>>625 追加
こっちの方が 適切だな

https://ja.wikipedia.org/wiki/%E5%BC%A6%E7%90%86%E8%AB%96
弦理論
弦理論(string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる
概要
1970年に南部陽一郎、レオナルド・サスキンド 、ホルガー・ベック・ニールセン (Holger Bech Nielsen|en) [1]が独立に発表したハドロンに関する理論によって登場したものの、量子色力学にその座を譲った。しかし、1984年にマイケル・グリーンとジョン・シュワルツ (John Henry Schwarz) が発表した超対称性及び、カルツァ=クライン理論を取り入れた超弦理論 (superstring theory)によって、再び表舞台に現れた。4つの基本相互作用を統一する試みとして注目されている
最近では、超弦理論やM理論を含む広い意味で「弦理論 (string theory)」と呼ぶことも多い[2]が、ここでは超対称性を持たないボゾン弦 (bosonic string) について記述する
弦理論において紐の量子化は難しいものであり、点粒子が時空を動くときは世界線を描くが紐の場合世界面を描く。点粒子の作用は世界線の長さの積分を取ればよく、ならば紐は世界面の積分を取ればいい。これを南部・後藤作用という。

歴史
弦理論以前
S行列理論
弦理論はヴェルナー・ハイゼンベルクによって1943年に始められた研究プログラムに由来している。そのプログラムはS行列理論と呼ばれ、物理法則を根本的に考えなおすものであった。この理論は、1950年代から1960年代に渡って著名な理論家たちによって支持され発展を見せたが、1970年代に評価が薄れ、1980年代に研究は途絶えた。いくつかのアイデアは根本的に間違っており、量子色力学が強い相互作用を説明する理論として取って代わったため、この理論は現在は使われていない。

1940年代までに陽子および中性子は電子のような点粒子ではないことが明らかになっていた。それら粒子の磁気モーメントはスピン-1/2 のチャージを持つ点様粒子のものとは大きく異なっていて、この違いは小さな摂動が原因と考えるには大きすぎた。それらの粒子間の相互作用は非常に強かったので、その散乱特性は点様ではなく小さな球体のような振る舞いをした。ハイゼンベルクは強い相互作用をする粒子は事実上広がりを持つ物体であると提唱し、広がりのある相対論的粒子については物理法則の適用に困難があるため、彼は時空点の観念は原子核スケールでは成立しないとすることを提案した。

つづく