>>85
つづき

https://ja.wikipedia.org/wiki/%E5%B0%84%E6%9C%89%E9%99%90%E7%BE%A4
射有限群(しゃゆうげんぐん、英語: pro-finite group)あるいは副有限群(ふくゆうげんぐん)は、有限群の射影系の極限になっているような位相群である。ガロア群やp-進整数を係数とする代数群など、数論的に興味深い様々な群が射有限群の構造を持つ。
射有限群は完全不連結でコンパクトなハウスドルフ位相群として定義される。同値な定義として、離散有限群の成す射影系(逆系)の射影極限(逆極限)として得られる位相群に同型であるような群を射有限群と定めるいうこともできる。
射有限完備化
任意に与えられた群 G に対して、G の射有限完備化 (profinite completion) と呼ばれる射有限群 G^ を考えることができる。

https://dictionary.goo.ne.jp/word/en/completion/
英和・和英辞書 「completion」の意味 goo
完成,完了;完成された状態

https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E5%88%97
コーシー列
無限数列 (xn)
4 コーシー列の収束性と空間の完備性

https://ja.wikipedia.org/wiki/%E9%96%A2%E6%95%B0%E8%A7%A3%E6%9E%90%E5%AD%A6
関数解析学
無限次元ベクトル空間上の線型代数学と捉えられることも多い[1][2][3]。

https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/244783/1/B76-02.pdf
 >>33 星 裕一郎 宇宙際Teichmuller理論入門
Z^(1) (円分物)
例えば, 以下が “Z^(1)” の例です:
(a) (標数 0 の) 代数閉体 Ω に対する Λ(Ω) def := lim ←-n μn(Ω)
 ー ここで, n ≧ 1 に対して, μn(Ω) ⊆ Ω は, Ω の中の 1 の n 乗根のなす群を表す.
(引用終り)
以上