/10/18(金) 09:55:06.17ID:e19ZkO/j533日高
2019/10/18(金) 09:58:43.59ID:I0wlpDZ5 >そもそも r^(p-1)=p が示せてないから証明になってない
r^(p-1)=p なので、rは、無理数という事が、示せます。
r^(p-1)=p なので、rは、無理数という事が、示せます。
534132人目の素数さん
2019/10/18(金) 10:00:19.43ID:e19ZkO/j535日高
2019/10/18(金) 10:32:10.35ID:I0wlpDZ5 >まず r^(p-1)=p を示せ
r^(p-1)=p が成り立つときにどうなるかの話はしていない
r^(p-1)=p が成り立つとき、
x^p+y^p=(x+p^{1/(p-1)})^pが成り立ちます。
r^(p-1)=p が成り立つときにどうなるかの話はしていない
r^(p-1)=p が成り立つとき、
x^p+y^p=(x+p^{1/(p-1)})^pが成り立ちます。
536132人目の素数さん
2019/10/18(金) 10:36:08.37ID:e19ZkO/j537132人目の素数さん
2019/10/18(金) 10:39:25.62ID:Np4yEZ8v538日高
2019/10/18(金) 10:50:24.36ID:I0wlpDZ5 x(6x^3 -x^2 +25x +36)=36
の場合は、無理です。
の場合は、無理です。
539132人目の素数さん
2019/10/18(金) 11:02:56.55ID:Np4yEZ8v540132人目の素数さん
2019/10/18(金) 11:03:39.78ID:T4CI8M5u 何かよくわかんないけど、自然数x,y,zでx^p+y^p=z^pが成立しないことを証明するんだよね?
だったらz=x+rのとき、rは自然数でないとおかしい。
rが無理数だと成立しません、って、ハイそうですか?って感じ。まるで意味ないじゃん。
もっと頭使おうよ。
だったらz=x+rのとき、rは自然数でないとおかしい。
rが無理数だと成立しません、って、ハイそうですか?って感じ。まるで意味ないじゃん。
もっと頭使おうよ。
541日高
2019/10/18(金) 11:18:44.24ID:I0wlpDZ5 >r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂
で r^(p-1)=pとできるかどうかはわからないのではないでしょうか。
r^(p-1)=pとすると、
{(y/r)^p-1}={x^(p-1)+…+r^(p-2)x}となるので、
rに、p^{1/(p-1)}を代入すると、
x^p+y^p=(x+p^{1/(p-1)})^pの両辺から、x^pを引いた式となります。
で r^(p-1)=pとできるかどうかはわからないのではないでしょうか。
r^(p-1)=pとすると、
{(y/r)^p-1}={x^(p-1)+…+r^(p-2)x}となるので、
rに、p^{1/(p-1)}を代入すると、
x^p+y^p=(x+p^{1/(p-1)})^pの両辺から、x^pを引いた式となります。
542日高
2019/10/18(金) 11:26:17.32ID:I0wlpDZ5 >だったらz=x+rのとき、rは自然数でないとおかしい。
rが無理数だと成立しません、って、ハイそうですか?って感じ。まるで意味ないじゃ
ん。
rが有理数でも、x,y,zの比は同じとなります。
rが無理数だと成立しません、って、ハイそうですか?って感じ。まるで意味ないじゃ
ん。
rが有理数でも、x,y,zの比は同じとなります。
543日高
2019/10/18(金) 11:54:54.36ID:I0wlpDZ5 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
544132人目の素数さん
2019/10/18(金) 12:07:40.99ID:e19ZkO/j 何度でも言うけど、
まず r^(p-1)=p を示せ
r^(p-1)=p が成り立つときにどうなるかの話はしていない
まず r^(p-1)=p を示せ
r^(p-1)=p が成り立つときにどうなるかの話はしていない
545日高
2019/10/18(金) 12:10:50.37ID:I0wlpDZ5 >まず r^(p-1)=p を示せ
どんな風に示せばよいのでしょうか?
どんな風に示せばよいのでしょうか?
