>>702 追加
>2)有限単純群の話もこれで モンスター群の位数をこえると 例外の
> 散在単純群が出ない。群の位数nが小さいとき 例外ができる

鈴木先生だったか 原田先生だったかの本の 有限群についての記載で
下記の S6,A6 (つまりn=6)で 例外的なことがおきて
それで 群の位数が小さい
(といっても モンスター群の位数は人間には大きい)
ところで、群の分類が複雑になっているとの記載があった

どっかの図書館で読んだのだが
”へー”と 感心しました。書名? 忘れました (^^

(参考)
https://en.wikipedia.org/wiki/Symmetric_group
Symmetric group
Low degree groups
See also: Representation theory of the symmetric group § Special cases

S6
Unlike all other symmetric groups, S6, has an outer automorphism. Using the language of Galois theory, this can also be understood in terms of Lagrange resolvents. The resolvent of a quintic is of degree 6—this corresponds to an exotic inclusion map S5 → S6 as a transitive subgroup (the obvious inclusion map Sn → Sn+1 fixes a point and thus is not transitive) and, while this map does not make the general quintic solvable, it yields the exotic outer automorphism of S6—see Automorphisms of the symmetric and alternating groups for details.
Note that while A6 and A7 have an exceptional Schur multiplier (a triple cover) and that these extend to triple covers of S6 and S7, these do not correspond to exceptional Schur multipliers of the symmetric group.

https://en.wikipedia.org/wiki/Outer_automorphism_group
Outer automorphism group

https://en.wikipedia.org/wiki/Automorphisms_of_the_symmetric_and_alternating_groups
Automorphisms of the symmetric and alternating groups