n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、4=xとなるので、成り立つ。
よって、(y-1)(y+1)=k2x/kも成り立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。