>>682-683
>>>493
>L^2には入らないけれどL^4には入るのかも?
>出題した人結論だけでも教えて欲しいです>>478 ID:LpLoPpDo

それね
ポアンカレで エキゾチック R4とか
エキゾチック 4-球面 とからまないか
妄想すると 楽しそうです (^^

(参考)
https://ja.wikipedia.org/wiki/%E4%BD%8E%E6%AC%A1%E5%85%83%E3%83%88%E3%83%9D%E3%83%AD%E3%82%B8%E3%83%BC
低次元トポロジー

タイヒミューラー空間
→詳細は「タイヒミューラー空間(英語版)」を参照
数学において、(実)位相空間 X のタイヒミューラー空間 TX は、恒等写像と同位(英語版)な同相写像の作用を除いて X 上の複素構造をパラメータ付ける空間である。TX 上の各点は、「印」をつけたリーマン面の同型類とみなすことができる。ただし、「印」とは X から自分自身への同相写像の同位類である。タイヒミューラー空間は、(リーマン)モジュライ空間の普遍被覆軌道体(英語版)である。

タイヒミューラー空間は、標準的な複素多様体の構造と豊かな自然計量を持っている。タイヒミューラー空間の台となる位相空間は、フリッケ(Fricke)により研究され、その上のタイヒミュラー計量は Oswald Teichmüller (1940) で導入された[1]

異種 R4
→詳細は「エキゾチック R4」を参照
エキゾチック R4 はユークリッド空間 R4 と同相であるが、微分同相ではない可微分多様体を言う。最初の例は、1980年代始めにマイケル・フリードマンにより、位相 4次元多様体についてのフリードマンの定理と滑らかな 4次元多様体についてのサイモン・ドナルドソンの定理を対比することで発見された[4] 。R4 の微分同相ではない可微分構造(英語版)が非可算個存在する。このことは、最初にクリフォード・タウベス(英語版)により、[5] で示された。

球面上の微分同相ではない可微分構造(英語版)— 異種球面(英語版)— は存在が知られていたが、この構成により、そのような構造の存在が 4-球面のこの特別な場合のみ存在するのかどうかという問題は未解決である(2014年段階では)。4 以外の正の整数 n に対し、Rn 上には異種可微分構造が存在しない。言い換えると、n ≠ 4 ならば、Rn に同相な任意の滑らかな多様体は、Rn に微分同相である[6]。