>>453
これで分からなければ、この問題は諦めた方がいい。
2b=c(p^n+…+1)
を両辺をpk^qkで割ると、cがpk^qkで割り切られる場合には
2b/pk^qk=c/pk^qk(p^n+…+1)
となり、p^n+…+1の値は変わらないから、pとnは不変になる。
b'=b/pk^qk=Π[k=1,r-1]pk^qk
c'=b/pk^qk
とすると
b'=c'(p^n+…+1)
となり、式の形は不変になる。

ap-2bp+2b=cの式の両辺をqk^qkで割り、a'=a/pk/qkとすると
a''-2b'p+2b'=c'
となり、pの値が不変であるからこの式は成り立たなければならない。
b'=Π[k=1,r-1]pk^qkであるから、b'に対応するa'は題意から
a'=Π[k=1,r-1](1+pk+…pk^qk)
となり、a'=a/pk^qkであるから
Π[k=1,r](1+pk+…pk^qk)/pk^qk=Π[k=1,r-1](1+pk+…pk^qk)
とならなければならないが、この式は成立しない。

それから、この論理はそれ程難しいものではないので間違ったものだと
するのには無理がある。何故その無理を押し通そうとするのか?
甚だ疑問だ。