探検
集合論について
■ このスレッドは過去ログ倉庫に格納されています
1132人目の素数さん
2013/11/18(月) 04:05:17.08 いくらなんでも数学板に集合論全般を扱うスレがないのはおかしいだろ
196132人目の素数さん
2014/04/06(日) 20:36:41.60 >>195 ω_1 のような非加算順序数の場合は?整列順序を、論理式
x∈y∨x=y で定義できると思うけど。
x∈y∨x=y で定義できると思うけど。
197132人目の素数さん
2014/04/06(日) 20:37:50.99 「芳しい」というより、「香ばしい」やりとりだな。
自然数の整列性は、自然数の定義にもよるだろうが、
普通の定義、例えばベアノの自然数なら、証明できる。
その上で、整列順序の存在は、
可算集合と自然数集合との全単射の存在と同値。
可算選択は、数学的帰納法に過ぎない。
自然数の整列性は、自然数の定義にもよるだろうが、
普通の定義、例えばベアノの自然数なら、証明できる。
その上で、整列順序の存在は、
可算集合と自然数集合との全単射の存在と同値。
可算選択は、数学的帰納法に過ぎない。
198132人目の素数さん
2014/04/06(日) 20:39:02.27 >>190
自然演繹の∃除去の規則を思い出せば分かると思うんだけど。
自然演繹の∃除去の規則を思い出せば分かると思うんだけど。
199132人目の素数さん
2014/04/06(日) 20:42:57.01 >可算選択は、数学的帰納法に過ぎない。
可算整列は、数学的帰納法に過ぎない。
の間違い?
可算整列は、数学的帰納法に過ぎない。
の間違い?
200132人目の素数さん
2014/04/06(日) 20:43:03.91 集合論の根幹を覆す主張がされてるなw
201132人目の素数さん
2014/04/06(日) 20:58:40.92 190はそもそも、fが消えるとか自然演繹とか、意味わかっとらんのやろ
202132人目の素数さん
2014/04/06(日) 21:06:39.40 >>183
可算選択公理 axiom of countable choice ってのは
A_n≠φ(n∈ω)のとき選択函数 f : N→∪A_n で f(n) ∈ A_nとなるものが存在する、
という主張のことを言うと思うんだけど。
https://www.google.co.jp/search?q=axiom+of+countable+choice
可算集合が整列できないなんていう変な主張のことじゃないよ。
一個以上あるものから一個を取り出すだけなら
(具体的なものを取れるかどうかは分からないけど)選択公理は要らない。
可算選択公理 axiom of countable choice ってのは
A_n≠φ(n∈ω)のとき選択函数 f : N→∪A_n で f(n) ∈ A_nとなるものが存在する、
という主張のことを言うと思うんだけど。
https://www.google.co.jp/search?q=axiom+of+countable+choice
可算集合が整列できないなんていう変な主張のことじゃないよ。
一個以上あるものから一個を取り出すだけなら
(具体的なものを取れるかどうかは分からないけど)選択公理は要らない。
203132人目の素数さん
2014/04/06(日) 21:12:01.55 選択関数の存在に選択公理が要らないとな
204132人目の素数さん
2014/04/06(日) 21:16:21.36 >>203
だからそれ(存在量化された命題から、一つの実例を選び出す)は選択関数じゃないっての
選択公理とは、「存在量化された命題から、一つの実例を選び出す」という操作を無限回行えることを保証する公理
だからそれ(存在量化された命題から、一つの実例を選び出す)は選択関数じゃないっての
選択公理とは、「存在量化された命題から、一つの実例を選び出す」という操作を無限回行えることを保証する公理
205132人目の素数さん
2014/04/06(日) 21:20:20.28 「存在量化された命題から、一つの実例を選び出す」という操作を無限回 しかも一括で 行えることを保証する公理
と言った方がいいかも
と言った方がいいかも
206132人目の素数さん
2014/04/06(日) 21:21:32.37 選択函数ってのは
空でない集合の族 F = {A_i} (i∈I), A_i ≠φがあったときに
f(i)∈A_i となるような函数
(つまり A_i たちからそれぞれ要素 f(i) をチョイスする函数)
のことを言う、という風に定義されてると思うけど。
選択函数とか或る集合が可算であるとか、可算選択公理とかの
定義を確認した方が良いと思う。
空でない集合の族 F = {A_i} (i∈I), A_i ≠φがあったときに
f(i)∈A_i となるような函数
(つまり A_i たちからそれぞれ要素 f(i) をチョイスする函数)
のことを言う、という風に定義されてると思うけど。
選択函数とか或る集合が可算であるとか、可算選択公理とかの
定義を確認した方が良いと思う。
207132人目の素数さん
2014/04/06(日) 21:42:22.59 与えられた集合 X の整列順序を ZFC の具体的な論理式で書き下してくれとか、
与えられた、空でない集合族 (A_i)_{i∈I} (A_i ≠ φ)の
選択関数を具体的に構成してくれとか、そういう要求でないのかな?
与えられた、空でない集合族 (A_i)_{i∈I} (A_i ≠ φ)の
選択関数を具体的に構成してくれとか、そういう要求でないのかな?
208132人目の素数さん
2014/04/06(日) 22:07:51.00 そういう具体的に〜ってできるの?