546132人目の素数さん
2019/10/18(金) 12:15:55.17ID:e19ZkO/j547132人目の素数さん
2019/10/18(金) 12:39:10.49ID:QBJMLoZy r^(p-1)=ap
のほうを使ってやれば良いんじゃないかなあ。
のほうを使ってやれば良いんじゃないかなあ。
548日高
2019/10/18(金) 12:59:36.10ID:I0wlpDZ5 r^(p-1)=pとおくと、
x^p+y^p=(x+p^{1/(p-1)})^pとなる。
で良いと思います。
x^p+y^p=(x+p^{1/(p-1)})^pとなる。
で良いと思います。
549132人目の素数さん
2019/10/18(金) 13:28:02.74ID:e19ZkO/j 何度でも言うけど、
r^(p-1)=p が成り立つときにどうなるかの話はしていない
r^(p-1)=p が成り立つときにどうなるかの話はしていない
550132人目の素数さん
2019/10/18(金) 13:32:15.96ID:T4CI8M5u >>542
比が同じだからって、自然数じゃないものを解としちゃダメじゃん
x=3、y=4、z=5はx^2+y^2=z^2の自然数解だけど、x=0.3、y=0.4、z=0.5は自然数解じゃない
そこは両辺に数を掛けたり割ったりとかいうインチキしないで、まともにやろうよ
比が同じだからって、自然数じゃないものを解としちゃダメじゃん
x=3、y=4、z=5はx^2+y^2=z^2の自然数解だけど、x=0.3、y=0.4、z=0.5は自然数解じゃない
そこは両辺に数を掛けたり割ったりとかいうインチキしないで、まともにやろうよ
551132人目の素数さん
2019/10/18(金) 13:36:55.83ID:QYvSGR07 スレ主は以下の命題の真偽がわかるかね?
(1) sin(π/2) = 0 ⇒ cos(π/3) = 1
(2) sin(π/2) = 1 ⇒ cos(π/3) = 1
(3) sin(π/3) = 0 ⇒ cos(π/3) = 1
という質問に対し、
問題の意味がよくわかりません。
⇒の意味は、〜ならば〜である。と思いますが、
sin(π/2) = 0, sin(π/3) = 0となりません。
sin(π/2) = 1となりますが、 cos(π/3) = 1となりません。
と珍答するほど数学的素養に欠ける。したがって証明と称する雑文は、数学とはまったく
関係のない単なる文字の羅列に過ぎない。
(1) sin(π/2) = 0 ⇒ cos(π/3) = 1
(2) sin(π/2) = 1 ⇒ cos(π/3) = 1
(3) sin(π/3) = 0 ⇒ cos(π/3) = 1
という質問に対し、
問題の意味がよくわかりません。
⇒の意味は、〜ならば〜である。と思いますが、
sin(π/2) = 0, sin(π/3) = 0となりません。
sin(π/2) = 1となりますが、 cos(π/3) = 1となりません。
と珍答するほど数学的素養に欠ける。したがって証明と称する雑文は、数学とはまったく
関係のない単なる文字の羅列に過ぎない。
552132人目の素数さん
2019/10/18(金) 13:45:11.05ID:QYvSGR07 スレ主によると
a^{1/(1-1)}は、計算できない数ですが、a^{1/(1-1)}が、数であることには
変わりはありません。
だそうだ。これに対して
小学校から大学教養レベルあたりまでの数学で、「数」とは
自然数、整数、実数(有理数、無理数)、複素数
であるが a^{1/(1-1) は上記のどれにあたるのだ?
と言う質問に対して
a^{1/(1-1) は特定できない数です。
という世紀の珍答を与えている。よってスレ主の証明なるものは、数学とはまったく
関係のない単なる文字の羅列である。
a^{1/(1-1)}は、計算できない数ですが、a^{1/(1-1)}が、数であることには
変わりはありません。
だそうだ。これに対して
小学校から大学教養レベルあたりまでの数学で、「数」とは
自然数、整数、実数(有理数、無理数)、複素数
であるが a^{1/(1-1) は上記のどれにあたるのだ?
