二階述語論理のNon-reducibility to first-order logic(一階論理への非還元性)(下記)
があるって知らない人がいるらしい。そういう人が、訳分からずにハナタカしているんだねw

(参考)
https://ja.wikipedia.org/wiki/%E4%BA%8C%E9%9A%8E%E8%BF%B0%E8%AA%9E%E8%AB%96%E7%90%86
二階述語論理
二階論理の表現能力
二階述語論理は一階述語論理よりも表現能力が高い。例えば、ドメインが全ての実数の集合としたとき、一階述語論理を使って「それぞれの実数には加法の逆元が存在する」ということを ∀x ∃y (x + y = 0) と表せる。しかし、「空でなく上に有界な実数の集合があるとき常にその集合には上限が存在する」という命題を表すには、二階述語論理が必要となる

二階論理とメタ論理学の成果
ゲーデルの不完全性定理の系の1つとして、以下の3つの属性を同時に満足するような二階述語論理の推論体系は存在しないとされた
・(健全性)証明可能な二階述語論理の文は常に真である。すなわち standard semantics に従ったあらゆるドメインで真である。
・(完全性)standard semantics において常に妥当な二階述語論理の論理式は、全て証明可能である。
・(実効性)与えられた論理式の並びが妥当な証明かどうかを正しく決定できる証明検証アルゴリズムが存在する。
この系を言い換えると、二階述語論理は完全な証明理論に従わない、とも言える。この観点で、standard semantics を伴った二階述語論理は一階述語論理とは異なり、そのせいもあって論理学者は長年、二階述語論理に関わることを避けてきた。ウィラード・ヴァン・オーマン・クワインは二階述語論理は「論理」ではないと考える理由としてこれを挙げている

歴史と論争
一階述語論理を使うと、集合論を公理的体系として形式化できることがわかり(完全性の問題はあるが、ラッセルのパラドックスほど悪いことではない)、公理的集合論が生まれ、集合は数学の基盤となった。算術、メレオロジー、その他の様々な論理的理論が一階述語論理の範囲内で公理的に定式化でき、ゲーデルやスコーレムが一階述語論理に固執したこともあって、二階や高階の述語論理はほとんど省みられなかった

近年、二階述語論理は一種の回復の途上にある。この傾向をもたらしたのは George Boolos による二階の量化の解釈であり、彼は一階の量化と同じドメインでの複数形の量化として二階の量化を解釈した。Boolos はさらに一階述語論理では記述できない文を例に挙げ、完全な二階述語論理の量化でのみそれらを表現可能であるとした

計算複雑性理論への応用
有限な構造についての二階述語論理の各種形式の表現能力は、計算複雑性理論と密接に関係している。記述計算量の研究では、複雑性クラスを説明するのにそれに属する言語を表現できる論理体系の能力で表す。そのため、二階述語論理を前提として次のような複雑性クラスを説明できる
・NP は、存在量化二階述語論理で表現できる言語の集合である(Fagin の定理、1974年)

上述のように Henkin は Henkin semantics を使えば二階述語論理に一階述語論理の標準的な健全で完全で実効的な推論体系を適用できることを証明した

https://en.wikipedia.org/wiki/Second-order_logic
Second-order logic
Non-reducibility to first-order logic
(一階論理への非還元性)