209132人目の素数さん
2014/04/06(日) 22:13:21.67 たとえば、実数の全体の整列順序関係を、ZFC + GCH 内で具体的な論理式で
書き下すことが不可能なことは、すでに知られているよ。
書き下すことが不可能なことは、すでに知られているよ。
210132人目の素数さん
2014/04/06(日) 22:14:55.10211132人目の素数さん
2014/04/06(日) 22:56:53.37 代表元が取り出せることだったような。まあ同じことか
212132人目の素数さん
2014/04/06(日) 23:29:06.35 ZFCZFCZFC
213132人目の素数さん
2014/04/07(月) 01:22:10.73 バナッハ・タルスキーは、体積が違う球体が作れてしまうのが
選択公理のせいではないことは分かっている
選択公理のせいではないことは分かっている
214132人目の素数さん
2014/04/07(月) 04:03:21.91 今までの議論ざっくり見ましたが,大学2,3年生ぐらいの議論という事ですか?
曖昧な表現や思い込み・勘違いな表現が多数見受けられましたが。
曖昧な表現や思い込み・勘違いな表現が多数見受けられましたが。
215132人目の素数さん
2014/04/07(月) 07:04:16.99 単に定義について勘違いをしてた人が居ただけ
まああまり高度なポイントではなくて
きちんと本に書いてある定義に則って話をするかどうかということだけど
まああまり高度なポイントではなくて
きちんと本に書いてある定義に則って話をするかどうかということだけど
216132人目の素数さん
2014/04/07(月) 07:07:01.78 選択公理→ハーンバナッハ→バナッハタルスキ
だから、選択公理のせいではないとは言えない
だから、選択公理のせいではないとは言えない
217132人目の素数さん
2014/04/07(月) 07:42:16.27 Banach-Tarskiの定理そのものはACが無いと証明できないけど
同じようにパラドクシカルな定理がAC無しに示せるので、
ACの関わっている部分はかなり微妙な部分になる
http://www.pnas.org/content/89/22/10726.full.pdf
同じようにパラドクシカルな定理がAC無しに示せるので、
ACの関わっている部分はかなり微妙な部分になる
http://www.pnas.org/content/89/22/10726.full.pdf
218132人目の素数さん
2014/04/07(月) 10:22:44.34 >>215
定義の意味についての議論もあるね
定義の意味についての議論もあるね
219132人目の素数さん
2014/04/07(月) 10:24:54.67 ACがあれば証明されるけどACより弱い定理から導かれるのでACが必要というわけではなくAC無しでも証明できる
220132人目の素数さん
2014/04/07(月) 10:51:40.77 具体的にはどう弱い公理よ
221132人目の素数さん
2014/04/07(月) 11:25:50.58222132人目の素数さん
2014/04/07(月) 11:39:57.09 サンクス
223132人目の素数さん
2014/04/07(月) 12:21:03.28 >>183を見る限り、定義の勘違いだけではなさそうだが…
本当は必要ないのに、特別な公理が必要だと思い違いをしてて、こっちの方が深刻
本当は必要ないのに、特別な公理が必要だと思い違いをしてて、こっちの方が深刻
224132人目の素数さん
2014/04/07(月) 21:30:48.96 深刻にならずにやろうぜw
225132人目の素数さん
2014/04/10(木) 14:04:13.78 選択公理も含めて、どの公理もその独立性は直感的に明らかだと思うんだが、
独立だと思っていたら実は独立でなかったというような公理はなにかあったの?
独立だと思っていたら実は独立でなかったというような公理はなにかあったの?
226132人目の素数さん
2014/04/10(木) 19:16:43.07 ZF + not ACのモデルの存在は直感的に明らかということでOK?
というか分出公理は置換公理から出て来るとか、
公理同士の依存関係は結構あるよ
分出公理や空集合の存在を除いても確か除いて良い公理があったような
というか分出公理は置換公理から出て来るとか、
公理同士の依存関係は結構あるよ
分出公理や空集合の存在を除いても確か除いて良い公理があったような
227132人目の素数さん
2014/04/10(木) 19:30:17.10 > ZF + not ACのモデルの存在は直感的に明らかということでOK?
そのつもり。+ ACも + not ACもどちらも直感的に矛盾しそうにない。
> というか分出公理は置換公理から出て来るとか
分出公理と置換公理は、むしろ直感的に等価だと感じる方に属する。
そのつもり。+ ACも + not ACもどちらも直感的に矛盾しそうにない。
> というか分出公理は置換公理から出て来るとか
分出公理と置換公理は、むしろ直感的に等価だと感じる方に属する。
228132人目の素数さん
2014/04/10(木) 19:57:13.17 分出公理から置換公理は出ないから等価というのはおかしいよ。
置換公理の方が遥かに強い。
置換公理の方が遥かに強い。
229132人目の素数さん
2014/04/10(木) 20:27:58.02 不用意だった。あなたの言うとおりだ。
ただ、置換公理->分出公理であることは、直感的にもわかりやすいよね。
一方、分出公理!->置換公理であることはオレにはすぐにはわからないのだが
ただ、置換公理->分出公理であることは、直感的にもわかりやすいよね。
一方、分出公理!->置換公理であることはオレにはすぐにはわからないのだが
230132人目の素数さん
2014/04/10(木) 20:36:40.99 > 分出公理!->置換公理であること
?
?
