>>472
偏角問題は実は複数ある
1.まず、
「1の11乗根の実数部を根とする5次方程式を解く際に用いる
ラグランジュ分解式4つそれぞれの5乗根をどうとるか?」
という問題については>>446で述べたように、
「うち1つ β1 を5乗根で表し、他の3つ β2、β3、β4 を
β1のベキと係数の積による式、c2β1^2、c3β1^3、c4β1^4で表す」
方法により解決される。c2、c3、c4については、
そもそもβ1^5を計算する際に求めた「ヤコビ和」から分かる。
2.次に
「β1としてどの5乗根をとっても、方程式の根が得られるか?」
という問題については、然り、である。
これはラグランジュ分解式の理屈が分かっていれば当たり前であるが
この際文句のいいようがないほどしつこく説明するw
β1以外の5乗根は、1の5乗根をηと表した場合、それぞれ
ηβ1、η^2β1、η^3β1、η^4β1
と表せるが、例えば根を表す「逆ラグランジュ合成(?)式」は
1/5(1+β1+β2+β3+β4)
=1/5(1+β1+c2β1^2+c3β1^3+c4β1^4)
であるから、β1のかわりに上記の4つの5乗根を入れると
1/5(1+(ηβ1)+c2(ηβ1)^2+c3(ηβ1)^3+c4(ηβ1)^4)
=1/5(1+ηβ1+η^2c2β1^2+η^3c3β1^3+η1^4c4β1^4) @
1/5(1+(η^2β1)+c2(η^2β1)^2+c3(η^2β1)^3+c4(η^2β1)^4)
=1/5(1+η^2β1+η^4c2β1^2+ηc3β1^3+η^3c4β1^4) A
1/5(1+(η^3β1)+c2(η^3β1)^2+c3(η^3β1)^3+c4(η^3β1)^4)
=1/5(1+η^3β1+ηc2β1^2+η^4c3β1^3+η^2c4β1^4) B
1/5(1+(η^4β1)+c2(η^4β1)^2+c3(η^4β1)^3+c4(η^4β1)^4)
=1/5(1+η^4β1+η^3c2β1^2+η^2c3β1^3+ηc4β1^4) C
となり、方程式の他の4根の「逆ラグランジュ合成式」に対応する。
3.最後に
「根の1つをcos(2π/11)と決めたとき、
これに対応する5乗根をいかに特定するか?」
という問題がある。これが亀井氏がこだわっていたものである。
これについては・・・おや、誰か来たようだ (をひ!)
探検
純粋・応用数学・数学隣接分野(含むガロア理論)12
■ このスレッドは過去ログ倉庫に格納されています
475わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf
2023/01/07(土) 13:29:06.59ID:JasS3zz2■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 【速報】中国 アメリカからの全ての輸入品に34%の関税課すと発表 トランプ政権の相互関税へ報復措置 [Hitzeschleier★]
- 【速報】中国 アメリカからの全ての輸入品に34%の関税課すと発表 トランプ政権の相互関税へ報復措置 ★2 [Hitzeschleier★]
- 【宗教】日本、仏教国で仏教離れ最多 信者の4割、現在「無宗教」 米研究所調査 [樽悶★]
- 【速報】 1ドル=144円 [お断り★]
- 石破首相、トランプ関税は「国難」 ★2 [おっさん友の会★]
- 【大阪万博】「東京では万博が話題になっていない。無料なら良いが、お金を払ってまで2度目はない」万博テストランの来場者から不評の声 [ぐれ★]
- 【始まる】世 界 恐 慌 [458340425]
- 【速報】1ドル144円 [803137891]
- 中国、アメリカの全製品に報復関税34%を課すと発表 [884040186]
- 「人間は10歳のときに遊んだゲームを、幼少期の黄金体験として最高のレトロゲームに認定する傾向がある」最新の調査で判明 [249947164]
- 【速報】オルカン -4.79% wwwwwww [882679842]
- 【😨】水深15cmの川に女性の変死体が.................. 旭川市 [862423712]