>>445
>ストンワイエルシュトラスの定理

へー なるほど・・・

(参考)
https://en.wikipedia.org/wiki/Stone%E2%80%93Weierstrass_theorem
Stone–Weierstrass theorem

https://ja.wikipedia.org/wiki/%E3%82%B9%E3%83%88%E3%83%BC%E3%83%B3%EF%BC%9D%E3%83%AF%E3%82%A4%E3%82%A8%E3%83%AB%E3%82%B7%E3%83%A5%E3%83%88%E3%83%A9%E3%82%B9%E3%81%AE%E5%AE%9A%E7%90%86
ストーン=ワイエルシュトラスの定理

ストーン・ワイエルシュトラスの定理(英語: Stone–Weierstrass theorem)とは、局所コンパクト空間上の連続関数の代数系における部分代数の稠密性に関する定理である。

ワイエルシュトラスの近似定理がその原型であり、1937年にマーシャル・ストーンによって大幅に一般化された現在の形の結果が得られた。

ストーン・ワイエルシュトラスの定理は、局所コンパクトハウスドルフ空間 X 上定められた複素数値の連続関数の代数系 C(X) の部分代数 A が一様収束の位相に関して稠密になるための十分条件として、
1.Aの元によって X の任意の異なる点が分離されること
2.関数の複素共役をとる操作について A が閉じていること
の二つが両立していること、を挙げている。Xが実閉区間であるとき多項式関数のなす代数系は上記の条件を共に満たすため、ワイエルシュトラスの近似定理はストーン・ワイエルシュトラスの定理の特別な場合になっている。

ワイエルシュトラスの近似定理
ワイエルシュトラスの近似定理(ワイエルシュトラスのきんじていり、(英: Weierstrass approximation theorem)は連続関数の多項式近似に関する定理である。
ワイエルシュトラスの近似定理は、閉区間上のどんな連続関数も多項式関数によって任意の精度で一様に近似できることを述べている。
f を閉区間 [a, b] 上の連続関数とせよ。任意の ε > 0 について多項式 p であって、[a,b] の任意の点 x に対し| ƒ(x) − p(x) | < ε を満たすようなものが存在する。
言い換えると閉区間上の連続関数のなす集合において、多項式からなる部分集合は一様ノルム(の誘導する距離)に関して稠密である。したがって、そのような連続関数に対しては一様収束する多項式列が存在する。ワイエルシュトラスは
e^−x^2 に代表されるような良い減少性をもつ関数の高階微分によって表される積分作用素によって、与えられた関数 f を近似するような多項式たちの係数を与えた。

実の場合のストーン・ワイエルシュトラスの定理
閉区間[a,b]上の連続関数のなす集合は sup-ノルムによってバナッハ環になる。つまり、このノルムに関して位相線型空間として完備であり、各点での値の積をとることによって定まる環の構造について ||fg|| < ||f||·||g||が成り立っているということである。ワイエルシュトラスの近似定理とは、このバナッハ環の中で多項式関数のなす部分環が稠密であるということをのべている

つづく