231132人目の素数さん
2014/04/10(木) 20:41:57.10 分出公理から置換公理は出ない
232132人目の素数さん
2014/04/10(木) 21:42:15.56 >>229
累積的階層のR(ω+ω)がZCのモデルになって
置換公理以外は分出も含めて成り立つけど置換公理は満たさない
特に順序数ω+ωが存在しない
「明らか」という言葉は簡単に証明できると言える場合以外使わない方が無難だと思う
累積的階層のR(ω+ω)がZCのモデルになって
置換公理以外は分出も含めて成り立つけど置換公理は満たさない
特に順序数ω+ωが存在しない
「明らか」という言葉は簡単に証明できると言える場合以外使わない方が無難だと思う
233132人目の素数さん
2014/04/10(木) 22:18:53.70 僕は昔集合論を勉強し始まったころ、ZF から AC が証明できると思い込んで、
しかもそれが「直観的にも明らか」だと信じてしまっていた経験がある。
後でゲーデルやコーエンの理論を読んで、じっくり反省しました。
しかもそれが「直観的にも明らか」だと信じてしまっていた経験がある。
後でゲーデルやコーエンの理論を読んで、じっくり反省しました。
234132人目の素数さん
2014/04/10(木) 22:31:37.87 ブルバキの集合論ではACを証明してあるね
235132人目の素数さん
2014/04/10(木) 22:58:53.31 ちょっと初歩的な質問をさせて貰いますが,
「ACがZFから独立である事を証明するには,ZF+¬ACのモデルの存在を言えばいい」って言うのは何故ですか?
「ACがZFから独立である事を証明するには,ZF+¬ACのモデルの存在を言えばいい」って言うのは何故ですか?
236132人目の素数さん
2014/04/11(金) 09:08:21.81 それだけじゃダメだけどな
237132人目の素数さん
2014/04/11(金) 09:15:05.52238132人目の素数さん
2014/04/11(金) 09:48:54.27 ブルバキのは確かR(x)を満たすxが存在するならその存在するもののうちひとつを表す記号(なければなんでもよい)
τ_xR(x)
があるので、これを用いれば選択関数が簡単に作れてしまうという、半ば反則的な方法をとっていたと思う。
τ_xR(x)
があるので、これを用いれば選択関数が簡単に作れてしまうという、半ば反則的な方法をとっていたと思う。
239132人目の素数さん
2014/04/11(金) 10:34:19.41 それは選択関数そのものじゃないの?
240132人目の素数さん
2014/04/11(金) 10:57:11.65 そのものじゃないでしょ。でもすべてのx∈Xについてf(x)≠φならば、選択関数gが
g(x)=τ_y(y∈f(x))
で定義できる。
g(x)=τ_y(y∈f(x))
で定義できる。
241132人目の素数さん
2014/04/11(金) 22:24:32.26 数理論理学的にはちょっと違うけどね。
たとえば選択公理を認めても選択函数はdefinableなもの
(上で言うところの「具体的」な函数)になるとは
限らないけど、ブルバキのτ(ι記号とも言う)を使。うなら
必ず論理式で具体的に書けるような関数になる
集合論は「明らか」だと思われるようなことに
実は数学的・論理学的にすごく微妙subtleな点があるのが面白さの一つだと思う
たとえば選択公理を認めても選択函数はdefinableなもの
(上で言うところの「具体的」な函数)になるとは
限らないけど、ブルバキのτ(ι記号とも言う)を使。うなら
必ず論理式で具体的に書けるような関数になる
集合論は「明らか」だと思われるようなことに
実は数学的・論理学的にすごく微妙subtleな点があるのが面白さの一つだと思う
242132人目の素数さん
2014/04/12(土) 07:59:17.41 キューネン『集合論』は、集合論の入門書ですか?それとももっとレベルが高いですか?
243132人目の素数さん
2014/04/12(土) 08:33:51.39 レベルが高い入門書です。
何年か前に30年近くぶりに新版が出て内容が一変してます。
何年か前に30年近くぶりに新版が出て内容が一変してます。
244132人目の素数さん
2014/04/12(土) 09:08:55.59 ある程度集合論について知識持った方に聞きたいんですけど,
どの学年でどの程度の知識を持っているのが大体の相場なんでしょうか?
例えば, 学部○年で,松坂の集合位相入門の,濃度・順序数をほぼ完璧に理解。○年で,不完全性定理を理解。
修士or博士○年で強制法理解・・・・とか・・
どの学年でどの程度の知識を持っているのが大体の相場なんでしょうか?
例えば, 学部○年で,松坂の集合位相入門の,濃度・順序数をほぼ完璧に理解。○年で,不完全性定理を理解。
修士or博士○年で強制法理解・・・・とか・・
245132人目の素数さん
2014/04/12(土) 09:57:40.99 位相もちゃんとやれよ
246132人目の素数さん
2014/04/12(土) 12:19:39.02 >>241
>集合論は「明らか」だと思われるようなことに
>実は数学的・論理学的にすごく微妙subtleな点があるのが面白さの一つだと思う
それは集合論に限ったことではないと思うのだが、どう?
それに、(これも一般に)微妙な点というのは弱みであることも多い
(むしろふつううはそう)と思うが、どう?
>集合論は「明らか」だと思われるようなことに
>実は数学的・論理学的にすごく微妙subtleな点があるのが面白さの一つだと思う
それは集合論に限ったことではないと思うのだが、どう?