と言う質問に対して
a^{1/(1-1) は特定できない数です。
という世紀の珍答を与えている。よってスレ主の証明なるものは、数学とはまったく
関係のない単なる文字の羅列である。
553132人目の素数さん
2019/10/18(金) 14:18:12.62ID:u51PKJ3b 日高がアホなのは分かるが、ずっと粘着してレスしてる奴もどうかと思う
頭が弱い奴をイジメてるだけ
頭が弱い奴をイジメてるだけ
554日高
2019/10/18(金) 14:21:44.89ID:I0wlpDZ5 >x=3、y=4、z=5はx^2+y^2=z^2の自然数解だけど、x=0.3、y=0.4、z=0.5は自然数解じゃない
x=0.3、y=0.4、z=0.5が存在するならば、x=3、y=4、z=5も存在します。
x=0.3、y=0.4、z=0.5が存在するならば、x=3、y=4、z=5も存在します。
555日高
2019/10/18(金) 14:27:18.07ID:I0wlpDZ5 >スレ主は以下の命題の真偽がわかるかね?
(1) sin(π/2) = 0 ⇒ cos(π/3) = 1
(2) sin(π/2) = 1 ⇒ cos(π/3) = 1
(3) sin(π/3) = 0 ⇒ cos(π/3) = 1
いままでに、何度も正解を教えて下さい。と、お願いしています。
教えて貰えない理由があるのでしょうか?
(1) sin(π/2) = 0 ⇒ cos(π/3) = 1
(2) sin(π/2) = 1 ⇒ cos(π/3) = 1
(3) sin(π/3) = 0 ⇒ cos(π/3) = 1
いままでに、何度も正解を教えて下さい。と、お願いしています。
教えて貰えない理由があるのでしょうか?
556日高
2019/10/18(金) 14:36:20.46ID:I0wlpDZ5 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
557132人目の素数さん
2019/10/18(金) 14:55:21.02ID:T4CI8M5u >>554
いいえ。
x=0.3、y=0.4、z=0.5は自然数解ではありません
xとzが自然数で、x<zなので、x+r=zならば、rは自然数でしかありえません。
rが無理数になることはありえないので、rが無理数であることを仮定しても証明したことにはなりません。
いいえ。
x=0.3、y=0.4、z=0.5は自然数解ではありません
xとzが自然数で、x<zなので、x+r=zならば、rは自然数でしかありえません。
rが無理数になることはありえないので、rが無理数であることを仮定しても証明したことにはなりません。
558日高
2019/10/18(金) 15:30:33.07ID:I0wlpDZ5 >rが無理数になることはありえないので、rが無理数であることを仮定しても証明したことにはなりません。
z=x+rとおいているので、zが無理数の場合、x,rどちらかが無理数となります。
z=x+rとおいているので、zが無理数の場合、x,rどちらかが無理数となります。
559132人目の素数さん
2019/10/18(金) 15:46:50.97ID:QYvSGR07 【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
p を奇素数と仮定しているのに肝腎の x、y、z が何かを仮定していない。
なぜきちんと仮定しない。
「有理数解を持つかを検討する」
から判断すれば x、y、z は有理数と仮定したと思われてもしょうがない。
「@をz=x+rとおくと」
とあるが、これも r が何なのか明確に仮定していない。これだけでもいいかげんな証明だとわかる。
x、y、z が有理数なら r は必ず有理数となる。
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…C
とする。Bは
r^(p-1)=p
とすると
r=p^{1/(p-1)}
となるので
ならない。こんなデタラメは許されない。ここを何度も何度も間違いと指摘されているのに、なぜ
修正しないのだ。
そもそも
r=p^{1/(p-1)}
としてしまったら、r は実数になってしまい、r が有理数という仮定に反するからこの時点で証明は
無意味となる。これも、何度も何度も指摘されているのに、なぜ過ちを修正しない。
p を奇素数と仮定しているのに肝腎の x、y、z が何かを仮定していない。
なぜきちんと仮定しない。
「有理数解を持つかを検討する」
から判断すれば x、y、z は有理数と仮定したと思われてもしょうがない。
「@をz=x+rとおくと」
とあるが、これも r が何なのか明確に仮定していない。これだけでもいいかげんな証明だとわかる。
x、y、z が有理数なら r は必ず有理数となる。
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…C
とする。Bは
r^(p-1)=p
とすると
r=p^{1/(p-1)}
となるので
ならない。こんなデタラメは許されない。ここを何度も何度も間違いと指摘されているのに、なぜ
修正しないのだ。
そもそも
r=p^{1/(p-1)}
としてしまったら、r は実数になってしまい、r が有理数という仮定に反するからこの時点で証明は
無意味となる。これも、何度も何度も指摘されているのに、なぜ過ちを修正しない。
560日高
2019/10/18(金) 16:49:58.33ID:I0wlpDZ5 >r は実数になってしまい、r が有理数という仮定に反するからこの時点で証明は
無意味となる。
rは、有理数と仮定しなくては、いけないのでしょうか?
