密度ρが一定で半径Rがシュワルツシルト半径と等しくなるような球体が存在するとすれば、
R=2GM/c^2=8GπρR^3/(3c^2)より、R= c√3/√(8πGρ)

ρとして原子核の密度 2.5×10^17 kg/m3 を代入すると
R = 3×10^8×√3/√(8×3.14×6.7×10^-11×2.5×10^17)
= 2.5×10^4 m
質量にすると1.7×10^31 と太陽質量の8倍くらい。

実際にはこれより小さくても(=軽くても)縮退圧を越え、もっと高密になり、ゆえにもっと小さなシュヴァルツシルト半径を持ちうるのかな?