それに、(これも一般に)微妙な点というのは弱みであることも多い
(むしろふつううはそう)と思うが、どう?
247132人目の素数さん
2014/04/14(月) 00:34:27.71 しかし研究対象がそもそもsubtleに出来ているのなら
それをそのままsubtleに(霊妙に、とでも訳せば良いのか)理解しないといけない。
Einstein曰く、"Subtle is the Lord, but malicious He is not."
神は霊妙ではかりがたい。だが悪意は持たない。
それをそのままsubtleに(霊妙に、とでも訳せば良いのか)理解しないといけない。
Einstein曰く、"Subtle is the Lord, but malicious He is not."
神は霊妙ではかりがたい。だが悪意は持たない。
248132人目の素数さん
2014/04/14(月) 07:56:26.63 >>237
根拠となったのは、以下の主張です。
ZF の任意の可算モデルを M とします。以下、ZF の論理式A(x_1, ... , x_n)
は M に変数を持つものとして解釈します。M は可算だから、整列可能。従って、
任意の論理式 A(y, x_1, ... , x_n) と M の元の列 a_1, ... , a_n に対し、
A(y, a_1, ... , a_n) なる y∈M が存在すれば、そのような y の最小限を
f(a_1, ... , a_n) とおき、A(y, a_1, ... , a_n) なる y∈M が存在しなければ、
M の最小元を f(a_1, ... , a_n) とおきます。
こうすることによって、M 上の論理式には全てスコーレム関数が定義できるわけで、
M は ZFC のモデルとなります。
従って、M 内で AC は真。したがって、完全性定理より、ZF から AC は証明可能。
この論証の間違いを理解するのに、数ヶ月かかりました(笑)
根拠となったのは、以下の主張です。
ZF の任意の可算モデルを M とします。以下、ZF の論理式A(x_1, ... , x_n)
は M に変数を持つものとして解釈します。M は可算だから、整列可能。従って、
任意の論理式 A(y, x_1, ... , x_n) と M の元の列 a_1, ... , a_n に対し、
A(y, a_1, ... , a_n) なる y∈M が存在すれば、そのような y の最小限を
f(a_1, ... , a_n) とおき、A(y, a_1, ... , a_n) なる y∈M が存在しなければ、
M の最小元を f(a_1, ... , a_n) とおきます。
こうすることによって、M 上の論理式には全てスコーレム関数が定義できるわけで、
M は ZFC のモデルとなります。
従って、M 内で AC は真。したがって、完全性定理より、ZF から AC は証明可能。
この論証の間違いを理解するのに、数ヶ月かかりました(笑)
249132人目の素数さん
2014/04/14(月) 17:37:54.29 様相論理って面白いんですか?
結構体系が別れていて,研究分野としての整理があんまり出来ていない感じがしてるんですけど
結構体系が別れていて,研究分野としての整理があんまり出来ていない感じがしてるんですけど
250132人目の素数さん
2014/04/14(月) 20:18:07.65 体系に番号や記号もそれぞれ振られているし整理はそれなりにされてると思う。。
ただ一言で様相と言っても我々の言語にはいろいろな種類の様相
(証明可能性、義務、知識、信念、……)があり得るので
そういったことに応じていろんな体系があるという感じに理解すると良いと思う。
唯一のthe 必然性がある訳じゃない。
ただ一言で様相と言っても我々の言語にはいろいろな種類の様相
(証明可能性、義務、知識、信念、……)があり得るので
そういったことに応じていろんな体系があるという感じに理解すると良いと思う。
唯一のthe 必然性がある訳じゃない。
251132人目の素数さん
2014/04/14(月) 21:07:35.27 >>248
ACを証明するのにACを使ってしまった、ということでしょ?
ここに書かれたことは、あなたにとってACは、それ自身他の論証の根拠として
つい使ってしまうほど自明のことであったということではないの?あなたが
ACを導いた根拠なのではないよね?
ACを証明するのにACを使ってしまった、ということでしょ?
ここに書かれたことは、あなたにとってACは、それ自身他の論証の根拠として
つい使ってしまうほど自明のことであったということではないの?あなたが
ACを導いた根拠なのではないよね?
252132人目の素数さん
2014/04/14(月) 21:26:23.17 >ACを証明するのにACを使ってしまった、ということでしょ?
違うような。
ZFの可算モデルを取るときにACを使ってるけど、
「ZFの任意のモデルで〜〜が成り立つ。よってZF |- 〜〜」
を示す時にACを使うのは(あまり)問題が無い。
問題なのはMの住人が「Vは可算」だと信じていないといけないような証明になっているということ。
違うような。
ZFの可算モデルを取るときにACを使ってるけど、
「ZFの任意のモデルで〜〜が成り立つ。よってZF |- 〜〜」
を示す時にACを使うのは(あまり)問題が無い。
問題なのはMの住人が「Vは可算」だと信じていないといけないような証明になっているということ。
253132人目の素数さん
2014/04/14(月) 22:05:53.55 数か月考えてみるわ
254132人目の素数さん
2014/04/23(水) 10:24:05.52 V=L |- CH は、まあそうだろなと思うが、V=L |- ACの方は、なんでこの二つが
関係するのかと思ってしまうのだが、みなさんはどう?
関係するのかと思ってしまうのだが、みなさんはどう?