無意味となる。
rは、有理数と仮定しなくては、いけないのでしょうか?
561日高
2019/10/18(金) 17:48:39.08ID:I0wlpDZ5 r^(p-1)=pと、できない理由を、どなたか教えていただけないでしょうか。
562132人目の素数さん
2019/10/18(金) 17:58:55.71ID:y5kcMttW563132人目の素数さん
2019/10/18(金) 18:55:31.41ID:1cEZHsWB r^(p-1)=p になる理由を聞いてんのに、できない理由を聞き返すなよ
564132人目の素数さん
2019/10/18(金) 18:56:40.99ID:T4CI8M5u565日高
2019/10/18(金) 19:12:53.97ID:I0wlpDZ5 >xとzが自然数で、x<zなので、x+r=zならば、rは自然数でしかありえない。
有理数ではなく自然数でなければならないよ。
zを自然数と仮定しなくては、いけないのでしょうか?
有理数ではなく自然数でなければならないよ。
zを自然数と仮定しなくては、いけないのでしょうか?
566日高
2019/10/18(金) 19:36:55.50ID:I0wlpDZ5 >r^(p-1)=p になる理由を聞いてんのに、できない理由を聞き返すなよ
できない理由が、ないならば、できるのでは、ないでしょうか?
できない理由が、ないならば、できるのでは、ないでしょうか?
567日高
2019/10/18(金) 19:42:41.89ID:I0wlpDZ5 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
568132人目の素数さん
2019/10/18(金) 19:47:56.66ID:QYvSGR07 ↑マイナス∞点
569132人目の素数さん
2019/10/18(金) 19:52:01.75ID:wc94mGiK 出来ない理由がないことを証明してから使えよ。
570日高
2019/10/18(金) 19:58:31.65ID:I0wlpDZ5 >出来ない理由がないことを証明してから使えよ
出来ない理由がわからないので、お聞きしました。
出来ない理由がわからないので、お聞きしました。
571日高
2019/10/18(金) 20:01:18.10ID:I0wlpDZ5 >↑マイナス∞点
理由教えていただけないでしょうか。
理由教えていただけないでしょうか。
572132人目の素数さん
2019/10/18(金) 20:45:26.06ID:T4CI8M5u >>565
zが自然数でない場合を仮定しても証明にはならないよ
zが自然数でない場合を仮定しても証明にはならないよ
573日高
2019/10/18(金) 21:01:29.33ID:I0wlpDZ5 >zが自然数でない場合を仮定しても証明にはならないよ
理由を教えていただけないでしょうか。
理由を教えていただけないでしょうか。
574132人目の素数さん
2019/10/18(金) 21:06:56.19ID:T4CI8M5u zが自然数でない場合を仮定しても、x^p+y^p=z^pが自然数解を持たないことの証明にはならないよ
比が同じだからというのは理由にならない。現に比が同じという理由でペテンを働く日高という人物がいる
比が同じだからというのは理由にならない。現に比が同じという理由でペテンを働く日高という人物がいる
575132人目の素数さん
2019/10/18(金) 21:23:06.73ID:1cEZHsWB >>566
その理屈でいうなら、できる理由がないからできないね
その理屈でいうなら、できる理由がないからできないね
576132人目の素数さん
2019/10/18(金) 22:12:16.54ID:wc94mGiK577日高
2019/10/19(土) 05:57:33.53ID:db1xuLqY >比が同じだからというのは理由にならない。
どうして、理由にならないのでしょうか?
