>>472
偏角問題は実は複数ある
1.まず、
「1の11乗根の実数部を根とする5次方程式を解く際に用いる
ラグランジュ分解式4つそれぞれの5乗根をどうとるか?」
という問題については>>446で述べたように、
「うち1つ β1 を5乗根で表し、他の3つ β2、β3、β4 を
β1のベキと係数の積による式、c2β1^2、c3β1^3、c4β1^4で表す」
方法により解決される。c2、c3、c4については、
そもそもβ1^5を計算する際に求めた「ヤコビ和」から分かる。
2.次に
「β1としてどの5乗根をとっても、方程式の根が得られるか?」
という問題については、然り、である。
これはラグランジュ分解式の理屈が分かっていれば当たり前であるが
この際文句のいいようがないほどしつこく説明するw
β1以外の5乗根は、1の5乗根をηと表した場合、それぞれ
ηβ1、η^2β1、η^3β1、η^4β1
と表せるが、例えば根を表す「逆ラグランジュ合成(?)式」は
1/5(1+β1+β2+β3+β4)
=1/5(1+β1+c2β1^2+c3β1^3+c4β1^4)
であるから、β1のかわりに上記の4つの5乗根を入れると
1/5(1+(ηβ1)+c2(ηβ1)^2+c3(ηβ1)^3+c4(ηβ1)^4)
=1/5(1+ηβ1+η^2c2β1^2+η^3c3β1^3+η1^4c4β1^4) @
1/5(1+(η^2β1)+c2(η^2β1)^2+c3(η^2β1)^3+c4(η^2β1)^4)
=1/5(1+η^2β1+η^4c2β1^2+ηc3β1^3+η^3c4β1^4) A
1/5(1+(η^3β1)+c2(η^3β1)^2+c3(η^3β1)^3+c4(η^3β1)^4)
=1/5(1+η^3β1+ηc2β1^2+η^4c3β1^3+η^2c4β1^4) B
1/5(1+(η^4β1)+c2(η^4β1)^2+c3(η^4β1)^3+c4(η^4β1)^4)
=1/5(1+η^4β1+η^3c2β1^2+η^2c3β1^3+ηc4β1^4) C
となり、方程式の他の4根の「逆ラグランジュ合成式」に対応する。
3.最後に
「根の1つをcos(2π/11)と決めたとき、
これに対応する5乗根をいかに特定するか?」
という問題がある。これが亀井氏がこだわっていたものである。
これについては・・・おや、誰か来たようだ (をひ!)
探検
純粋・応用数学・数学隣接分野(含むガロア理論)12
■ このスレッドは過去ログ倉庫に格納されています
475わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf
2023/01/07(土) 13:29:06.59ID:JasS3zz2■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 【池田信夫氏】「男系天皇」が古代からの伝統だという話は明治時代の創作 ★3 [樽悶★]
- 「小泉氏就任で下げたのではない」米価めぐりJA全農長野が声明 [バイト歴50年★]
- 【岐阜】リニアのトンネル工事問題、地下水位低下に打つ手なし…JRが瑞浪市で説明会開催へ 代替水源整備で理解求める ★2 [樽悶★]
- 【芸能】永野芽郁と二股報道の『キャスター』共演俳優が意味深投稿「嘘をつかないで もう半分終わった」報道後初インスタ更新 [Ailuropoda melanoleuca★]
- リュウジ氏、「今まで食った袋麺の豚骨の中で一番…サッポロ一番に匹敵するうまさ」と絶賛する袋麺は「うまかっちゃん」 [muffin★]
- 「ユニクロの生地が薄くなっている?」SNSで指摘される“疑念”は本当なのか [バイト歴50年★]
- 琉球国王末裔・第2尚氏第23代当主「沖縄人は先住民ではなく日本人。琉球処分は滅亡ではなく、日本への統合を選択した正しい決断 [377482965]
- 【画像】フェミ煽りをしていた弱者男性、顔バレして逃亡wwwwwwwwww [834922174]
- 大企業部長(60)「退職金3500万で貯金5000万。今後は妻とゆっくり暮らそうと思う」妻「離婚して」
- 東京って街はろくでもねぇな
- 長野に来てる僕くんのお昼ご飯がこちらwww
- ▶白上フブキ激シコスレ