255132人目の素数さん
2014/04/23(水) 14:16:15.81 __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/
. | \ ∠イ ,イイ| ,`-' |
| l^,人| ` `-' ゝ |
| ` -'\ ー' 人 私は死なないわよ。
| /(l __/ ヽ、 でも最近一寸太ったかしら。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 Windows ver.10 で
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ 元の痩せた姿にしてよね。
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/
. | \ ∠イ ,イイ| ,`-' |
| l^,人| ` `-' ゝ |
| ` -'\ ー' 人 私は死なないわよ。
| /(l __/ ヽ、 でも最近一寸太ったかしら。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 Windows ver.10 で
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ 元の痩せた姿にしてよね。
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
256132人目の素数さん
2014/04/23(水) 21:38:36.54 論理式を使って定義できるような対象しか存在しないなら
その定義のされ方に着目することで整列順序付けができてもおかしくは無いのかな、
というイメージはあるけど。
その定義のされ方に着目することで整列順序付けができてもおかしくは無いのかな、
というイメージはあるけど。
257132人目の素数さん
2014/04/24(木) 13:53:42.75258132人目の素数さん
2014/04/24(木) 19:55:50.83 →は、考えている集合たちの要素たち全体を整列する。
あとはただ整列順序に関する a の最小要素を選べば(choiceすれば)良い。
←は、まず全体から一つ要素を選んで一番小さい 0 番目の要素とする。
次に残りから一つ要素を選んで(choiceして)その次に小さい 1 番目の要素とする。
次に残りから……
次に残りから一つ要素を選んで ω 番目の要素とする。
次に残りから一つ要素を選んで ω + 1 番目の要素とする。 ……
というのを残りが尽きるまでひたすら繰り返す。アイデアは簡単だが厳密に書くと結構分かりにくくなる。
あとはただ整列順序に関する a の最小要素を選べば(choiceすれば)良い。
←は、まず全体から一つ要素を選んで一番小さい 0 番目の要素とする。
次に残りから一つ要素を選んで(choiceして)その次に小さい 1 番目の要素とする。
次に残りから……
次に残りから一つ要素を選んで ω 番目の要素とする。
次に残りから一つ要素を選んで ω + 1 番目の要素とする。 ……
というのを残りが尽きるまでひたすら繰り返す。アイデアは簡単だが厳密に書くと結構分かりにくくなる。
259132人目の素数さん
2014/04/24(木) 20:52:34.66 >←は、まず全体から一つ要素を選んで一番小さい 0 番目の要素とする。
>次に残りから…
こう言うと、これらの操作を順々にやるように聞こえるが、ACではもちろん、
これらの操作を一気に(同時に)やるんだよね。
たしかにアイデアは簡単だ。
なのにその独立性を示すのになんで強制法もようなテクニックがいるの?
>次に残りから…
こう言うと、これらの操作を順々にやるように聞こえるが、ACではもちろん、
これらの操作を一気に(同時に)やるんだよね。
たしかにアイデアは簡単だ。
なのにその独立性を示すのになんで強制法もようなテクニックがいるの?
260132人目の素数さん
2014/04/24(木) 21:02:21.77 >>259
整列可能性 <-> ACの証明と、ACの独立性証明に、何か関係が?
整列可能性 <-> ACの証明と、ACの独立性証明に、何か関係が?
261132人目の素数さん
2014/04/24(木) 23:24:20.17 うん、それは関係ないとは思うが、
V=Lが独立なら、CHもACも独立なのじゃなかった?
そして、V=Lが独立なのは明らかだろうと思うのだが。
V=Lが独立なら、CHもACも独立なのじゃなかった?
そして、V=Lが独立なのは明らかだろうと思うのだが。
262132人目の素数さん
2014/04/25(金) 00:21:26.05 怪しい表現
263132人目の素数さん
2014/04/25(金) 09:30:08.22 not[ZF|-V=L], ZF|-(V=L->CH), ZF|-(V=L->AC) に比べて、
not[ZF|-AC] やnot[ZF|-not AC]を示すのが難しくなるのは
どうしてだろう?ということかな
not[ZF|-AC] やnot[ZF|-not AC]を示すのが難しくなるのは
どうしてだろう?ということかな
264132人目の素数さん
2014/04/25(金) 09:33:35.56 数学において「明らか」とか「自明」という表現は
「あまりにも簡単に証明できるのでバカバカしくて書いてられない」という
意味です。
「あまりにも簡単に証明できるのでバカバカしくて書いてられない」という
意味です。
265132人目の素数さん
2014/04/25(金) 11:43:07.77 「同語反復レベルの簡単」から「天才には簡単」まで
266132人目の素数さん
2014/04/25(金) 12:07:12.74 文脈に応じていろんな明らかがあるよ
267132人目の素数さん
2014/04/25(金) 12:16:17.22 〜セミナーにて〜
優秀なA君「明らかです」
馬鹿なB君「明らかです」
意味が違う
優秀なA君「明らかです」
馬鹿なB君「明らかです」
意味が違う
268132人目の素数さん
2014/04/25(金) 14:38:57.25 日本語を理解できない馬鹿ばっかりなのかな?
269132人目の素数さん
2014/04/25(金) 20:19:13.41 ACの独立性などに比べると不完全性定理は自明な定理だと言っても264には注意されるのかな?