どうして、理由にならないのでしょうか?
578日高
2019/10/19(土) 06:01:42.15ID:db1xuLqY 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
579日高
2019/10/19(土) 06:46:50.38ID:db1xuLqY x(x-2)=3×4ならば、
x(x-2)=a3×(1/a)4とすると、
左辺の左側=右辺の左側, 左辺の右側=右辺の右側
x=a3, (x-2)=(1/a)4となります。
x=1+√13, a=(1+√13)/3
x(x-2)=a3×(1/a)4とすると、
左辺の左側=右辺の左側, 左辺の右側=右辺の右側
x=a3, (x-2)=(1/a)4となります。
x=1+√13, a=(1+√13)/3
580132人目の素数さん
2019/10/19(土) 07:13:20.97ID:bT32Owxi 私は齢70を越えた老人である。
私の朝は、まずティンポの勃起度を確認することから始まる。
長年のセンズリのし過ぎで、先端がやや曲がっているのがやや難点だが、
いまだ女の生身を知らぬ、汚れなき威容がまことに神々しい。
その神々しいティンポをさすりながら、ライフワークとして取り組んでいる
フェルマーの最終定理の証明をさらに磨きをかけるため、きょうも朝から精進
している。
まずはここで↑の2つの投稿を試みた。
私の証明は、「超数学」的思考方法によるものなので、ここに集う私の熱狂的
なファンの方にとっては何回であろうとは思うが、頭でなく、下半身で考えるこ
とに練達すれば必ず理解できるようになる。
今日も皆さんの活発な投稿を歓迎したい。
私の朝は、まずティンポの勃起度を確認することから始まる。
長年のセンズリのし過ぎで、先端がやや曲がっているのがやや難点だが、
いまだ女の生身を知らぬ、汚れなき威容がまことに神々しい。
その神々しいティンポをさすりながら、ライフワークとして取り組んでいる
フェルマーの最終定理の証明をさらに磨きをかけるため、きょうも朝から精進
している。
まずはここで↑の2つの投稿を試みた。
私の証明は、「超数学」的思考方法によるものなので、ここに集う私の熱狂的
なファンの方にとっては何回であろうとは思うが、頭でなく、下半身で考えるこ
とに練達すれば必ず理解できるようになる。
今日も皆さんの活発な投稿を歓迎したい。
581132人目の素数さん
2019/10/19(土) 07:16:56.11ID:bT32Owxi ティンポが爆発しそうなあまり、誤記してしまった。
> 私の証明は、「超数学」的思考方法によるものなので、ここに集う私の熱狂的
>なファンの方にとっては何回であろうとは思うが、頭でなく、下半身で考えるこ
>とに練達すれば必ず理解できるようになる。
ファンの方にとっては難解であろうとは思うが
大変失礼した。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
という思考方法は、何人も犯すことができない、大宇宙の真理である。
> 私の証明は、「超数学」的思考方法によるものなので、ここに集う私の熱狂的
>なファンの方にとっては何回であろうとは思うが、頭でなく、下半身で考えるこ
>とに練達すれば必ず理解できるようになる。
ファンの方にとっては難解であろうとは思うが
大変失礼した。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…Bとする。
Bはr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
という思考方法は、何人も犯すことができない、大宇宙の真理である。
582ID:1lEWVa2s
2019/10/19(土) 07:31:23.35ID:ZIJiN+a0583132人目の素数さん
2019/10/20(日) 16:44:44.17ID:2hQE7KkD584132人目の素数さん
2019/10/21(月) 11:46:21.34ID:+SrWJVQH 死んだか
585日高
2019/10/22(火) 18:56:49.94ID:2TKl3AzC 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
586132人目の素数さん
2019/10/22(火) 19:27:16.97ID:9wKwCM07 本物か?
構われないからって指摘全部無視してずーっと同じこと書き込み続けるつもりか?
構われないからって指摘全部無視してずーっと同じこと書き込み続けるつもりか?