270132人目の素数さん
2014/04/25(金) 21:05:27.46 V=L → GCH → ACなので、
ZFからACが導けないなら当然V=Lも導けないが
逆を言うのはかなり困難だと思う。
>V=Lが独立なら、CHもACも独立なのじゃなかった?
これは何情報?
そもそもACを認めない時点で基数の一般論が
ちょっと工夫しないといけなくなるのでその時点で自明とは言い難い
ZFからACが導けないなら当然V=Lも導けないが
逆を言うのはかなり困難だと思う。
>V=Lが独立なら、CHもACも独立なのじゃなかった?
これは何情報?
そもそもACを認めない時点で基数の一般論が
ちょっと工夫しないといけなくなるのでその時点で自明とは言い難い
271132人目の素数さん
2014/04/27(日) 13:47:36.65 松坂和雄の整列定理から選択公理を導くところだけど、整列集合にする順序関係
があるとしても、そのうちどれを選ぶのかということを指定するルールを明示しない
限り証明になっていない気がするんだけどあれでいいの?
があるとしても、そのうちどれを選ぶのかということを指定するルールを明示しない
限り証明になっていない気がするんだけどあれでいいの?
272132人目の素数さん
2014/04/27(日) 13:57:37.42 >>181あたりからの書き込みを追ってみよう
彼と同じ勘違いをしてるみたいだから
彼と同じ勘違いをしてるみたいだから
273132人目の素数さん
2014/04/27(日) 13:59:12.71 同一人物だろ
274132人目の素数さん
2014/04/27(日) 14:41:00.77 Xを集合とし、X上の整列順序全体の集合を X’とする。
整列可能定理とは、任意の集合Xに対してX’≠φが成り立つということ。
選択公理とは、添え字付けられた空でない集合の族(A_λ|λ∈∧)に対して
Π_λ A_λ ≠ φが成り立つということ。
選択公理を証明するとはすなわち、単にΠ_λ A_λ ≠ φを示すことに他ならない。
Π_λ A_λ ≠ φを示すには、空でない集合YであってY⊂Π_λ A_λを満たすものを
1つ作れば十分である。
添え字付けられた空でない集合の族(A_λ|λ∈∧)は(∪_λ A_λ)’≠φを満たすとする。
写像 F:(∪_λ A_λ)’→ Π_λ A_λを以下のように定める。
まず、ρ∈(∪_λ A_λ)’を任意に取る。このとき、(∪_λ A_λ, ρ)は整列集合である。
各λ∈∧に対して、f(λ):=min A_λとして写像 f :∧→∪_λ A_λを定める。
ただし、右辺のminは(∪_λ A_λ, ρ)におけるminとする。従って、このfはρごとに定まる。
F(ρ):=f として F(ρ) を定義すれば F(ρ):∧→∪_λ A_λである。
特にF(ρ)∈Π_λ A_λである。ρ∈(∪_λ A_λ)’だったから、以上より
写像 F:(∪_λ A_λ)’→ Π_λ A_λが定義できた。
Y={ F(ρ)|ρ∈(∪_λ A_λ)’}と置けば、(∪_λ A_λ)’≠φにより Y ≠ φ である。
また、F:(∪_λ A_λ)’→ Π_λ A_λにより Y ⊂ Π_λ A_λ である。
従って φ ≠ Y ⊂ Π_λ A_λ となったので、Π_λ A_λ≠φである。以上より、次が言えた。
・添え字付けられた空でない集合の族 (A_λ|λ∈∧) が (∪_λ A_λ)’≠φを満たすならば、
Π_λ A_λ ≠ φである。
系:整列可能定理が成り立てば選択公理も成り立つ。
整列可能定理とは、任意の集合Xに対してX’≠φが成り立つということ。
選択公理とは、添え字付けられた空でない集合の族(A_λ|λ∈∧)に対して
Π_λ A_λ ≠ φが成り立つということ。
選択公理を証明するとはすなわち、単にΠ_λ A_λ ≠ φを示すことに他ならない。
Π_λ A_λ ≠ φを示すには、空でない集合YであってY⊂Π_λ A_λを満たすものを
1つ作れば十分である。
添え字付けられた空でない集合の族(A_λ|λ∈∧)は(∪_λ A_λ)’≠φを満たすとする。
写像 F:(∪_λ A_λ)’→ Π_λ A_λを以下のように定める。
まず、ρ∈(∪_λ A_λ)’を任意に取る。このとき、(∪_λ A_λ, ρ)は整列集合である。
各λ∈∧に対して、f(λ):=min A_λとして写像 f :∧→∪_λ A_λを定める。
ただし、右辺のminは(∪_λ A_λ, ρ)におけるminとする。従って、このfはρごとに定まる。
F(ρ):=f として F(ρ) を定義すれば F(ρ):∧→∪_λ A_λである。
特にF(ρ)∈Π_λ A_λである。ρ∈(∪_λ A_λ)’だったから、以上より
写像 F:(∪_λ A_λ)’→ Π_λ A_λが定義できた。
Y={ F(ρ)|ρ∈(∪_λ A_λ)’}と置けば、(∪_λ A_λ)’≠φにより Y ≠ φ である。
また、F:(∪_λ A_λ)’→ Π_λ A_λにより Y ⊂ Π_λ A_λ である。
従って φ ≠ Y ⊂ Π_λ A_λ となったので、Π_λ A_λ≠φである。以上より、次が言えた。
・添え字付けられた空でない集合の族 (A_λ|λ∈∧) が (∪_λ A_λ)’≠φを満たすならば、
Π_λ A_λ ≠ φである。
系:整列可能定理が成り立てば選択公理も成り立つ。
275271
2014/04/27(日) 14:45:43.56276275
2014/04/27(日) 14:49:19.48 >>274
あ、分かった。ありがとう。そうか空でないと言えればそれでいいのか。
あ、分かった。ありがとう。そうか空でないと言えればそれでいいのか。
277132人目の素数さん
2014/04/27(日) 20:05:45.29 教科書にはそうとしか書いてないはずだけど、
整列可能の定義を何だと思ってたの?
整列可能の定義を何だと思ってたの?
278132人目の素数さん
2014/04/28(月) 01:29:11.69 公理論的集合論について予備知識なしで読める本を教えてください。
赤 攝也『集合論入門』(ちくま学芸文庫)は古すぎるでしょうか?
赤 攝也『集合論入門』(ちくま学芸文庫)は古すぎるでしょうか?
279132人目の素数さん
2014/04/28(月) 02:04:42.24280132人目の素数さん
2014/04/28(月) 05:14:45.43 『復刊 公理論的集合論』西村 敏男・難波 完爾 (2013/4/2) 共立出版
この本はどうですか?
この本はどうですか?
281132人目の素数さん
2014/04/28(月) 10:23:25.13 ZF+V=Lの無矛盾性の証明よりZF+not{V=L}の無矛盾性の証明の方がずっと
難しいのね?なぜ?
難しいのね?なぜ?
282132人目の素数さん
2014/04/28(月) 11:36:45.33 それぞれどうやって証明するのか考えたら、難易度の差は歴然だろう
283132人目の素数さん
2014/04/28(月) 14:36:22.88 どこが違うからなの?
歴史的には、ZF+not{V=L}の無矛盾性の証明はできることはわかっていたが、
どのように証明するかに手間取ったの?
人間版不完全性定理っていうのはないの?
歴史的には、ZF+not{V=L}の無矛盾性の証明はできることはわかっていたが、
どのように証明するかに手間取ったの?
人間版不完全性定理っていうのはないの?
284132人目の素数さん
2014/04/28(月) 16:22:19.89 「『数学上の問題を解くには方程式書いてコツコツやってもはじまらない。仏の境地に
達すれば何だってスラスラ解けるものだ』。こういう表現だったかどうか正確ではないが
確か(岡潔)先生はそういう意味のことをおっしゃったと思う」
--- 広中平祐
達すれば何だってスラスラ解けるものだ』。こういう表現だったかどうか正確ではないが
確か(岡潔)先生はそういう意味のことをおっしゃったと思う」
--- 広中平祐
285132人目の素数さん
2014/04/28(月) 17:44:21.52 __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/
. | \ ∠イ ,イイ| ,`-' |
| l^,人| ` `-' ゝ |
| ` -'\ ー' 人 私は死なないわよ。
| /(l __/ ヽ、 でも最近一寸太ったかしら。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 Windows ver.10 で
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ 元の痩せた姿にしてよね。
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/
. | \ ∠イ ,イイ| ,`-' |
| l^,人| ` `-' ゝ |
| ` -'\ ー' 人 私は死なないわよ。
| /(l __/ ヽ、 でも最近一寸太ったかしら。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 Windows ver.10 で
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ 元の痩せた姿にしてよね。
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
286132人目の素数さん
2014/04/28(月) 21:48:52.72 >>280, 283
赤さんの本は公理的集合論の本ではないけど、
公理的な集合論を勉強する前に学部レベルの
素朴集合論の本の内容を身につけた方が効率が良いと思う
(ついでに言うと一階述語論理は先に勉強するに越した事は無い)。
難波完爾先生の本は独特な味がある本だけど、初学者には難しい。
正直な所、Kunenを読む一歩手前の人に適当だと言えるような
水準の本は日本語ではなかなか無い。
「ゲーデルと20世紀の論理学」シリーズの四巻第一章が割とそれに近いか。
赤さんの本は公理的集合論の本ではないけど、
公理的な集合論を勉強する前に学部レベルの
素朴集合論の本の内容を身につけた方が効率が良いと思う
(ついでに言うと一階述語論理は先に勉強するに越した事は無い)。
難波完爾先生の本は独特な味がある本だけど、初学者には難しい。
正直な所、Kunenを読む一歩手前の人に適当だと言えるような
水準の本は日本語ではなかなか無い。
「ゲーデルと20世紀の論理学」シリーズの四巻第一章が割とそれに近いか。
287132人目の素数さん
2014/04/28(月) 21:52:44.05288132人目の素数さん
2014/04/29(火) 01:43:02.27 >>286
>赤さんの本は公理的集合論の本ではないけど、
>公理的な集合論を勉強する前に学部レベルの
>素朴集合論の本の内容を身につけた方が効率が良いと思う
>(ついでに言うと一階述語論理は先に勉強するに越した事は無い)。
えっと、よくわからないですが、赤さんの文庫本は「学部レベルの素朴集合論の本」ではないんですね?
別の本で「学部レベルの素朴集合論」をやるべきということですね?具体的な書名をおしえてください。
>赤さんの本は公理的集合論の本ではないけど、
>公理的な集合論を勉強する前に学部レベルの
>素朴集合論の本の内容を身につけた方が効率が良いと思う
>(ついでに言うと一階述語論理は先に勉強するに越した事は無い)。
えっと、よくわからないですが、赤さんの文庫本は「学部レベルの素朴集合論の本」ではないんですね?