587132人目の素数さん
2019/10/22(火) 19:46:35.98ID:4E3SG2QV588日高
2019/10/22(火) 20:37:14.79ID:2TKl3AzC >「指摘全部無視して」
どの部分のことでしょうか?
どの部分のことでしょうか?
589132人目の素数さん
2019/10/22(火) 21:21:23.77ID:4E3SG2QV590132人目の素数さん
2019/10/22(火) 21:24:04.66ID:1Bz6dc/M 「フェルマーの最終定理を証明しました」というメール。また来た。
毎度毎度「間違っていたら指摘してください」と言ってくるけど、自分の論考のバグ出しのために他人の時間を無料で使えると思ってるところがまず間違いだよ。そこ指摘したい気もするけど、そもそも反応を返したくない。
毎度毎度「間違っていたら指摘してください」と言ってくるけど、自分の論考のバグ出しのために他人の時間を無料で使えると思ってるところがまず間違いだよ。そこ指摘したい気もするけど、そもそも反応を返したくない。
591132人目の素数さん
2019/10/22(火) 22:49:40.41ID:9wKwCM07 >>588
分からないんですか?
分からないんですか?
592日高
2019/10/23(水) 06:41:09.24ID:39Tkzd0q >分からないんですか?
分かりません。
分かりません。
593132人目の素数さん
2019/10/23(水) 07:45:44.29ID:HmU25hnz >>592
何故分からないんですか?
何故分からないんですか?
594日高
2019/10/23(水) 08:03:46.31ID:39Tkzd0q >何故分からないんですか?
どの部分のことを指しているのですか?
どの部分のことを指しているのですか?
595132人目の素数さん
2019/10/23(水) 08:21:10.58ID:3tv2d++s 馬鹿日高はこれを10回音読して下さい。
「フェルマーの最終定理を証明しました」というメール。また来た。
毎度毎度「間違っていたら指摘してください」と言ってくるけど、自分の論考のバグ出しのために他人の時間を無料で使えると思ってるところがまず間違いだよ。そこ指摘したい気もするけど、そもそも反応を返したくない。
「フェルマーの最終定理を証明しました」というメール。また来た。
毎度毎度「間違っていたら指摘してください」と言ってくるけど、自分の論考のバグ出しのために他人の時間を無料で使えると思ってるところがまず間違いだよ。そこ指摘したい気もするけど、そもそも反応を返したくない。
596132人目の素数さん
2019/10/23(水) 08:24:26.69ID:9K8zMWUB 私は70歳を超えた今日まで童貞を守ってきた。したがって私のティムポは汚れを知らない。
男女間の愛欲どころか、淡い恋らしき恋も経験したこともない。
そんな私の唯一の楽しみがフェルマーの最終定理の証明なのだ。簡にして要を極めた私の
証明は深い思想をたたえているので、なかなか万人には理解しがたい。
しかし、いつか必ず広く受け入れられることを確信している。だからこそメールもするし
ここの投稿も続ける。
男女間の愛欲どころか、淡い恋らしき恋も経験したこともない。
そんな私の唯一の楽しみがフェルマーの最終定理の証明なのだ。簡にして要を極めた私の
証明は深い思想をたたえているので、なかなか万人には理解しがたい。
しかし、いつか必ず広く受け入れられることを確信している。だからこそメールもするし
ここの投稿も続ける。
597日高
2019/10/23(水) 08:32:17.87ID:39Tkzd0q 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
598132人目の素数さん
2019/10/23(水) 08:54:13.88ID:HEY+Xltv599日高
2019/10/23(水) 09:44:19.34ID:39Tkzd0q >何故分からないんですか?
具体的に、指摘していただけないでしょうか。
具体的に、指摘していただけないでしょうか。
600132人目の素数さん
2019/10/23(水) 09:59:01.13ID:HEY+Xltv >>599
今までずーっと指摘されたことを、また具体的に言わないといけないんですか?
今までずーっと指摘されたことを、また具体的に言わないといけないんですか?
601日高
2019/10/23(水) 10:42:23.43ID:39Tkzd0q お願いします。
602132人目の素数さん
2019/10/23(水) 11:06:36.86ID:DEidpskE 無限ループw
603日高
2019/10/23(水) 11:09:05.09ID:39Tkzd0q お願いします。
604132人目の素数さん
2019/10/23(水) 11:12:02.70ID:OFk49pei 少なくとも、これまでのいくつかの掲示板を含む指摘すべてを読み返し、似たような指摘に対しては、過去自分がどのような返事をして、どのように解決していないのか説明するべき。
そうでないなら、メールを送りつけたり他人に質問する資格なし。
そうでないなら、メールを送りつけたり他人に質問する資格なし。
605日高
2019/10/23(水) 11:19:45.75ID:39Tkzd0q >どのように解決していないのか説明するべき。
最後まで、議論いただけたら幸いです。
最後まで、議論いただけたら幸いです。
606132人目の素数さん
2019/10/23(水) 11:21:08.13ID:HEY+Xltv >>601
少しは自分で考えたらどうですか?
少しは自分で考えたらどうですか?
607132人目の素数さん
2019/10/23(水) 11:25:23.33ID:A9Iimk0V この日高という人物は、間違いがあれば指摘せよと自分から指示しておきながら、いざ指摘があると、只「わかりません」とだけ返すことを繰り返してきた
指摘者たちは当然ながら、この日高という人物には、理解力がないばかりか、理解しようと努力もしないし、そもそも理解しようという意思がないものと解釈する
そして誰もいなくなった
指摘者たちは当然ながら、この日高という人物には、理解力がないばかりか、理解しようと努力もしないし、そもそも理解しようという意思がないものと解釈する
そして誰もいなくなった
608日高
2019/10/23(水) 11:27:24.63ID:39Tkzd0q >少しは自分で考えたらどうですか?
他人の考えを、聞くのも、重要だと思います。
他人の考えを、聞くのも、重要だと思います。
609日高
2019/10/23(水) 11:31:35.19ID:39Tkzd0q 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
Dをxa^{1/(p-1)}=X, ya^{1/(p-1)}=Y, xa^{1/(p-1)}+(pa)^{1/(p-1)}=Zとおくと、
X:Y:Z=x:y:zとなる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
610132人目の素数さん
2019/10/23(水) 11:37:10.92ID:sm7kH+YF 短期間に同じ内容を多数投稿する行為は「荒らし」だよ
611日高
2019/10/23(水) 11:41:12.96ID:39Tkzd0q >短期間に同じ内容を多数投稿する行為は「荒らし」だよ
「荒らし」に当たるかもしれませんが、
見やすくするためです。
「荒らし」に当たるかもしれませんが、
見やすくするためです。
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 中国国連大使「日本が中国に武力行使すると脅しをかけたのは初めて」 国連事務総長に書簡 [♪♪♪★]
- 台湾有事での集団的自衛権行使に「賛成」が48.8%、「反対」が44.2% ★7 [♪♪♪★]
- 【トレンド】高市首相「マウント取れる服」投稿にツッコミ続出「他国に対する敬意がない」「外交相手に失礼」 [1ゲットロボ★]
- 【🐼】パンダ、日本で会えなくなる? 中国との関係悪化で不安の声 [ぐれ★]
- 【立憲民主党】「質問レベルの低さが立憲の存立危機事態」台湾有事発言を引き出した立憲“執拗追及”が波紋… ★2 [尺アジ★]
- 【芸能】ダウンタウン浜田雅功の個展 音声ガイドに豪華メンバー決定! 前期は木村拓哉&イチロー 後期は役所広司&綾瀬はるかが担当 [冬月記者★]
- 🏡😡
- 現役JKのお茶会スレ( ¨̮ )︎︎𖠚ᐝ160
- 【悲報】高市さんのあだ名、未だ決まらず。中国からも候補上がる [308389511]
- 【悲報】高市早苗「第二次鳩山政権」と呼ばれ始めるwwww [237216734]
- 現役JKのお茶会スレ( ¨̮ )︎︎𖠚ᐝ161
- ジャップ、弁当が3割引止まり… [667744927]