別の本で「学部レベルの素朴集合論」をやるべきということですね?具体的な書名をおしえてください。
289132人目の素数さん
2014/04/29(火) 12:53:55.74 公理論的集合論の本じゃないけど
学部レベルの素朴集合論の本だとは言っても良いんじゃないの?
このレベルの本はどれも大して優劣は無いからどれでも気にいった本で良いよ。
日本語の本で
諸定義、集合に関するブール演算、選択公理、濃度、順序数、
という順序で基本的なことを解説するパターンの本はどれでもほぼ同じ。
学部レベルの素朴集合論の本だとは言っても良いんじゃないの?
このレベルの本はどれも大して優劣は無いからどれでも気にいった本で良いよ。
日本語の本で
諸定義、集合に関するブール演算、選択公理、濃度、順序数、
という順序で基本的なことを解説するパターンの本はどれでもほぼ同じ。
290132人目の素数さん
2014/04/29(火) 20:12:32.06 >>287の前半
>集合論の知識の無い非専門家の数学者に聞くと、
>V=Lが成り立つ方が尤もらしいと答える人が多い。
それは違うのじゃないかな?一般人(非専門家)はむしろ「世界は具体的
に構成したり定義したり出来るような対象だけとは限らないだろう」と
考えて、not{V=L}はあり得ることと考えるのではないか?「V=Lだ!」
とも言わないだろうが。つまり、一般人は、V=Lとnot(V=L)のどちらも
あり得ることだと直感しているのじゃないかな?
>集合論の知識の無い非専門家の数学者に聞くと、
>V=Lが成り立つ方が尤もらしいと答える人が多い。
それは違うのじゃないかな?一般人(非専門家)はむしろ「世界は具体的
に構成したり定義したり出来るような対象だけとは限らないだろう」と
考えて、not{V=L}はあり得ることと考えるのではないか?「V=Lだ!」
とも言わないだろうが。つまり、一般人は、V=Lとnot(V=L)のどちらも
あり得ることだと直感しているのじゃないかな?
291132人目の素数さん
2014/04/30(水) 11:57:41.41 無矛盾性(独立性)を示すのに、モデルの存在を示すという方法でなく、
syntacticalにやる方法を書いたものってなにかありますか?
syntacticalにやる方法を書いたものってなにかありますか?
292132人目の素数さん
2014/04/30(水) 20:56:21.74 証明論の順序数解析の本とかにはそういう証明があるよ
たとえば新井敏康の数学基礎論の第八章(証明論の章)には
集合論KPの無矛盾性の統語論的証明がある
たとえば新井敏康の数学基礎論の第八章(証明論の章)には
集合論KPの無矛盾性の統語論的証明がある
293132人目の素数さん
2014/04/30(水) 21:06:35.91294132人目の素数さん
2014/05/01(木) 00:23:17.13 モデルが存在するならば無矛盾というのは
健全性定理という一つの定理
健全性定理という一つの定理
295132人目の素数さん
2014/05/01(木) 07:58:11.74 >>294
完全性定理ですね。それはわかっているのですが、
私が「なぜ」と言ったのは、「どういうしくみ・理由で」無矛盾なのかを知りたい
という意味でした。モデルの存在からは、「とにかく無矛盾」としかわからないと
思うので。
完全性定理ですね。それはわかっているのですが、
私が「なぜ」と言ったのは、「どういうしくみ・理由で」無矛盾なのかを知りたい
という意味でした。モデルの存在からは、「とにかく無矛盾」としかわからないと
思うので。
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 首相、就職氷河期世代の支援表明 週内に関係閣僚会議設置 ★6 [どどん★]
- 【速報】ドジャース・大谷翔平がパパに! 第1子となる「女児誕生」を報告 早朝から日米のファンが祝福★2 [冬月記者★]
- あぼーん
- 【なおド】佐々木朗希 最長6回2安打2失点と好投も ドジャース救援陣が崩れサヨナラ負けで初勝利またもお預け [鉄チーズ烏★]
- 【TBS】『報道特集』で「死を選んだ理由は立花孝志」との被害者実名の遺書を公開… 立花氏は撮影取材求める★2 [冬月記者★]
- 「2040年にGDP980兆円」 経産省構想、国内投資倍増促す [蚤の市★]
- 2025 SUPER FORMULA Lap6
- 【DAZN】フォーミュラGP【F1 F2F3 SF P】Lap1679
- 【フジテレビ】2025 FORMULA 1【NEXT】Lap89
- こいせん 全レス転載禁止
- とらせん
- おりせん★5
- 【画像】総理大臣というのは森羅万象に対応しなくてはならないらしいけど森羅万象を“担当”するってのはなに [974680522]
- 🏡💥🤛👊😅👊🤜💥🏡
- お前らってすぐハロー効果に引っかかるよな
- 【画像】芸人スギちゃん、パンッパン///
- 東浩紀「暇空氏の勢いを見ると多くの人が左派にウンザリしていたかがよくわかる」😲 [861717324]
- 農水省「備蓄米でぼったくってるのは卸売業者!JAはほぼ原価で卸してるから悪くない!」そうなのか🤔 [481941988]